
CS361 Homework #3 Solutions

1. Suppose I have a hash table with 50 locations. I would like to know how
many items I can store in it before it becomes fairly likely that I have a
collision, i.e., that two items get hashed to the same location. Assume
that the hash function is random, and solve this problem in two ways:

(a) Find the smallest value of n for which, if I store n items, the prob-
ability I don’t get a collision falls below 1/2. Do this by calculating
this probability exactly for n = 1, n = 2, and so on.

(b) Find the smallest value of n for which the expected (or average) num-
ber of colliding pairs is equal to or greater than 1. Do this by calcu-
lating this average exactly for the relevant values of n.

Do these two methods give roughly the same answer? Can you explain
why they are slightly different?

Answer. The exact probability that there is no collision is the product of
the probabilities, for each item, that it doesn’t fall into any of the locations
taken by the previous items. For the ith item, there are 50−(i−1) locations
taken by the previous i− 1 items, so this is

50
50

49
50

48
50
· · · 50− (n− 1)

50
.

The first value of n for which this is less than 1/2 is n = 9, for which this
probability is roughly 0.4655.

The expected number of colliding pairs is the number of possible pairs of
items, times the probability that a given one of them collides. This is(

n

2

)
1
50

=
n(n− 1)

100
.

The smallest value of n for which this is greater than 1 is n = 11, for
which the expected number of pairs is 1.1.

These values are somewhat different because, first of all, setting the thresh-
old at 1/2 is arbitrary; secondly, even if we have a collision with probability
1/2, the expected number of collisions could be just (0 + 1)/2 = 1/2.

1



2. Consider the following question:

Input: a min-heap H containing a set of n numbers, an integer
k, and a number x

Question: does H contain k or more numbers which are smaller
than x?

Show how to answer this question in O(k) time; in other words, in an
amount of time that grows linearly with k, and doesn’t depend on n.

Answer. Our goal is to go looking for elements less than or equal to x.
We will do this by starting at the root and exploring downward; since this
is a min-heap, whenever we reach a node greater than or equal to x we
don’t need to explore that branch any further, since all its descendants are
also greater than x. As soon as we find k nodes smaller than x, we halt
and return “yes”; if our search ends after fewer than k nodes by hitting
“bedrock,” i.e., nodes greater than or equal to x, we return “no.”

We can do this depth-first or breadth-first, but in either case we never
need to explore more than O(k) nodes of the heap. Here’s pseudocode for
a version that explores depth-first; to do it breadth-first, simply make s a
queue instead of a stack.

are_there_k_smaller_than_x(k,x) {
t = 0; // number found smaller than x so far
stack s;
push root onto s;
while (t < k && s is not empty) {
y = pop(s);
if y < x {
t++;
push y’s daughters onto s;

}
}
if (t >= k) return "yes"
else return "no"

}

2



3. A d-ary heap is a heap based on a balanced d-ary tree, where each node
has d children (except that the bottom row may be incomplete).

(a) How would you implement a d-ary heap in an array?
Answer: if the array is labelled a[1...n] where a[1] is the root, the d
children of a[k] should be

a[dk − d + 2], a[dk − d + 3], . . . , a[dk + 1]

This generalizes the implementation for a binary heap with d = 2,
where the children of a[k] are a[2k] and a[2k + 1]. If we instead label
the array a[0...n− 1] where a[0] is the root, the d children of a[k] are

a[dk + 1], a[dk + 2], . . . , a[dk + d]

which looks a little simpler.

(b) How should downSift work in a d-ary heap?
Answer: to call downSift on a node x, find the minimum of x’s d
children (this takes d− 1 comparisons). If x’s key is larger than this
minimum (which takes 1 more comparison), swap them. This takes
a total of d comparisons.

