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ABSTRACT 

 Amazons, as a relatively young game, has caught the attention of AI game 

programmers. Though Amazons is a simple game for humans, it is difficult for 

computers. It has 2176 possible moves at the initial position and about five hundred 

possible moves on average during the game. This makes brute-force search highly 

impractical. Hence, it is an excellent subject for AI techniques such as selective search 

and evaluation functions. 

In this project, we create a computer Amazons program—Mulan. Using this 

program, we implemented and tested some popular Alpha-Beta enhancements and 

forward pruning algorithms. For Chess, a variety of studies have been performed 

investigating the relative performance of these techniques. But for Amazons, no one 

seems to know how effective they are. We experimentally answered this question. For 

studying evaluation functions in Amazons, we implemented and compared three existing 
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features used for Amazons and four new features we developed. Furthermore, starting 

with the three features which gained the best results in our experiments, we combined 

them to form an evaluation function using two methods: 1) linear combinations using 

tournaments; 2) a pattern classification approach based on Bayesian learning. Though 

Mulan is created as a test bed for Artificial Intelligence, it has evolved to a strong 

Amazons playing program. Our test results show that Mulan can substantially beat some 

strong Amazons playing programs such as Yamazon and Arrow. 
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CHAPTER 1  INTRODUCTION 

 
 

In the past decades, researchers have put a lot of effort into improving the strength 

of computer program for games such as Othello, Checkers, and Chess -- not just because 

it is fun, but also because games are useful test beds for Artificial Intelligence. Many 

search algorithms and pattern recognition methods can be easily tested on game playing 

programs.  After years of hard work, many amazing results have been obtained. One of 

the most impressive examples is Deep Blue’s defeat of Garry Kasparov, the World Chess 

Champion, in 1997 [4]. However, for some games such as Shogi(Japanese Chess) and Go, 

computers still have considerable room for improvement and humans are still far superior.  

Amazons, as a relative young game, has caught the attention of AI game 

programmers. There are two reasons for this. First, though Amazons is a simple game for 

humans, it is difficult for computers. Amazons has 2176 possible moves at the initial 

positions and about five hundred possible moves on average during the game. Since this 

large branching number makes brute-force search impractical, Amazons is an excellent 

subject for the study of search algorithms and evaluation functions. Secondly, in 

Amazons, humans and computers are still in a stage of learning from each other. Since 

Amazons is a newly invented game, there are not many mature strategies known. 

Therefore, programmers have to develop implicit strategic knowledge gained from their 

own playing experience and convert them into rules which can be used by computers. 

This is a far more challenging and exciting experience than creating game playing 

programs for more mature games such as Chess. 
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1.1 What is Amazons? 

The game of Amazons is a simple board game invented by Argentinian Walter 

Zamkauskas in 1988. Amazons shares many characteristics with other games, such as 

Chess and Go. On one hand, it has a Go-like subgoal of controlling and enlarging 

territory. On the other hand, players have to keep the mobility of their own pieces as large 

as possible. This is just the idea which has been used in some other board games like 

Othello, Checkers, and Chess.  

 

1.1.1 Rules of Amazons 

Amazons is a two-person, perfect-information and zero-sum game. Two players 

compete on a board of size10*10 and each side has four queens (called amazons).  Figure 

1.1 shows the initial position of the game. The rules can be summarized as the following:  

(1) Two players alternate choosing an amazon of their color to move. In this thesis 

we assume the player with white pieces moves first.  

(2) The amazons move like chess queens except they cannot capture. After each 

move, an amazon shoots an arrow to burn off a square reachable by second queen move 

from its position.  

(3) Any amazon or arrow cannot move to or pass over a square that is burnt off or 

occupied by another queen. 

 (4) The last player who is able to complete a move is the winner. 
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Figure 1.1 The initial position of Amazons 

1.1.2 Notation 

In this thesis, the columns on the board are labeled by letters (a to j) and rows by 

number (1 to 10). A move is denoted as initial_position – end_position(shoot). For 

example, d1-d6 (i6) means “amazon at d1 moves to d6 and then shoots an arrow to i6”. 
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CHAPTER 2 GAME TREE SEARCHING AND PRUNING 

 
In this chapter, we concentrate on game tree searching and pruning aspects. 

Section 2.1 presents background knowledge on game playing programs: how to build a 

game tree and how to decide the next move. In section 2.2, we further introduce the most 

successful refinement of minimax search—the alpha-beta algorithm. Section 2.3 is about 

some of the most important enhancements to alpha-beta algorithm based on following 

principles: move ordering, minimal window search, quiescence search and forward 

pruning. Then we conclude this chapter in Section 2.4. For more information about game 

tree searching and pruning, we refer to [11]. 

 
2.1 Game trees and Minimax Search 

Almost all game playing programs use a game tree to represent positions and 

moves. Nodes represent game positions, and the root node corresponds to the current 

position of the game. The branches of a node represent the legal moves from the position 

represented by the node. A node is called a leaf if it doesn’t have a successor. Using the 

rules of the game, we can evaluate a leaf as a win, lose, draw, or a specific score.  

But unfortunately the whole game tree size is tremendously huge for almost all 

interesting games. For example, checkers is 2010 , and chess is 4010 . The total number of 

nodes in game tree is roughly DW , where W stands for the number of possible moves on 

average for each node, and D is the typical game length. For Amazons game, W is about 

479 in randomized computer-game playing and D is around 80 [33]. Therefore, no any 

practical algorithm can manage such a full tree due to lack of time. 
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One solution of such games is to stop generating the tree at a fixed depth, d, and 

use an evaluation function to estimate the positions d moves ahead of the root. In this 

thesis, we will use the term ply, which was first introduced by Samuel [5], to represent 

the depth of a game tree. The nodes at the deepest layer will be leaves. Typically, the 

value of a leaf, estimated by the evaluation function, is represented the number in 

proportion to the chance of winning the game.  

Game playing programs depend on game tree search to find the best move for the 

current position, assuming the best play of the opponent. In a two-person game, two 

players choose a legal move alternately, and both of them intuitively try to maximize 

their advantage. Because of this reason, finding the best move for a player must assume 

the opponent also plays his/her best moves. In other words, if the leaves are evaluated on 

the viewpoint of player A, player A will always play moves that maximize the value of 

the resulting position, while the opponent B plays moves that minimize the value of the 

resulting position. This gives us the MiniMax algorithm.  

