
CS361 Homework #3

Due Tuesday, October 17th

1. Suppose I have a hash table with 50 locations. I would like to know how
many items I can store in it before it becomes fairly likely that I have a
collision, i.e., that two items get hashed to the same location. Assume
that the hash function is random, and solve this problem in two ways:

(a) Find the smallest value of n for which, if I store n items, the prob-
ability I don’t get a collision falls below 1/2. Do this by calculating
this probability exactly for n = 1, n = 2, and so on.

(b) Find the smallest value of n for which the expected (or average) num-
ber of colliding pairs is equal to or greater than 1. Do this by calcu-
lating this average exactly for the relevant values of n.

Do these two methods give roughly the same answer? Can you explain
why they are slightly different?

2. Consider the following question:

Input: a min-heap H containing a set of n numbers, an integer
k, and a number x

Question: does H contain k or more numbers which are smaller
than x?

Show how to answer this question in O(k) time; in other words, in an
amount of time that grows linearly with k, and doesn’t depend on n.

Hint 1: note that you are not being asked to find the kth smallest elements,
just to find out whether or not they are all less than x. Hint 2: try
“excavating” the heap, like an archeological dig. Feel free to look not just
at the root of the tree, but inside the subtrees as well.

3. A d-ary heap is a heap based on a balanced d-ary tree, where each node
has d children (except that the bottom row may be incomplete).

(a) How would you implement a d-ary heap in an array?

(b) How should downSift work in a d-ary heap?

(c) Analyze the running time of makeHeap, deleteMin, and insert in
terms of n and d. Find how the constant in Θ depends on d, and
discuss whether they are faster or slower than in a binary heap.

1

3

2

1

Figure 1: The binary search tree resulting from inserting three items 3, 2, 1 in
decreasing order.

4. Suppose I have a binary search tree. It starts out empty, and I insert
three items into it. The shape of the resulting tree depends on which of
the 6 possible orders I insert them in. For instance, if I insert them in
decreasing order 3, 2, 1, the tree will look like Figure 1.

Assume that the 6 possible orders are equally likely; then, give the possible
shapes the tree can have, and calculate the probability for each one.

Now, for each of these shapes, suppose that I search for one of the three
items, where each of the three is equally likely. Calculate the average
number of steps I need to find this item, i.e., its average depth in the tree,
where the root has depth 0: for instance, for the tree in Figure 1 we get
(1/3)(0 + 1 + 2) = 1.

Finally, take the average over the possible shapes, weighted by their prob-
abilities, to get the average of this average: in other words, calculate the
average depth of a random item in a random tree. If all goes well, you
should get 1/3 times the average number of comparisons Quicksort needs
to sort 3 items, or 8/9!

5. Let’s prove that an AVL tree with n nodes has depth O(log n). We will
do this by solving the opposite problem: finding the smallest number of
nodes that can cause an AVL tree to have a certain depth. Call an AVL
tree “extreme” if every node except the leaves is unbalanced to the right,
and let f(d) be the number of nodes in an extreme tree of depth d. Then
f(1) = 1, f(2) = 2, f(3) = 4, and f(4) = 7; for instance, the extreme tree
of depth 4 is shown in Figure 2.

Find a recurrence for f(d) and solve it within Θ. Then argue that n ≥ f(d)
and therefore d ≤ f−1(n) where f−1 is the inverse function of f . End by
proving that d = O(log n). What is the base of the logarithm? How much
deeper are AVL trees than perfectly balanced binary trees?

2

10/03/2006 07:27 PMAVL tree applet

Page 1 of 3http://webpages.ull.es/users/jriera/Docencia/AVL/AVL%20tree%20applet.htm

The inset below illustrates the behaviour of binary search trees.
Donald Knuth. "The Art of Computer Programming": Searching and Sorting Algorithms.

