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Humans crave certainty. We long to know what will happen, what to believe, and 
how to live. This desire drives some of us to depths of soul-searching and heights of 
scientific inquiry. It drives others into the arms of authoritarians, who are all too will-
ing to put our doubts, and our unquiet minds, to rest. 

Philosophers have long warned that this desire for certainty can lead us astray. 
To think and learn about the world, we must be willing to be uncertain: to accept that 
we don’t yet know everything. In 19th-century Europe, when the urge for certainty 
was deepening national and religious divisions, Goethe wrote, “Nothing is sadder 
than to watch the absolute urge for the unconditional in this altogether conditional 
world; perhaps in the year 1830 it seems even more unsuitable than ever.” In the 
year 2020 it seems even more so. Many of us rely on political and tribal loyalties, 
dismissing any argument that could make us less certain of our views. At its worst, 
the desire for certainty crushes all subtlety and complexity under its heel.

Nietzsche called this desire to make the crooked straight the “will to truth.” In The 
Gay Science, he argued that for most of us, nothing “is more necessary than truth; and 
in relation to it, everything else has only secondary value.” But he suggests in another 
work, Beyond Good and Evil, that the will to truth is a vestige from a simpler time that 
has dominated the human psyche for far too long:



The Uncertainty Principle

33
IS

TO
C

K
P

H
O

TO
; P

H
O

TO
-I

L
LU

S
T

R
A

T
IO

N
 B

Y
 D

A
V

ID
 H

E
R

B
IC

K

The Will to Truth, which is to tempt us to many a hazardous enterprise … what ques-
tions has this Will to Truth not laid before us! What strange, perplexing, questionable 
questions! It is already a long story; yet it seems as if it were hardly commenced. Is it 
any wonder if we at last grow distrustful, lose patience, and turn impatiently away? … 
We inquired about the value of this Will. Granted that we want the truth: why not 
rather untruth? And uncertainty? Even ignorance?

As Nietzsche writes, when our demand for certainty is frustrated—when the quest for 
truth is longer and stranger than we would like—we often give up. And just as some 
people turn to authority, others abandon even the idea of truth, deciding that there 
is no truth to be found. 

Yet there is a middle way, between the extremes of absolute certainty and despair, 
that honors Nietzsche’s call to embrace uncertainty and ignorance, while maintaining 
our pursuit of meaning and truth.
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Uncertainty can be a source of terror and anguish. It keeps us up at night. But it 
is also a generative force, and an invitation for deeper exploration. It forces us to earn 
our certainties, rather than buying them cheaply and wholesale. Indeed, a dynamic, 
honest search for truth requires us to regard uncertainty as an enduring companion 
rather than an enemy to be fled or vanquished. To wrestle with it, we must embrace it. 

We can learn something about how to live with uncertainty from a field that few 
associate with it: mathematics. As we’ll see, mathematicians have been forced to 
struggle with uncertainty on many levels. This is true not just in probability and sta-
tistics—which address uncertainty quantitatively—but even in the bedrock of logic, 
arithmetic, and geometry, where most people expect rigid certainty to rule.

These struggles have given mathematicians a keen sense of the nature of truth: of 
when certainty can be achieved and when it is out of reach, as well as the boundless 
creativity we need to find it. There are lessons here for how all of us can pursue truth 
together, even in the face of the disagreements and uncertainties that surround us.

Like philosophy, mathematics was born of the basic human need to sort out the 
messiness of life, to bring order to chaos, to identify the underlying and often obscured 
forms that structure reality. In Philosophy 101, students study “proofs” of the existence 
of God, Descartes’s proof of the existence of the self (Cogito, ergo sum), and Kant’s 
transcendental deductions. Similarly, the gold standard in mathematics is a formal 
proof—a step-by-step demonstration that a statement follows unavoidably from an 
agreed-upon set of principles.

In 300 BC, Euclid proposed five postulates for geometry that let us prove things 
by drawing lines and circles with rulers and compasses and seeing how they inter-

Figure 1
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sect. Most of these postulates 
seem straightforward and 
incontrovertible. The first 
one, for instance, states that 
between any two points there 
is a straight line that connects 
them. Absolutely straight and 
narrow.