 
 
 

 
 

 
Player A: Maximize 

Opponent B: Minimize 

 
Player A: Maximize 

 
 

Figure 2.1 MiniMax Search Tree 
 

B   6 

D    6 

    6        5         3         7            0    

E     7 

C   4 

F     4 

    1        4         2         8            9    

G     9 

A   6 

I 
PC 

PC 

PC 

PC 

H 
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Figure 2.1 simulates a MiniMax search in a game tree. Every leaf has a 

corresponding value, which is approximated from player A’s viewpoint. When a path is 

chosen, the value of the child will be passed back to the parent.  For example, the value 

for D is 6, which is the maximum value of its children, while the value for C is 4, which 

is the minimum value of F and G. In this example, the best sequence of moves found by 

the maximizing / minimizing procedure is the path through nodes A, B, D and H, which 

is called the principal continuation [7]. The nodes on the path are denoted as PC 

(principal continuation) nodes. 

For simplicity, we can modify the game tree values slightly and use only 

maximization operations. The trick is to maximize the scores by negating the returned 

values from the children instead of searching for minimum scores, and estimate the 

values at leaves from the player’s own viewpoint. This is called the NegaMax algorithm. 

Since most game-playing programs examine large trees, game tree search algorithms are 

commonly implemented as a depth-first search, which requires memory only linear with 

the search depth. Figure 2.2 is the pesudocode of NegaMax algorithm, implemented as a 

depth-first search, and Figure 2.3 illustrates the NegaMax procedure using the same game 

tree as Figure 2.1. 

 

    // pos : current board position 

    // d: search depth 

    // Search game tree to given depth, and return evaluation of root node. 

    int NegaMax(pos, d)  

    { 

        if (d=0 || game is over)  return Eval (pos);    

        // evaluate leaf position from current player’s standpoint 
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        score = - INFINITY;   // present return value 

    moves = Generate(pos);   // generate successor moves 

    for i =1 to sizeof(moves) do   // look over all moves 

    { 

  Make(moves[i]);    // execute current move 

  // call other player, and switch sign of returned value 

  cur = -NegaMax(pos, d-1);  

  // compare returned value and score value, update it if necessary 

  if (cur > score) score = cur; 

  Undo(moves[i]);   // retract current move 

         } 

  return score; 

    } 

Figure 2.2 Pseudo Code for NegaMax Algorithm 
 
 

 

 

 

 
 

Figure 2.3 NegaMax Search Tree 
 

 
A NegaMax search has to evaluate every leaf of the game tree. For a uniform tree 

with exactly W moves at each node, a d-ply NegaMax search will evaluate dW leaves. 

This makes a deeper search of a “bushy” tree impossible. Fortunately, a refinement we 

will talk about in next section, Alpha-Beta pruning, can reduce the amount of work 

D    6     (6, 5, 3)

B   -6  (-6, -7) 

   -6        -5       -3       -7            0    

E     7   (7, 0) 

C   -4  (-4, -9) 

F     4    (1, 4, 2) 

   -1       -4        -2       -8           -9    

G     9    (8, 9) 

A   6  (6, 4) 
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considerably: in the best case, to twice the depth we might reach using NegaMax search 

in same amount of time. 

 
2.2 The Alpha-Beta Algorithm 

As we mentioned in previous section, it is not necessary to explore all the nodes 

to determine the minimax value for the root. It can be proved that large chunks of the 

game tree can be pruned away. Knuth and Moore [8] showed that the minimax value of 

the root can be obtained from a traversal of a subset of the game tree, which has at most 

    12/2/ ++ dd WW  leaves, if the “best” move is examined first at every node. 

McCarthy (1956) was the first to realize that pruning was possible in a minimax 

search, but the first thorough solution was provided by Brudno (1963) [9]. A few years 

later, Knuth and Moore (1975) [10] further refined it and proved its properties.  

The success of alpha-beta search is achieved by cutting away uninteresting 

chunks of the game tree. For example, max(6, min(5, A)) and min(5, max(6, B)) are 

always equal to 6 and 5 respectively, no matter what values A and B are. Therefore, we 

can prune the subtrees corresponding to A and B during game tree search. To realize 

these cut-offs, the alpha-beta algorithm employs a search window (alpha, beta) on the 

expected value of the tree. Values outside the search window, i.e., smaller than alpha or 

larger than beta, cannot affect the outcome of the outcome of the search.  

Figure 2.4 shows the pseudocode for the alpha-beta algorithm in NegaMax form. 

In order to return the correct minimax value, alpha-beta search should be invoked with an 

initial window of alpha = -∞ and beta = ∞. 

 

    // pos : current board position 
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    // d: search depth 

    // alpha: lower bound of expected value of the tree 

    // beta: upper bound of expected value of the tree 

    // Search game tree to given depth, and return evaluation of root. 

    int AlphaBeta(pos, d, alpha, beta)  

    { 

if (d=0 || game is over)  

    return Eval (pos);    // evaluate leaf position from current player’s standpoint 

score = - INFINITY;   // preset return value 

moves = Generate(pos);  // generate successor moves 

for i =1 to sizeof(moves) do   // look over all moves 

{ 

    Make(moves[i]);    // execute current move 

    //call other player, and switch sign of returned value 

    cur = - AlphaBeta(pos, d-1, -beta, -alpha);  

    //compare returned value and score value, note new best score if necessary 

    if (cur > score) score = cur; 

    if (score > alpha) alpha = score;  //adjust the search window 

    Undo(moves[i]);   // retract current move 

    if (alpha >= beta) return alpha;  // cut off 

} 

return score; 

    } 

Figure 2.4 Pseudocode for Alpha-Beta Algorithm 
  

In order to illustrate the alpha-beta search process we discuss an example. 