G.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information", 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985

"Symmetric binary B-trees. Data structure and maintenance algorithms.": R.Bayer, 1972
"A diochromatic framework for balanced trees.": L.J. Guibas and R. Sedgewick, 1978

in-orderTraverseDeleteAllMinDeleteFindInsert

Last update 05.18.2002

Insert and Delete animations have been enhanced with better visuals for the Split and Join operations on splay trees.

All "standard" tree operations (Insert, Find, Delete, Delete All and Traverse) can be accelerated as long as the tree is not rebalancing.
For example, you do not have to wait for the current Insert animation to be completed in order to insert the next key. A series of fast
Inserts will quickly build a large tree with pseudo-random keys. Even though the step-by-step rebalancing is unobserved, the resulting
tree will look exactly the same way as if you were inserting data one item at a time. Clicking on Delete All the second time will delete
the tree immediately. Fast clicking on any command in SPL mode will allow you to see the result of multiple splays without waiting.

All AVL and Splay methods used in the applet have been posted.

Mozilla bug. Some versions of Mozilla do not handle BorderLayout() controls correctly. I was able to reproduce the problem on a
Redhat 7.2 running Mozilla 0.9.2.1 with JVM 1.3.1. Dr. Monge from Cal State successfully tested the applet with Mozilla 1.0 RC2. If
command buttons do not work in your browser, please send me a note with your OS, browser and plugin info.

05.13.2002

More snippets of the source code posted.

05.10.2002

Red-black functionality has been implemented.

The Thinker does a much better job now. After the insertion or deletion process is completed, he will pause the animation to show the
nodes which will be rebalanced, rotated and/or repainted. If two rotations are pending, the numbers on the top of the flashing arrows
will indicate the rotation order. Decreasing the animation speed will make the "thinking" pause longer. If you get impatient, click
anywhere on the panel to proceed to the next iteration.

Reminder: (S)play and (R)otate are "manual" commands. Using them in AVL or Red-Black mode will almost always break the rules of

Figure 2: The extreme AVL tree of depth 4, with 7 nodes.

Extra Credit: We analyzed the version of Quicksort in which the pivot is a randomly
chosen element. We found that the average number of comparisons is

f(n) = 2n lnn

We did this in the following way. Let x be the position in the list that
the pivot ends up in, and let P (x) be the probability of a given value of
x. Then the recurrence for the average number of comparisons is

f(n) = n− 1︸ ︷︷ ︸
partitioning

+
n∑

x=1

P (k) (f(x− 1) + f(n− x))︸ ︷︷ ︸
recursion

≈ n + 2
∫ n

0

P (x)f(x) dx (1)

In the second line we assumed that P (k) is symmetric, i.e., that P (x) =
P (n− x).

Now, if the pivot is random, its rank is equally likely to take any value
from 0 to n− 1, so every value of x occurs with equal probability 1/n:

P (x) =
1
n

for all 0 ≤ x < n

Then Equation (1) becomes

f(n) = n +
2
n

∫ n

0

dx f(x)

By substituting a solution of the form f(n) = An lnn into this equation
and solving for A, we get A = 2 as before.

Now, an improved version of Quicksort uses the median of three random
elements as the pivot. In this case, P (x) is the probability distribution of

3

the median of three random numbers in the unit interval [0, 1]. Calculate
P (x) by asking, given a random number x between 0 and n, what is the
probability that if I choose two more random numbers y and z, then x is
greater than y and less than z? Then, how many ways are there for this
to happen? (You might want to check your work by confirming that the
total probability

∫ n

0
P (x) dx is 1.) Intuitively, rather than being uniform,

P (x) should be peaked at x = n/2.

Finally, use this expression for P (x) in Equation (1) and again try a so-
lution of the form f(n) = An lnn. You should be able to derive that A
is now somewhat smaller than 2, indicating that this method of choosing
the pivot improves the constant in the number of comparisons.

Even more extra credit: What happens if we choose the pivot by taking
the median of 5, 7, . . . elements?

4