Euclid’s fifth postulate, 
however, is the source of a 
curious instability. It says that 
if two straight lines cross a 
third one but make angles 
with it that add up to less than 
180 degrees, so that they lean 
toward each other, then those 
two lines cross somewhere 

above the third line, and not below it. If the sum of the angles exactly equals 180 degrees, 
then these lines are parallel, meeting only at infinity. This is certainly true in the geom-
etry we are used to. Either two lines are parallel, or they tend toward each other and 
will eventually cross at one and only one point. (See Figure 1, p. 34.)

But for two millennia, mathematicians wrestled with the fifth postulate and strug-
gled to prove it from the other four—or, like the poet and astronomer Omar Khayyam 
(1048–1131), replace it with something simpler. Note that the question here is not just 
whether the fifth postulate is true. There is also the “metamathematical” question of 
whether it can be proved from more basic statements, or whether assuming it helps 
us prove other things in turn.

A revelation occurred in 1830, the same year that Goethe reflected on our urge for 
unconditional truth. There are alternate “non-Euclidean” geometries where Euclid’s 
first four postulates are true but the fifth is false. For instance, suppose we are mov-
ing on the surface of the Earth instead of on a flat plane. The closest thing we have 
to a straight line is a “great circle” such as the equator—the path we would follow if 
we proceeded straight ahead until we came all the way around to our starting point 
(and didn’t fall into the sea). A section of a great circle is the shortest path we can take 
between two points while staying on the Earth’s surface instead of tunneling under it. 
But no two great circles are parallel: any two great circles that cross the equator also 
cross each other twice, once in the Northern Hemisphere and once in the Southern, 
whereas Euclid’s postulate says they should cross once or not at all. (See Figure 2, above.)

You might object that these are not lines at all. They are curves and decidedly not 

Figure 2
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straight. Yes, but because of the Earth’s curvature, so is every line we draw on a map. The 
point is that if we adapt the phrase straight line to the curved world we live in, geometry 
works differently from the way it does on a flat piece of paper. There are more exotic 
so-called hyperbolic geometries where space spreads out rather than curving back on 
itself, and lines can fail to intersect even if they start out moving toward each other.

So is the fifth postulate really true? In the flat worlds Euclid had in mind, yes. In 
curved worlds—including the universe we live in, as Einstein showed us—no. Where 
geometry is concerned, modern mathematicians are happy to accept the existence of 
alternate worlds in which different things are true. To be more precise, we think that 
a straight line is not a fixed object about which fixed things are true. It has different 
meanings in different worlds. All of these worlds have so much beauty, and so much 
internal coherence, that they are worthy of study.

Non-Euclidean geometry resolves our uncertainty about the fifth postulate by 
replacing it with pluralism—a willingness to gear truth to the worlds we choose to 
occupy, or the perspectives we choose to take. In Nietzsche’s words, “There is only a 
perspective seeing, only a perspective ‘knowing’… the more eyes, different eyes, we 
can use to observe one thing, the more complete will our ‘concept’ of this thing, our 

‘objectivity’ be.” By embracing other possible worlds of geometry, we gain a better 
understanding of geometry as a whole.

Pluralism is harder to swallow in some other branches of mathematics. Con-
sider the nonnegative integers, also known as the whole numbers. The basic proper-
ties of the integers do not seem to admit any uncertainty. For example, an integer is 
prime if it can’t be written as the product of smaller integers: 7 and 11 are prime, but 
15 is not because 15=3×5. Euclid proved that there are infinitely many prime numbers. 
Although we don’t have room for it here, his proof is delightful, and anyone familiar 
with division and remainders can understand it.

It’s a short step, however, from Euclid to the boundaries of mathematical knowl-
edge. Certain kinds of prime numbers place us in unfamiliar territory once again, on 
the brink of uncertainty. A Mersenne prime is a power of 2, with 1 subtracted from it. 
The first few of these are,

22 – 1 = 2 × 2 – 1 = 3
23 – 1 = 2 × 2 × 2 – 1 = 7

25 – 1 = 2 × 2 × 2 × 2 × 2 – 1 = 31

Are there infinitely many Mersenne primes? The largest prime we know of today is 
282,589,933 − 1, which has about 25 million digits. The sequence of Mersenne primes 
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seems to go on forever, but we have no proof of this yet. But whether or not we can 
prove it, surely this claim is either true or false. Either these numbers go on forever, or 
they don’t. The truth is out there. It has nothing to do with what we poor humans think. 