Figure2.5 shows the same game tree as Figure 2.3, in which one node (L) and one subtree 

(the subtree of G) are pruned by alpha-beta search. 
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Figure 2.5 Alpha-Beta Search Tree 
 

The leftmost branches are traversed with the initial window (-∞, ∞). After having 

evaluated the left child of D, the middle child of D is searched with the window (-∞, -6) 

since the value for D is at least 6. At node E, alpha is updated to -6 after completing the 

search of left child D. So the search window of the right sibling E is (-∞, 6). After E’s left 

child is visited, the new alpha is adjusted to 7, which is larger than beta, so its right 

sibling L is cut off. We can also look this procedure as determining the value of min(6, 

max(7, -L)), or max(-6, - max(7, -L)) in NegaMax form. No matter what value L is, the 

result we get is always 6, or –6 in NegaMax form. 

 
2.3 Enhancements to the Alpha-Beta Algorithm 

 In the last three decades, a large number of enhancements to the Alpha-Beta 

algorithm have been developed. Many of them are used in practice and can dramatically 

improve the search efficiency. In the section, we will briefly discuss some major Alpha-

Beta enhancements, which are based on one or more of the four principles: move 

ordering, minimal window search, quiescence search and forward pruning.  
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   -6        -5       -3        -7           --   
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   -1       -4        -2       ---           ---   

G    -- 
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(-∞, -6) 

(-∞, ∞) 
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(-∞, -6) 

(-6, ∞) 

(6, ∞) 
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(-∞, ∞) 

(-∞, -6) L 



 11

2.3.1 Move ordering 

 The efficiency of the alpha-beta algorithm depends on the move search order. For 

example, if we swap the positions of D, E and F, G in Figure 2.5, then a full tree search 

will be necessary to determine the value of the root. To maximize the effectiveness of 

alpha-beta cut-offs, the “best” move should be examined first at every node. Hence many 

ordering schemes have been developed for ordering moves in a best-to-worst order. Some 

techniques such as iterative deepening, transposition tables, killer moves and the history 

heuristic have proved to be quite successful and reliable in many games. 

2.3.1.1 Iterative Deepening  

Iterative deepening was originally created as a time control mechanism for game 

tree search. It handles the problem that how we should choose the search depth depends 

on the amount of time the search will take. A simple fixed depth is inflexible because of 

the variation in the amount of time the program takes per move. So David Slate and Larry 

Atkin introduced the notion of iterative deepening [12]: start from 1-ply search, 

repeatedly extend the search by one ply until we run out of time, then report the best 

move from the previous completed iteration. It seems to waste time since only the result 

of last search is used. But fortunately, due to the exponential nature of game tree search, 

the overhead cost of the preliminary D-1 iterations is only a constant fraction of the D-ply 

search. 

Besides providing good control of time, iterative deepening is usually more 

efficient than an equivalent direct search. The reason is that the results of previous 

iterations can improve the move ordering of new iteration, which is critical for efficient 
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searching. So compared to the additional cut-offs for the D-ply search because of 

improved move order, the overhead of iterative deepening is relatively small. 

Many techniques have proved to further improve the move order between 

iterations. In this thesis, we focus on three of them: transposition tables, killer moves and 

history heuristic.  

 
2.3.1.2 Transposition tables 

In practice, interior nodes of game trees are not always distinct. The same position 

may be re-visited multiple times. Therefore, we can record the information of each sub-

tree searched in a transposition table [12, 15, 16]. The information saved typically 

includes the score, the best move, the search depth, and whether the value is an upper 

bound, a lower bound or an exact value. When an identical position occurs again, the 

previous result can be reused in two ways: 

1) If the previous search is at least the desired depth, then the score corresponding to 

the position will be retrieved from the table. This score can be used to narrow the 

search window when it is an upper or lower bound, and returned as a result 

directly when it is an exact value. 

2) Sometimes the previous search is not deep enough. In such a case the best move 

from the previous search can be retrieved and should be tried first. The new 

search can have a better move ordering, since the previous best move, with high 

probability, is also the best for the current depth. This is especially helpful for 

iterative deepening, where the interior nodes will be re-visited repeatedly.  

To minimize access time, the transposition table is typically constructed as a hash 

table with a hash key generated by the well-known Zobrist method [13].  



 13

For a detailed description about how to implement alpha-beta search with 

transposition tables, we refer to [11]. 

 
2.3.1.3 Killer Move Heuristic 

The transposition table can be used to suggest a likely candidate for best move 

when an identical position occurs again. But it can neither order the remaining moves of 

revisited positions, nor give any information on positions not in the table. So the “killer 

move” heuristic is frequently used to further improve the move ordering.  

The philosophy of the killer move heuristic is that different positions encountered 

at the same search depth may have similar characters. So a good move in one branch of 

the game tree is a good bet for another branch at the same depth. The killer heuristic 

typically includes the following procedures: 

1) Maintain killer moves that seem to be causing the most cutoffs at each depth. 

Every successful cutoff by a non-killer move may cause the replacement of the 

killer moves. 

2) When the same depth in the tree is reached, examine moves at each node to see 

whether they match the killer moves of the same depth; if so, search these killer 

moves before other moves are searched. 

A more detailed description and empirical analysis of the killer move heuristic 

can be found in [17]. 

 
2.3.1.4 History Heuristic  

The history heuristic, which is first introduced by Schaeffer [18], extends the 

basic idea of the killer move heuristic. As in the killer move heuristic, the history 
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heuristic also uses a move’s previous effectiveness as the ordering criterion. But it 

maintains a history for every legal move instead of only for killer moves. In addition it 

accumulates and shares previous search information throughout the tree, rather than just 

among nodes at the same search depth. 

Figure 2.6 illustrates how to implement the history heuristic in the alpha-beta 

algorithm. The bold lines are the part related to the history heuristic. Note that every time 

a move causes a cutoff or yields the best minimax value, the associated history score is 

increased. So the score of a move in the history table is in proportion to its history of 

success. 

