
CS361 Homework #5

Due Thursday, December 7th

1. Cracking the RSA code. Suppose my public key for the RSA code is n = 10573 with an encryption
key e = 5003. You, the eavesdropper, intercept a message consisting of three four-digit packets:

2222, 4370, 78

Your job to is the decrypt this message, using the following method.

(a) First find the primes p and q such that pq = n. (Hint: search for primes which are roughly
√

n).)

(b) Now find φ = (p− 1)(q − 1), which is the number of integers which are mutually prime to n.

(c) Now, using the extended Euclid’s Algorithm, find x and y such that xφ + ye = 1, and thus the
inverse y = e−1 mod φ. This is the decryption exponent d. (Show your work; if y is negative,
you’ll have to find whatever positive number is equivalent to it mod φ. Check your work by
making sure that ed mod φ = 1.)

(d) Finally, raise each of the intercepted packets to the dth power mod n and write down the result.
Feel free to use any method you like to do this; don’t worry about the repeated-squaring thing.

Answer: Heres how Euclids algorithm computes the gcd of φ = 10368 and e = 5003, while writing the
resulting numbers in the form xφ + ye at each stage:

10368 5003
5003 362 = 10368− 2× 5003
362 297 = 5003− 13× 362 = −8× 10368 + 17× 5003
297 65 = 362− 297 = 14× 10368− 29× 5003
65 37 = 297− 4× 65 = −69× 10368 + 143× 5003
37 28 = 65− 37 = 83× 10368− 172× 5003
28 9 = 37− 28 = −152× 10368 + 315× 5003
9 1 = 28− 3× 9 = 539× 10368− 1117× 5003

This gives y = −1117, which mod φ = 10368 is equivalent to d = 9251, and indeed edmodφ = 1.

2. For each of these, state whether f = o(g), Θ(g), or ω(g). Justify your answer.

(a) f(n) = 2
√

n, g(n) = 3
3√n

What matters most here is not 2 vs. 3, but
√

n = n1/2 vs. 3
√

n = n1/3. If we take logs, we get

log2 f(n) = n1/2, log2 g(n) = (log2 3)n1/3 = Θ(n1/3)

Since log f = ω(log g), we also have f = ω(g).

(b) f(n) = n43n, g(n) = n100

3n is an exponential, and trumps any polynomial, even n100. So f = ω(g).

(c) f(n) = log(n2), g(n) = (log n)2

f(n) = log(n2) = 2 log n = Θ(log n) = o((log n)2). So f = o(g).
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3. Consider the following piece of code:

thing(int n) {
if (n==0) return;
thing(n-1);
thing(n-2);
for (int i=0; i < log(n); i++) print i;
thing(n-1);

}

Let f(n) be the running time of thing on input n; to be specific, let f(n) be the number of times
thing prints a number. Write a recurrence for f(n), and solve it within Θ.

Answer: As always, the running time has a recursive part and a driving term:

f(n) = 2f(n− 1) + f(n− 2) + log n .

First we solve this without the driving term. If the recurrence were just

f(n) = 2f(n− 1) + f(n− 2)

we would guess an exponential form, f(n) = an. Plugging this in and simplifying gives a quadratic
equation for a,

a2 − 2a− 1 = 0 .

There are two solutions
a = 1±

√
2

and the positive one is the one we care about. This gives

f = Θ((1 +
√

2)n) .

The driving term log n is insignificant compared to this exponential growth, so this solution is still
correct (within Θ) for the overall problem.
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4. Solve each of these recurrences within Θ and justify your answers.

(a) f(n) = 8f(n/2) + n

Answer: Solving without the driving term gives f(n) = Θ(n3) (like the volume of a cube, which
is multiplied by 8 whenever the length of the side is doubled), and the driving term is too small
compared to this to matter.

(b) f(n) = 2f(n− 2) + (3/2)n

Answer: Solving without the driving term gives f(n) = Θ(2n/2) = Θ(
√

2
n
). But, since

√
2 < 3/2,

the driving term dominates this, and f(n) = Θ((3/2)n).
(c) f(n) = 2f(n/2) +

√
n

Answer: Solving without the driving term gives f(n) = Θ(n), and the driving term is too small
to matter.

(d) f(n) = 5f(n/5) + n

Answer: Just like Mergesort: solving without the driving term gives f(n) = Θ(n), and since the
driving term is also Θ(n), we get f(n) = Θ(n log n).

(e) f(n) = f(n/2) + 4
Answer: If this 4 were a 1, this would be exactly the definition of log2 n, which increases by 1
each time n doubles. In fact, f(n) = 4 log2 n is an exact solution, so f(n) = Θ(log n).

(f) f(n) = f(n− 1) + f(n− 2) + f(n− 3) + · · ·+ f(1) + f(0)
Answer: The best way to solve this is to try it out and see what happens. But, you should guess
an exponential form, f(n) = an. Plugging this in and dividing both sides by an−1 gives

a = 1 +
1
a

+
1
a2

+
1
a3

+ · · ·

and treating the right-hand side as a geometric series, we get

a =
1

1− 1/a
=

a

a− 1

and solving this gives a = 2, so f(n) = Θ(2n). In fact, if we use the base case f(0), then the first
few values of f(n) are exactly

1, 1, 2, 4, 8, 16, . . . ,

doubling at each step.