(c) Analyze the running time of makeHeap, deleteMin, and insert in
terms of n and d. Find the dependence on d instead of just absorbing
it into the constant hidden in Θ, and discuss whether they are faster
or slower than in a binary heap.
Answer: since the depth of the tree is roughly logd n and each step of
downSift takes d comparisons, downSifting the root, which we have
to do for deleteMin, takes d logd n = (d/ log d) log n steps at worst.
Since d/ log d is an increasing function of d, the worst-case running
time of deleteMin is worse than for a binary heap.
For insert, we need to upSift a new leaf. But this only takes one
comparison for each step, so even if we make to go all the way to
the root this takes just logd n = (log n)/(log d) time. Since this is a
decreasing funciton of d, insert is faster than in a binary heap.
For makeHeap, the recurrence for makeHeaping a set of n nodes is

f(n) = d · f(n/d) + d logd n

since we first makeHeap the d subheaps and then downSift the root.
Since the driving term is O(log n) is small compared to the homoge-
neous solution Θ(n), this gives f(n) = Θ(n). But, to get the constant
hidden in Θ, we need to think about the fraction of nodes at each
level of the tree.
Let’s denote f(h) as the fraction of the n nodes that are h levels
above the leaves; f(0) is the fraction of nodes that are leaves, f(1) is
the fraction of nodes that are one step above a leaf, and so on. In a

3



balanced d-ary tree, each level has d times as many nodes as the one
above it, so

f(h + 1) = f(h)/d .

which means that
f(h) = A/dh

for some constant A. But, by definition all these fractions have to
add up to 1, so in a large tree we can say,

1 =
∞∑

h=0

f(h) = A
∞∑

h=0

(1/d)h = A
1

1− 1/d
= A

d

d− 1

where we used the formula for a geometric sum. But then A =
(d− 1)/d, so

f(h) =
d− 1

d
(1/d)h .

Now, we saw before that each step of downSift takes d comparisons,
to find whether we should swap keys with one of our daughters, and
if so, which one. Since there are f(h)n nodes at each level, and since
we might have to downSift a node at level h up to h times before it
finds its proper place, the total worst-case running time is

∞∑
h=0

f(h)n · d · h = nAd
∑
h=0

h/dh = n(d− 1)
1/d

(1− 1/d)2

where we used A = (d−1)/d and the formula
∑∞

k=0 krk = r/(1− r)2

with r = 1/d. Simplifying the fraction, this becomes

n
d

d− 1

This decreases slightly (towards 1) as d increases — so makeHeap is
faster for a d-ary heap than for a binary heap, but not by much.

4



4. Suppose I have a binary search tree. It starts out empty, and I insert
three items into it. The shape of the resulting tree depends on which of
the 6 possible orders I insert them in. Assume that the 6 possible orders
are equally likely; then, give the possible shapes the tree can have, and
calculate the probability for each one.

Now, for each of these shapes, suppose that I search for one of the three
items, where each of the three is equally likely. Calculate the average
number of steps I need to find this item, i.e., its average depth in the tree,
where the root has depth 0.

Finally, take the average over the possible shapes, weighted by their prob-
abilities, to get the average of this average: in other words, calculate the
average depth of a random item in a random tree. If all goes well, you
should get 1/3 times the average number of comparisons Quicksort needs
to sort 3 items, or 8/9!

3

2

1

3

1

2

1

3

2

1

2

3

3

2

1

Figure 1: The five possible tree shapes with three items.

Answer. There are 5 possible tree shapes, shown in Figure 2. The four
“stringy” ones each result from one of the 6 possible orders, and so they
have probability 1/6. The balanced one results from two orders, namely
2, 1, 3 and 2, 3, 1, and so its probability is 1/3. For the stringy ones,
the average depth is (0 + 1 + 2)/3 = 1, while for the balanced one it is
(0 + 1 + 1)/3 = 2/3. Thus the total average depth is

4× 1
6

+
1
3

2
3

=
8
9

as promised.

5



5. Let’s prove that an AVL tree with n nodes has depth O(log n). We will
do this by solving the opposite problem: finding the smallest number of
nodes that can cause an AVL tree to have a certain depth. Call an AVL
tree “extreme” if every node except the leaves is unbalanced to the right,
and let f(d) be the number of nodes in an extreme tree of depth d. Then
f(1) = 1, f(2) = 2, f(3) = 4, and f(4) = 7.