 
    // pos : current board position 

    // d: search depth 

    // alpha: lower bound of expected value of the tree 

    // beta: upper bound of expected value of the tree 

    // Search game tree to given depth, and return evaluation of root. 

    int AlphaBeta(pos, d, alpha, beta)  

    { 

if (d=0 || game is over)  

      return Eval (pos);     

score = - INFINITY;   // preset return value 

moves = Generate(pos);  // generate successor moves 

for i =1 to sizeof(moves) do   // rating all moves 

      rating[i] = HistoryTable[ moves[i] ]; 

Sort( moves, rating ); // sorting moves according to their history scores 

for i =1 to sizeof(moves) do {  // look over all moves 

      Make(moves[i]);   // execute current move 

      //call other player, and switch sign of returned value 

      cur = - AlphaBeta(pos, d-1, -beta, -alpha);  
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      //compare returned value and score value, note new best score if necessary 

      if (cur > score) {    

score = cur;  

bestMove = moves[i];  // update best move if necessary 

      } 

      if (score > alpha) alpha = score;   //adjust the search window 

      Undo(moves[i]);   // retract current move 

      if (alpha >= beta) goto done;   // cut off 

} 

done: 

     // update history score 

     HistoryTable[bestMove] = HistoryTable[bestMove] + Weight(d); 

     return score; 

      } 

Figure 2.6 Alpha-Beta Search with History Heuristic 
 

Two questions remain for the implementation of the history heuristic above. The 

first one is how to map moves to the index of history table.  For Amazons, we use a 

method similar to [33]. We divide a move into two separate parts, the queen move and 

the barricade move. So all queen moves can be fixed in a 10*10*10*10 array, whose 

index is generated by locations of from-square and to-square. Similarly, a 10*10 array is 

used for barricade moves. 

The other question is how to weight results obtained from different search depths. 

Two reasons cause us to use d2 , as suggested by Schaeffer [18], as the weight in our 

program: first, we should increase a higher score for successful moves on deeper 

searches, and second, we should increase a higher score for successful moves near the 

root of the tree. 
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A well-known problem of the history heuristic is that a good move at the current 

stage may be overshadowed by its previous bad history. To overcome this problem, we 

divide all history scores by 2 before every new search. 

 

2.3.2 Minimal Window Search 

In the Alpha-Beta procedure, the narrower the search window, the higher the 

possibility that a cutoff occurs. A search window with alpha = beta –1 is called the 

minimal window. Since it is the narrowest window possible, many people believe that 

applying minimal window search can further improve search efficiency. Some alpha-beta 

refinements such as NegaScout and MTD(f) are derived from minimal window search. 

For some games with bushy trees, they provide a significant advantage. Since bushy trees 

are typical for Amazons, minimal window search has the potential of improving its 

search power.  

 
2.3.2.1 NegaScout / PVS 

NegaScout [19] and Principal Variation Search (PVS) [20] are two similar 

refinements of alpha-beta using minimal windows. The basic idea behind NegaScout is 

that most moves after the first will result in cutoffs, so evaluating them precisely is 

useless. Instead it tries to prove them inferior by searching a minimal alpha-beta window 

first. So for subtrees that cannot improve the previously computed value, NegaScout is 

superior to alpha-beta due to the smaller window. However sometimes the move in 

question is indeed a better choice. In such a case the corresponding subtree must be 

revisited to compute the precise minimax value.  
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Figure 2.7 demonstrates NegaScout search procedures. Note that for the leftmost 

child moves[1], line 9 represents a search with the interval (-beta, -alpha) whereas a 

minimal window search for the rest of children. If the minimal window search fails, i.e., 

(cur > score) at line 10, that means the corresponding subtree must be revisited with a 

more realistic window (-beta, -cur) (line 15) to determine its exact value. The conditions 

at line 11 show that this re-search can be exempted in only two cases: first, if the search 

performed at line 9 is identical to actual alpha-beta search, i.e., n=beta, and second, if the 

search depth is less than 2. In that case NegaScout’s search always returns the precise 

minimax value.  

 

// pos : current board position 

// d: search depth 

// alpha: lower bound of expected value of the tree 

// beta: upper bound of expected value of the tree 

// Search game tree to given depth, and return evaluation of root. 

1 int NegaScout(pos, d, alpha, beta) { 

2       if (d=0 || game is over)  

3  return Eval (pos);     

4       score = - INFINITY;  // preset return value 

5       n = beta; 

6       moves = Generate(pos);  // generate successor moves 

7       for i =1 to sizeof(moves) do { // look over all moves 

8  Make(moves[i]);   // execute current move 

9  cur = -NegaScout(pos, d-1, -n, -alpha); 

10  if (cur > score) { 

11        if (n = beta) OR (d <= 2)  

12   score = cur;  

13        else  
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15   score = -NegaScout(pos, d-1, -beta, -cur); 

} 

16  if (score > alpha) alpha = score;  //adjust the search window 

17  Undo(moves[i]);   // retract current move 

18  if (alpha >= beta) return alpha;   // cut off 

19  n = alpha + 1; 

      } 

20       return score; 

} 

Figure 2.7 Pseudocode for The NegaScout Algorithm 
  

Figure 2.8 illustrates how NegaScout prunes nodes (node N and O) which alpha-

beta must visit. After the left subtree has been visited, NegaScout gets the temporary 

minimax value cur = 6. So the right successor is visited with the minimal window (-7, -

6). Then at node F, the leftmost child’s value (-9) causes cutoffs of its right successors (at 

line 18 in Figure 2.7).   

 
 
 
 
 
 
 
 
 
 

 

Figure 2.8 Game Tree Showing NegaScount’s Superiority 
  

A good move ordering is even more favorable to NegaScout than to alpha-beta. 

The reason is that the number of re-searches can be dramatically reduced if the moves are 

D    6     

   M        N        O 

(-∞, ∞) (-7, -6) 

(-∞, ∞) 

B -6 

   -6        -5       -3        -7           --   

E     7   

C -4 

F     --  

   -9       ---       ---       -4           -1   

G    4 

A  6 

(-7, -6) (-∞, ∞) 

(5, 6) 

(-∞, -6) 

(-∞, -6) 

(-6, -5) 

(6, 7) 
(6, 7) 

(-7, -6) (-7, -6) 
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sorted in a best-first order. So other move ordering enhancements such as iterative 

deepening, the killer heuristic, etc, can be expected to give more improvement to 

NegaScout than to alpha-beta.  

When performing a re-search, NegaScout has to traverse the same subtree again. 

