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Determinant and 
Permanent

• Let    be a          matrix with entries in         

•         : geometric meaning, basis-independent, 
homomorphic, easy

•            : combinatorial, basis-dependent, hard

detA

A n× n {0, 1}

permA

detA =
∑

π∈Sn

(−1)π
∏

i

Ai,πi permA =
∑

π∈Sn

∏

i

Ai,πi
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A Combinatorial 
Picture

• Treat     as the adjacency matrix of a 
bipartite graph G:

• Then            = # of perfect matchings in G




1 1 0
1 1 1
0 0 1





A

permA
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Complexity

• 0-1 PERMANENT is #P-complete [Valiant ’79]

• However, it can be approximated using a 
rapidly-mixing Markov chain that samples 
random perfect matchings              
[Jerrum, Sinclair,  Vigoda ’04]

• Is there another approach, which is purely 
algebraic?
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The Godsil-Gutman 
Estimator

• Let    be a          matrix with entries in         

• Let                   for uniformly random  

• Then

E
[
(detM)2

]
= perm A

A n× n {0, 1}

Mij = γijAij γij ∈ {±1}
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What?!

• It’s true and, better yet, simple:

• only contributing terms appear when     
and all         are nonzero:

π = σ

Mi,πi

=
∑

π

(−1)ππ

(
∏

i

Mi,πi

)2

=
∑

π

∏

i

Ai,πi

E
[
(det M)2

]
= E

∑

π,σ

(−1)πσ
∏

i

Mi,πiMi,σi
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But What’s the 
Variance?

• For matrix    , define                    .  Then

• How many samples do we need? Chebyshev:

• Can we control this ratio?

E[X] = perm A

t ≈ E[X2]
E[X]2

X = (detM)2A
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Sadly...

• [KKLLL ’93]:

• But, they show that if      is uniform on the 
unit circle, or even just the cube roots of 1, 

• Can we do better?

E[X2]
E[X]2

= 3n/2 · poly(n)

E[X2]
E[X]2

= 2n/2 · poly(n)

γij
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Higher-dimensional 
algebras? 

• Barvinok: what if the     are quaternions?  
Or higher-dimensional objects?

• [Chien, Rasmussen, Sinclair ’03]                
In the Clifford algebra of dimension d:

• In particular, for the quaternions, 

(
1 + O

(1
d

))n/2

γij

(
3
2

)n/2
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How to define the 
determinant?

• In the nonabelian case, order matters

• The conventional determinant takes each 
product from top to bottom: no efficient 
algorithm is known!

• [Barvinok ’00]: symmetrize each term:

•           algorithm in a d-dimensional algebraO(nd)

sdetM =
1
n!

∑

π,α∈Sn

(−1)π
∏

i

Mαi,παi
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• Define                   , where      is drawn from 
some distribution on a nonabelian algebra

• The Haar measure on unitary         matrices

• The Gaussian measure on         matrices 
(independent entries)

•          takes values in 

• Define                       or

Algebraic Estimators
Mij = ρijAij ρij

d× d

d× d

det M

X = ‖ detM‖2 X = |tr detM |2

A

A
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Our Results

• Two estimators, Haar or Gaussian measure:

• We establish the following ratios:

• Ratios differ by          for 

E
[
X2

]

E [X]2
=

(
1 + O

(1
d

))n

X = |trdet M |2 Xs = |tr sdet M |2

O(d4)

E[X2
s ]

E[Xs]2
= Ω

(
2n

nd

)

X = ‖ detM‖2
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Expansion

• Let’s expand the symmetric estimator:

where

• Again, to contribute to the expectation,      
so each      appears twice or not at all

Xs =
∑

κ,λ!A

(−1)κλ Eα,β

(
tr

∏

i

ραi,καi

) (
tr

∏

i

ρ∗βi,λβi

)

κ ! A ⇔ ∀i : Ai,κi = 1

ρij

κ = λ
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Permuted Products

• where

• Covariance between a product of the same     
matrices     taken in two different orders

ad = E{σi} Eα,β

(
tr

∏

i

σαi

)(
tr

∏

i

σ∗
βi

)