Why is it so hard to be pluralists when it comes to the integers? Why can’t we take 
the freewheeling attitude that we took toward Euclid’s fifth postulate, responding to 
questions about straight lines with a cheerful, “Well, it depends on what you call a 
straight line”? Could there be alternate worlds for the integers as well, some in which 
the Mersennes go on forever, and others in which they stop?

Like geometry, arithmetic and algebra can have alternate worlds. We could decide 
that the symbol 7 means something different, or that addition and multiplication work 
differently. In certain alternate systems of arithmetic, numbers could curve back on 
themselves like the surface of the Earth instead of marching off to infinity, and x+y 
might not equal y+x.

But here’s the rub: only one of these worlds is the real one. Only one corresponds 
to the arithmetic that we know and love. If you ask a mathematician whether she 
thinks the Mersenne primes are infinite, she will know what you mean; she won’t ask 
you to define your terms. The integers are so concrete and rigid that they seem to exist 
independently of our ability to describe them. Surely 7 was prime long before humans 
came along to think about it, and it will continue to be prime long after we are gone.

One way to justify this sense that the integers are solid and objective is to think in 
terms of computation. Consider a machine that looks for Mersenne primes. It tries 
larger and larger powers of 2, subtracts 1, and checks to see if the result is prime or not. 
Whenever the result is a prime, it rings a bell. Will that bell continue to ring indefi-
nitely into the future, no matter how long the machine has been running, or will there 
be some final time after which it will never ring again?

There is nothing fantastical about this machine. You could build it out of elec-
tronic parts, or out of wooden gears and Legos, or use one of Alan Turing’s machines 
that reads and writes simple symbols on a paper tape. Admittedly you would need to 
provide it with an endless supply of energy and paper and avoid the heat death of the 
universe, but this is no greater an idealization than the frictionless world of Newto-
nian mechanics. If you grant that much, either the bell will ring forever or it won’t. We 
might not know which is true, but there is a fact of the matter. (Some readers will dig 
in their heels at this point and argue that the finite span of the universe—and of our 
lives—makes any claims about infinity nonsensical. Indeed, there are “finitists” who 
think that not all the integers exist, or at least not all at once, or even that only those 
numbers that exist are those that we will have time to write down and think about. We 
refuse to live in such an impoverished, solipsistic world.) 

The stance that mathematical objects exist independent of human thought or 
experience is called realism or Platonism. In Book VII of Plato’s Republic, Socrates tells 
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us that discovering the truth is like stepping into daylight after a lifetime in darkness. 
The truth is like the sun—it’s out there, singular and illuminating. For the most part, 
however, we live in a cave surrounded by mere images, representations of things that 
are real and external. For Plato and the Platonist, the point of thinking is to escape 
the world of mere appearances and to see truth as it truly is.

Of course, just as in moral philosophy, a debate continues to rage about whether math-
ematics is a series of discoveries revealing objective truths, or merely a human invention. 
But we don’t have to believe in some astral plane of existence inhabited by integers, per-
fect circles, and the like. To be a “pragmatic Platonist” like the American logician Mar-
tin Davis, we just have to believe that some mathematical questions have answers—that 
some things really are true and that the job of mathematics is to figure out what these are. 
We possess Nietzsche’s will to truth precisely because we believe there is a truth to find.

If we are Platonists about mathematics, if the truth is out there, how can we per-
ceive it? And can such truth ever really be grasped? Computers are powerful tools in 
the search for examples and counterexamples to our conjectures, revealing tantalizing 
patterns in complex systems. For this reason, empirical mathematics is of increasing 
importance throughout the sciences. 

But to see all the way to infinity, we need a proof—that old gold standard. As every 
mathematician knows, achieving this standard can be hard, even for things that seem 
obviously true. Is there a complete system for doing mathematics that can prove every 
truth and settle every question? Or are there some questions we can never answer, as 
the physiologist Emil du Bois-Reymond argued in a speech to the Prussian Academy 
of Sciences in 1880, questions about which we can only say ignoramus et ignorabimus—
we do not know, and we will never know?

The German mathematician David Hilbert (1862–1943) found the idea of ignorabi-
mus intolerable. He attacked it as a “fall of culture” and asserted that every question in 
mathematics and science had an answer. Hilbert thundered, Wir müssen wissen—wir 
werden wissen: we must know—we will know. His will to truth was absolute. 