This expensive overhead of extra searches can be prevented by caching previous results. 

Therefore a transposition table of sufficient size is always preferred in NegaScout.  

 
2.3.2.2 MTD (f) 

MTD(f) [21] is a new alpha-beta refinement which always searches with minimal 

windows. Minimal window search can cause more cutoffs, but it can only return a bound 

on the minimax value. To obtain the precise minimax value, MTD(f) may have to search 

more than once, and use returned bounds to converge toward it. 

The general idea of MTD(f) is illustrated by figure 2.9. Note that the score for 

node “pos” is bound by two values: upper and lower bound. After each AlphaBeta search, 

the upper or lower bound is updated.  When both the upper and lower bound collide at f, 

i.e. both the minimal window search (f-1, f) and (f, f+1) return f, the minimax score for 

node “pos” is assured to be f.  

 

      // pos : current board position 

      // d: search depth 

      // f: first guess of expected value of the tree 

      // Search game tree to given depth, and return evaluation of root. 

      int MTDF(node pos, int d, int f) { 

int score = f;      // preset return value 

// initialize lower and upper bounds of expected  

upperBound = + INFINITY;     
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lowerBound =  - INFINITY;   // evaluation of root 

while (upperBound > lowerBound) do { 

      if (score = = lowerBound) then  beta = score + 1; 

      else beta = score; 

      score = AlphaBeta(pos, beta – 1, beta, d); // minimal window search 

      // re-set lower and upper bounds of expected 

      if (score < beta) then upperBound = score; 

      else lowerBound = score;   // evaluation of root 

} 

return score; 

      } 

Figure 2.9 Pseudocode for The MTD(f) Algorithm 
 

In MTD(f), the argument f is our first guess of the expected minimal value. The 

better this first guess is, the fewer minimal searches are needed. In iterative deepening 

search, the new iteration typically uses the result of the previous iteration as its best 

guess. For some games, the values found for odd and even search depths vary 

considerably. In that case feeding MTD(f) its return value of two plies ago, not one, may 

be even better.  

Similar to NegaScout / PVS, MTD(f) also depends on the usage of a transposition 

table to reduce the overhead of re-searching, so a good transposition table is essential to 

the performance of MTD(f). 

 

2.3.3 Quiescence Search  

A fixed-depth approximate algorithm searches all possible moves to the same 

depth. At this maximum search depth, the program depends on the evaluation of 

intermediate positions to estimate their final values. But actually all positions are not 
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equal. Some “quiescent” positions can be assessed accurately. Other positions may have a 

threat just beyond the program’s horizon (maximum search depth), and so cannot be 

evaluated correctly without further search.  

 The solution, which is called quiescence search, is increasing the search depth for 

positions that have potential and should be explored further. For example, in chess 

positions with potential moves such as capture, promotions or checks, are typically 

extended by one ply until no threats exist. Although the idea of quiescence search is 

attractive, it is difficult to find out a good way to provide automatic extensions of non-

quiescence positions. 

 We did not implement quiescence search in our experiments. The first reason is 

because it is hard to apply the idea of quiescence search in Amazons.  In relatively new 

games such as Amazons, humans are still in the learning stage, so not enough strategic 

knowledge is known about the game to decide what kind of positions should be extended. 

Another very important reason is it is very difficult to quantify the effect of the quiescent 

search. A fair way of comparing different quiescence searches is difficult to find. 

Therefore we decided not to implement quiescence search for the moment, but try to 

develop better evaluation functions to avoid threats beyond the horizon.  

 

2.3.4 Forward Pruning 

Forward pruning discards some seemingly unpromising branches to reduce the 

size of the game tree. The depth of the search tree explored strongly influences the 

strength of the game-playing program. So sometimes exploring the best moves more 

deeply is better than considering all moves. Many techniques have been developed to 
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perform forward pruning. For example, N-best selective search [16] considers only the N-

best moves at each node. Other methods, such as ProbCut and Multi-ProbCut, developed 

by Michael Buro [22, 23], use the result of a shallow search to decide with a prescribed 

possibility whether the return value of a deep search will fall into the current search 

window. Although forward pruning can reduce the tree size dramatically, it is also error 

prone. The major problem is that the best move may be excluded because of its bad 

evaluation value at a low level in the game tree.  

2.3.4.1 N-Best Selective search 

To find out a good selection criterion, we need to consider the tradeoff between 

reducing the possibility of cutting off the best move and increasing the search depth. In 

our experiments, we implemented N-best selective search in two ways. Both of them use 

the board evaluation function as the selection criterion. One simply selects N promising 

moves for each node. The other divides a move into two separate operations: queen-move 

and arrow-location. For each node, N promising queen-moves are selected first, and then 

M favorable arrow-locations are determined for each queen-move. Obviously the second 

approach can further reduce the size of the game tree. On the other hand, the chance of 

cutting off decisive variations during moves selections may also be increased.  

We can order moves based on board evaluation values obtained during move 

selection. This will give us a very good move ordering and prune more branches during 

alpha-beta search. For different evaluation functions, the best selective factor N may be 

different. For example, for faster but worse estimators, a bigger N should be used to 

increase the possibility that the best move is chosen. To compare the true performance of 
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different evaluation functions, we tune N for every evaluator and chose the value with 

best performance. 

 
2.3.4.2 ProbCut  

The idea of ProbCut is based on the assumption that evaluations obtained from 

searches of different depths are strongly correlated. So the result V_D’ of a shallow 

search at height d’ can be used as a predictor for the result V_D of deeper search at height 

d. Before a deeper search is performed, the position is first searched to a shallow depth 

d’. From the return value, we predict the probability that the deeper search will lie outside 

the current (alpha, beta) window. If it is high, the deeper search is ignored since it is 

unlikely to affect the final result. Otherwise, the deeper search is performed to obtain the 

precise result. Note that the effort of shallow search is always negligible compared to a 

relatively expensive deeper search.  

Michael Buro [22] suggested that V_D and V_D’ are related by a linear 

expression V_D = a * V_D’ + b + e, where the coefficients a and b are real numbers and 

e is a normally distributed error term with mean 0 and variance 2σ . For stable evaluation 

functions, we can expect that a �������������� 2σ is small. So we can predict the 

probability that V_D>=beta from the following equivalences. 