5. Solve this recurrence exactly; start with a reasonable guess, and then substitute it back into the
recurrence and base case to adjust the constants and make sure it works. (Assume n is a power of 2.)

f(n) = 4f(n/2) + 3n2, f(1) = 0

Answer: First let’s solve it within Θ. Without the driving term, f quadruples when n doubles, so
f(n) = Θ(n2). But the driving term is also Θ(n2), so f = Θ(n2 log n). To get an exact solution, we
need to discover the constant hidden in Θ. So, we write

f(n) = An2 log2 n

and substitute this into the recurrence. This gives

An2 log2 n = 4A(n/2)2 log2(n/2) + 3n2

= An2((log2 n)− 1) + 3n2

= An2 log2 n−An2 + 3n2

Canceling, we get A = 3. Thus our exact solution is

f(n) = 3n2 log2 n .
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6. Suppose I have n people in a room. Assuming that all birthdays are equally likely, what is the average
number of triplets of people A,B, C such that their birthdays fall on three consecutive days? How
large does n have to be before the probability that there is such a triplet becomes fairly large?

Answer: Just as in the birthday problem, the average number of triplets for which this happens is the
number of possible triplets, times the probability that a given triplet falls on consecutive birthdays.
The number of triplets is (

n

3

)
=

n(n− 1)(n− 2)
3!

and the probability that the second person’s birthday is after the first persons, and the third’s is after
the second’s, is

1
3652

.

But, there are 6 ways for this to happen, since three people could have their birthdays in 3! = 6
different orders. So the probability is 6 times this, and this cancels the 6 in the denominator of

(
n
3

)
.

Thus the total average number of triplets is

n(n− 1)(n− 2)
3652

and this is roughly 1 when n = 53.

Another way to think about this factor of 6: when we define
(
n
3

)
, we divide by 3! = 6 because when

choosing a set of three people, we don’t care in what order they were chosen. But in this case we do
care about the order, so we shouldn’t divide by 6 in the first place.

To put it yet another way, having three people fall on consecutive birthdays is 6 times as likely as
having them all fall on the same birthday (as in the midterm question), since there are 6 times as
many ways for it to happen.

7. If I call downSift on a heap containing n items, the worst-case running time is O(log n). But for most
nodes, the running time is only O(1). Explain why, and give a clearer meaning to what “most” and
O(1) mean here.

Answer: The shape of a heap is a balanced binary tree, except that the last row may be incomplete.
For simplicity, let’s assume the last row is complete. Then 1/2 of the nodes are leaves, so downSift
has nothing to do; 1/4 are one level above the leaves, so downSift causes at most one swap; 1/8 are
two levels above the leaves, so we need at most two swaps; and so on. Adding these up, we see that
only a 2−k fraction of the nodes could need k swaps, and only the root could need all log2 n swaps.
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Figure 1: An AVL tree. What happens when we insert 6?

3

2

81 5

9

7

4 6

Figure 2: The final state after inserting 6.

8. Figure 1 shows an AVL tree. What are the balance factors? If I insert a new item with key 6, what
will the balance factors be, and which nodes will be “too unbalanced”? What rotations will it do to
repair itself, and what will be its final state?

Answer: Initially, the balance factor on 3 is +1, the ones on 2 and 8 are −1, and all others are 0. After
adding 6, the balance factors of 7, 5, 8 and 3 are −1, +1, −2 and +2 respectively. The tree responds
by rotating 5 to the left and down, and then rotating 8 to the right and down, giving the final state
shown in Fig. 2.

9. Figure 2 shows a 2-3-4 tree. If I insert a new item with key 11, what will happen, and what will be
the final state of the tree? Assume that full nodes get split on the way down the search path.

Answer: On the way down we split the node (6, 8, 13), pushing 8 up to join (4, 15), and creating two
nodes (6) and (13) with two children each. We then split (9, 10, 12), pushing 10 up to join (13) and
creating two nodes (9) and (12). Finally, the new item 11 joins (12). The final state is shown in Fig.
4.

10. Prove that for any t it is possible to calculate xt mod p with less than 2 log2 t multiplications. For
which values of t is this the hardest to do?

Answer: Suppose t has k + 1 binary digits. By starting with x and squaring k times, we obtain

x, x2, x4, x8, . . . , x2k

.
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Figure 3: A 2-3-4 tree. What happens when we insert 11?
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Figure 4: The 2-3-4 tree after we insert 11.

Now, since t can be written as the sum of powers of 2 up to 2k (this is its binary digit expansion), we
just multiply the corresponding powers of x together and get xt. The total number of multiplications
is k (for the squaring) plus k (for combining powers of 2 to get t) for a total of at most 2k. Finally,
k ≤ log2 t.

The worst case for this approach is when t’s binary expansion is all 1s, which happens when t is of the
form 2k+1 − 1 = 1 + 2 + 4 + 8 + · · ·+ 2k. Then we need to combine all these powers of x together, and
we can’t skip any of them. On the other hand, if t has just j 1s in its binary expansion, we only need
t + j multiplications.
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