E{ρij}[Xs] =
∑

κ!A

E{σi} Eα,β

(
tr

∏

i

σαi

) (
tr

∏

i

σ∗βi

)

= ad · permA

σi
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The Cupcap Cometh

• What, for instance, is                        

• Both Haar and Gauss:

• Diagrammatically:

E[σ ⊗ σ∗] =
1
d

Eσ1,σ2,σ3 (trσ1σ2σ3) (trσ1σ3σ2)
∗

E[σi
j(σ

k
! )∗] =

1
d
δikδj!

?
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Diagrams and Loops
• Form product by “weaving” matrices, and 

connect with cupcaps

• Tracing gives a factor of d for each loop

σ∗
3 σ∗

2σ∗
1σ1 σ2 σ3

Eσ1,σ2,σ3 (trσ1σ2σ3) (trσ1σ3σ2)
∗ =

1
d2
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A Generating Function

• Averaging over all permutations gives

• where        is the number of cycles         
and                      is a rotation

• Using Fourier analysis on     ,

c(π) π

r = (1 2 · · · n)

Sn

ad =
1
dn

((
n + d

n + 1

)
−

(
d

n + 1

))

α

α

ad =
1
dn

Eα dc([α,r])
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Fourier Analysis

• First we write

• Then     is an inner product

where     is the uniform distribution on   -cycles

•        is the trace of a combinatorial representation: 
action of      on strings of length    over

• Fourier coefficients are Kostka numbers

•     is supported on “hooks”

ad =
1
dn

Er,r′dc(rr′)

ad

〈
dc(·), P ∗ P

〉

P n

dc(·)

Sn n {1, . . . , d}

P

The k-hook

k
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The Second Moment: 
Unsymmetrized

• The tuple               determines a double 
cycle cover: each      appears 2 or 4 times

•                     , a cycle cover

E[X2] =
∑

C!A

∑

(κ,λ,µ,ν)!C

E{ρij}

(
tr

∏

i

ρi,κi

) (
tr

∏

i

ρi,λi

)(
tr

∏

i

ρ∗i,µi

) (
tr

∏

i

ρ∗i,νi

)

(κ, λ, µ, ν)
ρij

(permA)2 =
∑

M1!A

∑

M2!A

=
∑

C

2|C|

M1 ⊕M2 = C
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• In the Gaussian measure,

• In the Haar measure, 

Fourth-Order 
Operator

Eσ [σ ⊗ σ ⊗ σ∗ ⊗ σ∗] =
1
d2

(
+

)

Eσ [σ ⊗ σ ⊗ σ∗ ⊗ σ∗] "
(

1 + O

(
1
d

))
1
d2

(
+

)
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• Sum over all mixtures of (1,3),(2,4) and 
(1,4),(2,3) matchings

• Mixed matchings have fewer loops

The Second Moment: 
Unsymmetrized

2
n∑

i=0,2,4,...

(
n

i

)
d−i =

((
1 +

1
d

)n

+
(

1− 1
d

)n)
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Second Moment, 
Symmetrized

• Now the second moment                                 
can be bounded in terms of

• Complicated distribution of                            
pairs of   -cycles in     

• Bound in terms of uniform distribution 

• Littlewood-Richardson rule: restrictions of irreps 
of       to the Young subgroup  

α β γ

α β γ

δ

δ

w

w

Eπ,σ∈S2ndc(π−1(r,r)π σ−1(r,r)σ)

S2n Sn × Sn

n S2n
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The Frobenius 
Estimators

•                         instead of 

• Just rewire 2 or 4 edges

C
o
n
ju
g
ated

C
o
n
ju
g
ated

‖M‖2 = trMM † (trM)(trM∗)
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Shameless 
Plug

THE NATURE
of COMPUTATION

Cristopher Moore
Stephan Mertens

Oxford University 
Press, 2010
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