Hilbert and the other titans of late-19th- and early-20th-century mathematics 
formulated a list of basic postulates, or axioms, on which they hoped all of math-
ematics could be built—axioms powerful enough to prove all true statements while 
not mistakenly “proving” any false ones. This turns out to be a subtle enterprise, for 
these axioms have to capture all the forms of logical and mathematical reasoning we 
have grown accustomed to—proofs by contradiction, by induction, and so on—while 
avoiding paradoxes and inconsistencies. 

If our axioms allow us to define mathematical objects too freely, we can easily fall 
into paradox. One of the most basic objects in mathematics and logic is a set—the set 
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of six-legged insects, the set of blue things, the set of even numbers, and so on. How 
about the set of mathematical objects mentioned in this essay? This set includes lines, 
angles, and Mersenne primes. But it also includes itself, since we just mentioned it.

Now Bertrand Russell comes along and asks us about the set S of all sets that don’t 
include themselves. Does S include itself or not? If it does, then—by its own definition—
it doesn’t. But if it doesn’t, then—again by definition—it does. (You may have heard 
a more colloquial version of this paradox, involving a barber who shaves those who 
don’t shave themselves.) Somehow the act of defining S has gotten us into trouble by 
creating a statement, “S includes itself,” which is both true and false, or maybe neither. 

We can’t allow a paradox like this to 
lurk at the heart of mathematics. Our sys-
tem must be consistent—it must never con-
tradict itself and never provide “proofs” 
that something is both true and false. As 
David Hilbert wrote, “If mathematical 
thinking is defective, where are we to find 
truth and certitude?” But more positively, 
paradoxes create a delicious form of uncer-
tainty, forcing us to reexamine the basic 
building blocks of thought. As Niels Bohr 

said in the early days of quantum mechanics, “How wonderful that we have met with 
a paradox. Now we have some hope of making progress.”

By the 1920s, mathematicians had begun to heal the breach that Russell had 
revealed and arrived at what appeared to be a satisfactory set of axioms, known as 
ZFC. Z stands for the German logician and mathematician Ernst Zermelo, F for the 
German-born Israeli mathematician Abraham Fraenkel, and C for the axiom of choice, 
a particular way to define infinite sets. ZFC lets us talk about everything from arith-
metic to infinity while avoiding paradoxes like Russell’s—in particular, by not allowing 
us to discuss sets that include themselves. As far as we know, ZFC never contradicts 
itself or produces falsehoods. Although there are alternatives, it is generally accepted 
as the default foundation of modern mathematics.

But even a good set of axioms does not remove uncertainty from mathematics. 
A formal proof is a series of steps, each of which combines previous steps according 
to one of the axioms, until the final goal is reached and we announce, QED. But this 
series can be long and complicated. Even if we have a finite set of axioms, the number 
of possible proofs is infinite. How can we search this infinite space?

In 1928, Hilbert posed the Entscheidungsproblem, or “decision problem.” He asked 
for a general procedure to decide whether a mathematical statement is true or, more 
precisely, whether it can be proved from a set of axioms. He stipulated that this pro-

This series can be long 
and complicated. Even 
if we have a finite set of 
axioms, the number of 
possible proofs is infinite. 
How can we search this 
infinte space?



T h e  A m e r i c a n  S c h o l a r ,  S p r i n g  2 0 2 0

40

cedure should be something that we can carry out in a finite number of reliable steps, 
without leaps of intuition—in modern terms, the way a computer program or algorithm 
operates. If such a procedure exists, and if its axioms are powerful enough to prove all 
truths, then mathematics would be complete. We would finally know.

In the 1930s, Hilbert’s dream was rudely interrupted. First, in 1931 the Austrian 
logician Kurt Gödel proved that there were unprovable truths. Specifically, he showed 
that any axiomatic system powerful enough to talk about the integers could also express 
the paradoxical statement, “This sentence can’t be proved.” Either this sentence can be 
proved or it can’t. If it can be proved, then it is false—but then we have “proved” a false-
hood. So if our axioms never prove false things, this sentence can’t be proved, just as it 
claims—making it true but unprovable. 

Admittedly, we are playing fast and loose with two different concepts here: whether 
an axiomatic system is sound (it never proves a falsehood) versus whether it is consis-
tent (it never contradicts itself ). Soundness requires a notion of truth that is external 
to the system—which a Platonist would 
heartily endorse—whereas consistency 
can be defined inside the system. Gödel 
was a Platonist, but he carefully phrased 
his argument in terms of consistency: if his 
sentence can be proved, then we have by 
definition proved its opposite as well, and 
the system has contradicted itself.