V_D >= beta  � a * V_D’ + b + e >= beta  � V_D’ >= (-e + beta –b) / a 

          � V_D’ >= ((-e/ ��  + beta –b) / a  

From the definition of e, we know that (-e/ �����������������
���
	����
���	�����

and variance 1. So the probability that V_D >= beta is larger than p if and only if V_D’ is 

����	��
��������� ������  + beta –b) / a. Similarly we can deduce that the probability of 

V_D <= alpha is larger than p if and only if V_D’ is larger than ( -��� ������  + alpha –
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b) / a. The implementation of the ProbCut extension illustrated in Figure 2.10 is just 

based on these bounds. To further improve the efficiency of the new algorithm, we use a 

minimum window for shallow search at D’. 

 

      // pos : current board position 

      // d: search depth 

      // alpha: lower bound of expected value of the tree 

      // beta: upper bound of expected value of the tree 

      // Search game tree to given depth, and return evaluation of root. 

      int AlphaBeta(pos, d, alpha, beta)  

      { 

… 

// D is the depth of deeper search.  

// D’ is the height of shallow search 

���
����
�	���
�
��	���������������	 ����
���� ���� 

if (d = = D) { 

������!	
��	"	�����	��������������	
	��� �������������������
������	�
��
��	� 

   

      // Is V_D’ >= beta likely? If so, cut off and return beta. 

�����������#���������
��� $�	
��– b) / a); 

      if (AlphaBeta(pos, D’, bound-1, bound) >= bound) return beta;  

   

      // Is V_D’ <= alpha likely? If so, cut off and return alpha. 

      bound = round( (-
��� $�������– b) / a); 

      if (AlphaBeta(pos, D’, bound, bound+1) <= bound) return alpha; 

} 

… 

      } 

Figure 2.10 Pesudocode of the ProbCut extension 
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performance of ProbCut a lot. The difference D-D’ is in proportion to the depth of the cut 

subtree. On the other hand, if the difference is too large, the numbers of cuts will be 

reduced since the variance of the error will be also large. In the ProbCut implementation 

in the Othello program LOGISTELLO, the author chooses D’=4 and D=8 

	)�	���	�
������(�	�������	
	����������� �����	�	�
���
	��*���	�������	��
��	�������

evaluation pairs (V_D’, V_D) generated by non-selective searches. After that the best t is 

determined using a tournament between versions of the selective program with different 

cut thresholds and non-selective version.  

The ProbCut extension can increase some game programs’ playing strengths 

considerably. In the Othello game LOGISTELLO, Buro [22] reports that the ProbCut-

enhanced version defeats the brute-force version with a winning percentage of 74%. This 

tournament uses 35 balanced opening positions as starting positions and all program 

versions are with quiescence search and iterative deepening.   

 

2.3.4.3 Multi-ProbCut 

Multi-ProbCut [23] (or MPC for short) generalizes the ProbCut procedure to 

prune even more unpromising subtrees by using additional checks and cut thresholds. 

MPC refines the ProbCut procedure in three ways: 

1) MPC allows cutting irrelevant subtrees recursively at several heights instead of 

only at one specific height.  
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2) By performing several check searches of increasing depth, MPC can detect 

extremely bad moves at very shallow check searches.  

3) MPC optimizes the cut thresholds separately for different game stages instead of 

using a constant cut threshold for the whole game. 

Figure 2.11 illustrates the implementation of MPC. Note that MPC uses a for loop 

to perform check searches at several depths. For every check search, a different cut 

threshold t is used. To avoid search depth degeneration, MPC does not call itself 

recursively in the check part. 

 

      // pos : current board position 

      // d: search depth 

      // alpha: lower bound of expected value of the tree 

      // beta: upper bound of expected value of the tree 

      // Search game tree to given depth, and return evaluation of root. 

      int MPC(pos, d, alpha, beta)  

      { 

… 

// MAX_DEPTH maximum height of shallow checks 

// NUM_TRY maximum number of shallow checks 

���
����
�	���
�
��	���������������	 ����
���� ���� 

if (d <= MAX_DEPTH) { 

      for i =1 to NUM_TRY do { 

!	
��	"	�����	��������������	
	����'��
�� �������������������
������	�
�

stage height and i. 

 

// Is V_d’ >= beta likely? If so, cut off and return beta. 

 �����#���������
��� $�	
��– b) / a); 

if (AlphaBeta(pos, d’, bound-1, bound) >= bound) return beta;  
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// Is V_d’ <= alpha likely? If so, cut off and return alpha. 

 bound = round( (-�
��� $�������– b) / a); 

 if (AlphaBeta(pos, d’, bound, bound+1) <= bound) return alpha; 

      } 

} 

… 

      } 

Figure 2.11 Pesudocode of MPC extension 
 

 
Michael Buro uses the following steps to determine MPC parameters for 

LOGISTELLO. First, the brute-force evaluations of thousands of example positions up to 

depth 13 are collected. Then he applies linear regression to this data to estimate the 

para�	
	����������� �*���	������������	����	������	���
�������	�+��	�
���%��
�	�
�����

step, the first check sequence is decided and additional check depth is added to minimize 

the total running time. Table 2.1 lists the check depths for different heights. After that 

two cut thresholds were determined for positions with <36 and >=36 discs respectively 

using two sets of tournaments.  

 
h 3 4 5 6 7 8 9 10 11 12 13 
d1 1 2 1 2 3 4 3 4 3 4 5 
d2 -- -- -- -- -- -- 5 6 5 -- -- 

 
Table 2.1 Check depths for different heights h 

 
  

Buro’s experiments in Othello game programs show that MPC outperforms 

ProbCut. The winning percentage of the MPC version of LOGISTELLO playing against 

the ProbCut version was 72% in a tournament of 140 games of 30 minutes per move.  
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2.4 Conclusions 

In this chapter we discussed some major algorithms for tree searching and 

pruning. The performance of these algorithms will vary for different games. One 

interesting question is how well they perform in the game of Amazon. We will 

investigate this question experimentally in Chapter 4.  

