
CS361 Midterm

Solutions

1. (10 points) Given f(n) = nlog n and g(n) = 2n, is f = o(g), Θ(g), or ω(g)? Explain your answer.

Answer. f = o(g). There are several ways to see this: here’s one. Recall that if log f = o(log g) then
f = o(g), although the reverse is not true. But

log f = log(nlog n) = (log n)2 ,

while
log g = log 2n = n .

Since (log n)2 = o(n) we’re done.

Another way to see this is to calculate the ratio, and use the fact that nlog n = 2(log n)2 :

f(n)
g(n)

=
2(log n)2

2n
= 2(log n)2−n .

When n is large, (log n)2 − n is very negative, so this ratio goes to zero.

2. (20 points) Some standard software libraries use Quicksort for numbers and strings, and Mergesort for
user-defined classes. Explain why (in both cases).

Answer. Quicksort uses more comparisons than Mergesort does; 2n lnn vs. n log2 n, which since
2 ln 2 ≈ 1.39 is about 40% more.

Thus if comparisons take a long time to do, and the lion’s share of the running time comes from doing
comparisons (like apply a user-defined comparison operator) then Mergesort will be faster.

However, for simple objects like numbers and strings, comparisons are fast and easy, and other con-
tributions to the running time become important. In particular, Quicksort moves things around in
memory less than Mergesort does (partly because it sorts in place rather than copying things into
additional memory), so Quicksort is superior.
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3. (30 points total) 3-Mergesort is a version of Mergesort which divides a list of size n into three lists of
size n/3, sorts them recursively, and then merges the sorted lists together.

(a) (5 points) How many comparisons does the three-way merge operation need to merge three sorted
lists of size n/3 into the final list of size n?
Answer. Each step of the Merge operation has to choose the smallest of 3 elements (i.e. which
of the 3 lists to take the next entry from). This takes 2 comparisons. Thus the Merge operation
takes at worst 2n comparisons. (We can be a little cleverer and remember comparisons from
previous steps, but there’s not guarantee that this will always help.)

(b) (10 points) Using your answer to (a), what is the recurrence for the number f(n) of comparisons
that 3-Mergesort does on a list of size n? Ignore the difference between n and n− 1, but get the
multiplying constants right.
Answer. Calling ourselves three times on lists of size n/3, plus a driving term of 2n, gives

f(n) = 3f(n/3) + 2n .

(c) (5 points) What is the Θ-solution to this recurrence? Justify your answer.
Answer. The homogeneous solution is Θ(n) and so is the driving term, so f(n) = Θ(n log n) —
just like Mergesort.

(d) (10 points) Find the constant hidden in Θ. Is 3-Mergesort faster or slower than the traditional
Mergesort? By how much? (Feel free to give your answer symbolically or numerically.)
Answer. Trying a solution of the form f(n) = An log3 n gives

An log3 n = 3A(n/3) log3(n/3) + 2n

= An(log3 n− 1) + 2n

= An log3 n−An + 2n

Canceling An log3 n, dividing by n, and solving for A gives A = 2, so f(n) = 2n log3 n.
Traditional Mergesort takes n log2 n comparisons. To compare their running times,

2n log3 n

n log2 n
= 2 log3 2 = log3 4

Thus 3-way Mergesort takes log3 4 ≈ 1.26 as many comparisons as traditional Mergesort, so it is
about 26% slower.
Note that 3-Mergesort has to be slower than Mergesort: since n log2 n ≈ log2 n!, the number of
comparisons that Mergesort does is essetially optimal by the “Twenty Questions” argument.
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4. (20 points) Suppose I have a hash table with m locations. I want to store n items in it; assume that
the hash function is random. Roughly how large (i.e., within Θ) can n be before I start to get triple
collisions, where three items get hashed to the same location? Roughly how large is this value of n if
m = 1, 000, 000?

Answer. The expected, or average, number of triple collisions is just the number of possible triples,
(
n
3

)
,

times the probability that a given triple all go to the same place, which is 1/m2. Since
(
n
3

)
= Θ(n3),

this is (
n

3

)
1

m2
= Θ

(
n3

m2

)
.

This is Θ(1), suggesting that triple collisions start to appear, when n3 = m2, or when n = m2/3. For
m = 1, 000, 000 = 106, this gives n = 104 = 10, 000 as a rough estimate.

5. (20 points) Consider the recurrence
f(n) = Af(n/2) + n

where A is some constant. The type of solution for f(n) depends on the value of A. Describe how.
Specifically, give solutions for f(n) within Θ that hold for each range of A.

Answer. Let’s first decide when the driving term n matters. The homogeneous solution, i.e., the
solution to

f(n) = Af(n/2) ,

is of the form na. To find a, we substitute the guess f(n) = na, and get

na = A(n/2)a = Ana/2a .

Cancelling na, we get 2a = A, or a = log2 A.

Now, if A < 2, we have a < 1, and the homogeneous solution is na � n. In this case the driving term
dominates, so f(n) = Θ(n).

On the other hand, if A > 2, then a > 1, and the homogeneous solution is na � n. Thus the driving
term doesn’t matter, and f(n) = na = nlog2 A.

Finally, the borderline case is A = 2 (just like Mergesort). Now a = 1, the homogeneous solution is n,
and the driving term kicks this up to f(n) = Θ(n log n).
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