All of this may seem like a verbal game, 
but Gödel’s unprovable truths are not idle 
paradoxes. They are concrete statements 
about the integers, different in degree but not in kind from the statement that there 
are infinitely many Mersenne primes. His incompleteness theorem shows that no 
finite set of axioms can prove all true statements about the integers, unless it mistak-
enly proves some false ones as well.

At a minimum, Hilbert wanted to prove that mathematics was consistent and would 
never contradict itself. Gödel put even this modest goal out of reach with his second 
incompleteness theorem, which states that no axiomatic system can prove its own con-
sistency. We can’t use ZFC to prove that ZFC will never blow up in our faces, proving that 
something is both true and false. To prove that our mathematical foundation is sound, 
we will always have to use some kind of higher-level reasoning. No finite foundation can 
give us the certainty we crave: the foundation must be supported from above.

The blows kept coming. In 1936, Alan Turing proved that we couldn’t even tell which 
statements could be proved. If we want to know whether our favorite mathematical 
statement has a proof, we can build a machine like the Mersenne prime searcher that 

Mathematics will never be 
complete. No machine or 
system can tell the entire 

story. But this uncertainty is 
not a source of despair—it 
is the most essential part 

of being human.
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looks for longer and longer proofs, and program it to halt if it ever finds one. Turing 
called the question of whether a machine (or computer program) would ever halt, as 
opposed to running forever, the “halting problem.” If we can solve the halting problem 
for this proof searcher, we can solve Hilbert’s Entscheidungsproblem.

Of course, if we run this machine and it does indeed halt, we have our proof. But 
if it runs for a billion years and still hasn’t found a proof, we have no idea whether it 
ever will. If only we could tell whether a machine will halt someday, without having 
to run it forever! But if we could do that, we would have a paradox because we could 
build a machine that predicts its own behavior and then does the opposite, halting if it 
will run forever and running forever if it will halt. The only escape from this paradox 
is to accept that no general halt-predicting machine exists. There is no algorithm for 
the halting problem: it is undecidable, and so is Hilbert’s Entscheidungsproblem. With 
enough work, we might achieve certainty about some mathematical questions, but no 
general method—or machine—can provide that certainty for us.

The same argument shows that, for at least some of Turing’s machines, the fact 
that they will run forever is an unprovable truth. To see this, suppose that all truths 
of the form “this machine will run forever” were provable. If that were true, we could 
solve the halting problem for any machine by doing two things simultaneously: run-
ning the machine to see whether it halts, and looking for longer and longer proofs that 
it never will. Unless the fact that it never halts is sometimes unprovable, one of these 
two methods will always yield the answer. Thus Turing’s undecidable problems and 
Gödel’s unprovable truths are intimately related.

In 2016, the computer scientists Adam Yedidia and Scott Aaronson devised a Tur-
ing machine that searched for contradictions in ZFC. According to Gödel’s second 
incompleteness theorem, ZFC can’t prove its own consistency. Thus, although we 
fervently hope that this search for contradictions would be in vain and this machine 
would run forever, ZFC can’t prove that it would.

Unprovability, undecidability, uncomputability—these are defeats for Hilbert’s 
program, and they seem like defeats for mathematics itself. How can we pursue truth 
if every tool we have for that pursuit is flawed? Is there even a truth to pursue?

These may indeed be defeats for a naïve and rigid notion of certainty. But we argue 
that they are actually triumphs of the human intellect to work through intractable ques-
tions and better understand when and to what extent these questions can be resolved. 
Indeed, many of today’s mathematicians and computer scientists view these negative 
results in a positive light. No machine will do our mathematics for us, but would we 
want it to? Shouldn’t mathematics, like everything that matters, be an arena in which 
the full force of creativity and intuition must be brought to bear?

The mathematical community took some time to digest the work of Gödel and 
Turing, and several decades passed before this positive spin emerged. But already in 
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1944, just eight years after Turing’s proof, the logician and mathematician Emil Post 
wrote, “The conclusion is unescapable that even for such a fixed, well-defined body of 
mathematical propositions, mathematical thinking is, and must remain, essentially 
creative.” In 1952, the British mathematician John Myhill followed up with:

Negatively this discovery means that no matter what changes and improvements 
in mathematical technique the future may bring, there will always be problems for 
whose solution those techniques are inadequate; positively, it means that there will 
always be scope for ingenuity and invention in even the most formalized of disciplines.