Being able to search game-trees deeper and faster is essential for creating a high 

quality game-playing program. However, it is not possible to exhaustively search the 

whole bushy game tree. So we still need a good evaluation function to assess the merits 

of the game position at maximum depth. For some forward pruning enhancements, such 

as ProbCut and Multi-ProbCut, stable evaluate function is required. In the next chapter, 

we will discuss evaluation functions for Amazons.  
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CHAPTER 3 EVALUATION FUNCTIONS 

 

3.1 Introduction 

Most successful game-playing programs apply heuristic evaluation functions at 

terminal nodes to estimate the probability that the player to move will win. Typically a 

successful evaluation function is the combination, e.g., a weighted sum, of a number of 

distinct features. Each feature measures a property of the board position. Thus 

constructing evaluation functions has two phases:  

1) selecting good features. 

2) combining them appropriately to obtain a single numerical value.  

Selecting features is important and difficult. We have to avoid too few features as 

well as redundant ones. It also requires both expert game knowledge and programming 

skill because of the well-known tradeoff between the complexity of the evaluation 

function and the number of positions we can evaluate in a given time: a more accurate 

evaluation function might actually result in inferior play if it takes too long to calculate. 

Feature combination is also critical and very unintuitive. We need to not only establish a 

balance among diversified strategies but also be aware of the interactions between related 

features. 

In this chapter, we will introduce the existing features used for Amazons and 

some automatic evaluation function construction methods.  

 
3.2 Evaluation Features of Amazons 

Recently three different evaluation features have been proposed for Amazons. 

These are Mobility [24], Territory [25] and Territory-and-Mobility (TM) [26]. As 
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explained in Chapter 1, Amazons has characteristics of both Chess and Go. The idea of 

the Mobility feature is from Chess. It focuses on the number of possible moves since the 

more possible moves a player has, the less likely it is that the player will run out of legal 

moves. Similar to Go, the territory feature is based on the concept of controlling more 

squares, since controlling more squares can provide more space for the pieces to move. 

The feature Territory-and-Mobility, suggested by Hashimoto [26], combines the merits of 

Mobility and Territory in a way which we describe below.  

3.2.1 Mobility 

In the game of Amazons, the last player who is able to complete a move wins the 

game, so having more possible moves than the opponent is a key factor for winning. The 

mobility of a player is defined as the sum of the possible moves of all his/her queens, and 

the mobility feature [24] is calculated by subtracting the opponent’s mobility from the 

player’s.  

The mobility feature may be useful for the opening stage where the territory 

classification is not clear enough. But in the mid-game and endgame, the board is divided 

into several battlefields. So controlling your own territories and invading the opponent’s 

territories are more important than enlarging your mobility.  

Another problem is that if we maximize mobility, all the player’s pieces tend to 

stay in the middle of the largest territory [26]. So a human player can block the 

computer’s pieces in the center of the board and occupy all four corners easily.   

The main advantage of this feature is its evaluation speed. Typically the evaluator 

can evaluate the mobility feature faster than the territory feature.  
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3.2.2 Territory  

Amazons is a game with Go-like characteristics. The number of possible moves is 

huge in the opening phase and decreases gradually. From the mid-game phase on, the 

board is separated into several battlefields. Therefore, keeping your own territory as large 

as possible is critical for winning the game.  

Kotani [25] introduces the Minimum Stone Ply (MSP) function to evaluate the 

territory feature of Amazons. In the MSP function, a square belongs to the player who 

can reach it faster with one of his/her pieces without counting arrows. If both players can 

reach a square in the same minimum number of moves, this square is neutral, i.e., it 

doesn’t belong to either player. Figure 3.1 shows the procedure of the MSP function. In 

our program, we used bitmap operations, which are designed and coded by Terry, to 

implement this algorithm efficiently.  

 

      // pos : current board position 

      // evaluate the territory feature for the board position “pos” and return the result.  

      int MSP(pos)  

      { 

blackSquares = 0; 

whiteSquares = 0; 

for all empty squares x do    

{ 

     blackStonePly = the minimum number of moves that a black piece needs to arrive at x; 

     whiteStonePly = the minimum number of moves that a white piece needs to arrive at x; 

     if (blackStonePly < whiteStonePly) 

 blackSquares = blackSquares + 1; 

     else 

whiteSquares = whiteSquares + 1; 
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} 

if (white’s turn to play) 

     return (whiteSquares – blackSquares); 

else 

     return (blackSquares – whiteSquares); 

      } 

Figure 3.1 The procedure of the MSP function 
 

The territory feature can correctly evaluate enclosed and almost-enclosed areas. 

Its performance is reasonably good in the endgame and in well-balanced situations. 

However, the territory feature assumes queens can go all directions and defend against 

attackers approaching from different sides at the same time. Therefore, in unbalanced 

situations such as where one queen is facing several, this feature evaluates the board too 

optimistically.  

 

3.2.3 Territory-and-Mobility  

Hashimoto et al. [26] combined the concepts of Mobility and Territory to build a 

new evaluation function, called Territory-and-Mobility, or TM.  

Typically the TM feature is evaluated via three steps: (1) Use the MSP function to 

evaluate the each player’s territory; (2) Count mobility in each player’s territory; (3) Sum 

the results of (1) and (2) using a specific weight. Figure 3.2 demonstrates the procedure 

of the TM function. 

 

      // pos : current board position 

      // evaluate the TM feature for the board position “pos” and return the result.  
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      int TM(pos)  

     { 

blackPoints = 0; 

whitePoints = 0; 

for all empty squares x do    

{ 

    blackStonePly = the minimum number of moves that a black piece needs to arrive at x; 

    whiteStonePly = the minimum number of moves that a white piece needs to arrive at x; 

     blackMob = the number of black queens which can arrive at square x in one move. 

     whiteMob = the number of white queens which can arrive at square x in one move. 

     if (blackStonePly < whiteStonePly) 

 blackPoints = blackPoints + weight + blackMob; 

     else 

whitePoints = whitePoints + weight + whiteMob; 

} 

if (white’s turn to play) 

     return (whitePoints – blackPoints); 

else 

     return (blackPoints – whitePoints); 

      } 

Figure 3.2 The procedure of the TM function 
 
 

Hashimoto et al. [26] believes that adding mobility to the territory feature allows 

the program to place all four queens in a coordinated way. In addition, the calculation of 

territory becomes more precise by adding the mobility scores in Step 3. After testing 

various values, they suggest that setting the weight to 4 gives the best performance.  
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3.3 Automatic Evaluation Function Construction 

We now describe how we combine features to create an evaluation function. 