Find a recurrence for f(d) and solve it within Θ. Then argue that n ≥ f(d)
and therefore d ≤ f−1(n) where f−1 is the inverse function of f . End by
proving that d = O(log n). What is the base of the logarithm? How much
deeper are AVL trees than perfectly balanced binary trees?

d-2d d-1=

Figure 2: The recurrence for extreme AVL trees.

Answer. A little thought and some doodling reveals that the extreme tree
of depth d consists of the extreme trees of depth d− 1 and d− 2. Adding
the root, this gives the recurrence

f(d) = f(d− 1) + f(d− 2) + 1 .

Except for the tiny driving term of +1, this is the Fibonacci recurrence.
Thus f(d) = Θ(ϕd) where φ = (

√
5 + 1)/2 ≈ 1.618 is the golden ratio,

and inverting this gives d = O(logϕ n). (To be more precise, since f(d) =
Θ(ϕn) we have n ≥ Cϕd for some constant C, and so d ≤ logϕ(n/C) =
logϕ n− logϕ C.) Since logϕ n = log2 n/ log2 ϕ ≈ 1.44 log2 n, this is about
44% deeper than a balanced binary tree.

6



Extra Credit: We analyzed the version of Quicksort in which the pivot is a randomly
chosen element. We found that the average number of comparisons is

f(n) = 2n lnn

We did this in the following way. Let x be the position in the list that
the pivot ends up in, and let P (x) be the probability of a given value of
x. Then the recurrence for the average number of comparisons is

f(n) = n− 1︸ ︷︷ ︸
partitioning

+
n∑

x=1

P (k) (f(x− 1) + f(n− x))︸ ︷︷ ︸
recursion

≈ n + 2
∫ n

0

P (x)f(x) dx (1)

In the second line we assumed that P (k) is symmetric, i.e., that P (x) =
P (n− x).

Now, if the pivot is random, its rank is equally likely to take any value
from 0 to n− 1, so every value of x occurs with equal probability 1/n:

P (x) =
1
n

for all 0 ≤ x < n

Then Equation (1) becomes

f(n) = n +
2
n

∫ n

0

dx f(x)

By substituting a solution of the form f(n) = An lnn into this equation
and solving for A, we get A = 2 as before.

Now, an improved version of Quicksort uses the median of three random
elements as the pivot. In this case, P (x) is the probability distribution of
the median of three random numbers in the unit interval [0, 1]. Calculate
P (x) by asking, given a random number x between 0 and n, what is the
probability that if I choose two more random numbers y and z, then x is
greater than y and less than z? Then, how many ways are there for this
to happen? (You might want to check your work by confirming that the
total probability

∫ n

0
P (x) dx is 1.) Intuitively, rather than being uniform,

P (x) should be peaked at x = n/2.

Finally, use this expression for P (x) in Equation (1) and again try a so-
lution of the form f(n) = An lnn. You should be able to derive that A
is now somewhat smaller than 2, indicating that this method of choosing
the pivot improves the constant in the number of comparisons.

Answer. In the median-of-three version, the probability distribution of
the median of three random numbers between 0 and n is (when n is large)

P (x) =
6x(n− x)

n3

7



To see this, note that once we choose x, the probability that another
random number y is less than x is x/n, and the probability that a random
number z is greater than x is (n−x)/n. The probability that both of these
things occur, i.e., that y < x < z, and that we chose x in the first place, is
x(n− x)/n3. But, there are 6 ways for this to happen: the median could
be any of x, y, or z, and we can switch which of the other two is greater
and which is smaller.

Then, with a little help from my computer, I get

2
∫ n

0

P (x) ·Ax lnxdx = 2
∫ n

0

dx
6x(n− x)

n3
x lnx = An lnn− 7

12
An

and so Equation (1) becomes

An lnn = n + An lnn− 7
12

An

and solving for A gives A = 12/7 ≈ 1.7, roughly 14% faster than the
original version. Indeed, taking the median of three elements is often used
in practice.

Even more extra credit: What happens if we choose the pivot by taking
the median of 5, 7, . . . elements? I leave this to you...

8