Mathematics will never be complete. No machine or axiomatic system can tell the 
entire story. But this uncertainty is not a source of despair—it is the most essential 
part of being human, the boundary of our finitude. We are limited beings, but these 
limits are meant to be faced and transcended.

Platonism seems to fit our understanding of the integers and computer programs, 
but we have reason to be far less confident in the more remote branches of mathemat-
ics. Consider the set of all real numbers: not just numbers we can name, like ⅔ or , but 
the entire number line you drew in school, with every possible sequence of digits after 
the decimal point. In 1874, the German mathematician Georg Cantor proved that there 
were more real numbers than there were integers. Both sets are of infinite size, but one 
is more infinite than the other.

In 1878, Cantor put forward the “continuum hypothesis.” It states that there are no 
sizes of infinity between these two: that the continuum of real numbers is the small-
est set bigger than the set of all integers. (The alert reader may point out that the set 
of rational numbers—for example, fractions such as ½, ⅔, 17⁄10, and so on—includes 
all the integers but not all the reals, so it seems to lie in between those two sets. But 
there is a way to line up the integers and the rationals with each other such that each 
integer corresponds to a rational and vice versa. Thus these two sets are actually the 
same infinite size.) Cantor, however, was unable to find a proof. At the outset of the 
20th century, this was considered one of the leading open questions in mathematics, 
appearing at the top of a list of problems that David Hilbert presented to the Interna-
tional Congress of Mathematicians in 1900. Over the next decades, many of the great 
logicians and set theorists tried to prove or disprove it.

Gödel was one of those who believed that the continuum hypothesis was false. But 
in 1940, he proved that it couldn’t be disproved using the standard axioms of set theory, 
namely ZFC, and in 1963 the American mathematician Paul Cohen showed that it 
couldn’t be proved from ZFC either. We really can have it both ways: there are many 
consistent pictures of infinity. In some, there is no intermediate infinity between the 
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reals and the integers. In others, there is one, or even infinitely many. The standard 
axioms simply do not exclude either possibility: we say that the continuum hypoth-
esis is independent of the axioms.

One might have several reactions to this. Gödel was delighted by Cohen’s proof of 
independence. But since he was also a Platonist, he felt that questions about infinite 
sets had answers, as surely as do questions about the integers. Either the continuum 
hypothesis is true or it is false. If the standard axioms can’t settle it either way, let’s 
look for stronger axioms that will.

We could adopt a pluralistic attitude instead and conclude that we can think about 
infinity in many ways. Unlike the bell-ringing Mersenne-searching machine, there is 
no conceivable physical system whose behavior depends on whether the continuum 
hypothesis is true or not: infinity is not subject to experiment. Cohen’s work was based 
on a new technique called “forcing,” which allows set theorists to create a wide variety 
of possible worlds. As with non-Euclidean geometry, as long as these worlds are beau-
tiful and interesting, we can embrace all of them. Perhaps the realm of the infinite is 
more like religion than physics. Perhaps it has no singular truth shining like Plato’s 
sun, and we should let our fellow humans believe what they like.

Our Will to Truth is often frustrated, even in the crystal world of mathematics, 
where we might expect certainty to rule. Hilbert’s hopes for a complete system that 
would provide truth once and for all were irrevocably dashed by Gödel and Turing. 

But we have not reacted by abandoning the search for truth—quite the opposite. 
This search has revealed a rich array of mathematical worlds, with different methods 
of proof, different axioms, and different visions of infinity. None of these alternate 
worlds captures all of mathematical truth. Each one offers a perspective, and in their 
plurality they hint at the whole. Thus one might say that modern mathematics has 
moved us from Platonism to pluralism. 

But this pluralism is not an empty relativism, where we agree to disagree and go 
our separate ways, as if we have nothing to say to each other. Neither is it a nihilistic 
relativism where we declare that it’s all nonsense anyway, then retreat to our separate 
bubbles muttering about “alternative facts” and “fake news.” It is more akin to the 
active, vibrant pluralism of a civil society, where we work to understand each other’s 
ways of thinking, explore our similarities and differences, and seek common ground. 
It requires us to respect each other’s views but insists on our right to question them. 
It admits our ignorance while remaining optimistic that we can learn more. It insists 
that there is a truth that we can and should pursue together—but that this pursuit is 
endless, with uncertainty our constant companion. l