Traditionally, an evaluation function is a linear combination of a number of features (F1, 

F2, …, Fn), i.e., a weighted sum:   

Eval = C1 * F1 + C2 * F2 + … + Cn * Fn 

where the coefficients (C1, C2, … , Cn) are either guessed by the implementer or 

found by some optimization process. 

But there are two problems with this method. First, it is difficult for humans to 

estimate these coefficients correctly, since they don’t use game tree search and evaluation 

functions. That was also the initial motivation for Samuel to propose ways to tune 

weights automatically in [5, 29]. Furthermore, this method assumes that no correlations 

or redundancies between features exist. This assumption is clearly false since almost 

every pair of features is correlated to some degree. To solve this problem, Lee et al [27] 

present a pattern classification approach. 

 

3.3.1 Samuel’s work on automatic feature combination 

Arthur Samuel, a novice Checkers player, is one of the earliest and most 

important researchers on Checkers learning programs. From 1947 to 1967, he proposed 

and experimented on many different methods of machine learning. In the next two 

sections, we introduce the two most important ones: (1) linear evaluation learning 

through self-play, and (2) nonlinear evaluation learning through book moves. 
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3.3.1.1 Linear evaluation learning through self-play 

In linear evaluation learning [5], Samuel tuned the coefficients by arranging two 

copies of the Checkers programs Alpha and Beta to play against each other. At the 

beginning, Alpha and Beta are identical. The only difference is that Beta keeps its 

weights fixed while Alpha continuously tunes its weights during the experiment. If Alpha 

beats Beta, Beta adopts Alpha’s evaluation on the next round of experiments. Otherwise, 

Alpha tries other ways to tune its weight. Sometimes manual intervention is necessary if 

the learning process gets stuck. When Alpha consistently defeats Beta, its evaluation 

function is considered as the stabilized final version. After this learning procedure, the 

final program can play a reasonably good game of checkers. 

As one of the first machine learning examples, Samuel’s procedure is a milestone 

in automatic evaluation function construction. But as Lee et al pointed out in [27], it is 

based on several incorrect assumptions. First, it incorrectly assumes that all features in 

the evaluation function are independent, so it cannot capture the relationships between 

features. Second, it assumes that all the inaccurate evaluations are caused by the 

evaluation function, while sometimes the real reason is the limited horizon of the search. 

Third, it assumes that when the evaluation function is overly optimistic, the problem must 

come from positive features. This is clearly incorrect because it may be due to negative 

features are not negative enough. Finally, it assumes that Alpha’s evaluation must be 

better than Beta’s if player Alpha beats Beta. But when both two programs are naive, a 

win may be the result of luck or the opponent’s errors. 
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3.3.1.2 Nonlinear evaluation learning through book moves 

In order to cope with these incorrect assumptions, Samuel introduces a new 

procedure to construct nonlinear evaluation functions through book moves in [29]. 

To handle nonlinear interactions among features, Samuel devised signature tables. 

These are multi-dimensional tables where each dimension is indexed by the value of 

some feature. For each game position, the table cell indexed by its feature values contains 

the corresponding evaluation value. Samuel collected 24 features for the game of 

Checkers. Obviously applying this scheme directly could result in an impractically large 

table. Samuel dealt with this problem using two methods. First, he organized the tables 

using a three-level hierarchical organization. At the first level, each table combines four 

features, and only interactions between those four features are considered. Each table in 

level one or two produces a value to index into tables in the higher level. Furthermore, 

Samuel restricted the feature values to (-1,0,1) or (-2,-1,0,1,2). This results in a final 

configuration with a reasonable number of cells.  

To avoid the incorrect assumptions in self-play, Samuel used book moves to train 

these cells. He collected a “book” of board positions and the corresponding moves played 

by human masters. For each cell, he counted how many times the corresponding feature 

combination was chosen in book moves, A, and how many times the corresponding 

combination was a legal move but was not chosen in book moves, D.  The cell value was 

then evaluated as (A-D)/(A+D).  

According to Samuel’s experiments, signature table learning through book moves 

substantially outperformed the self-play learning procedure. But there are a number of 

new problems with this approach. First, this approach is based on a problematic 
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assumption that no other moves are as good as or better than book moves. Second, 

restricting feature values causes some smoothness problems. Finally, the higher-level 

signature tables cannot handle inter-table correlations. So the correlated features must be 

arranged into the same group at the first level.  

As a result, Samuel’s procedure needs excessive human tuning. The implementer 

has to put a lot of effort in determining how to restrict the feature values and arranging 

the structure of signature tables. This is undesirable since the learning procedure may be 

affected by human errors. In the next section, we will introduce another approach to 

evaluation function learning, which is exempt from weary and dangerous human 

intervention.  

 

3.3.2 A pattern classification approach based on Bayesian learning 

In this section, we will introduce a pattern classification approach to evaluation 

function learning, which was first introduced by Lee et al in [27]. Unlike Samuel’s 

approaches, it is based on Bayesian learning, and can be easily applied to different 

domains. First, we give a brief introduction for Bayesian learning. After that, its 

applications to evaluation function learning will be described in detail. 

 
3.3.2.1 Bayesian learning 

Bayesian reasoning provides a way to encode probability relationships among 

variables of interests. Over the last decade, Bayesian learning has become a popular 

representation for learning uncertain knowledge in expert systems [29]. A Bayesian 

model can be used to learn causal relationships, and hence can be used to gain 
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understanding about a problem domain and to predict the consequences of intervention; it 

is ideal for combining prior knowledge (which often comes in causal form) with data.  

Bayes’ theorem is the cornerstone of Bayesian learning methods. Before defining 

Bayes’ theorem, let’s first introduce some basic notation. h  is a hypothesis, for instance, 

the hypothesis that a board is a wining or losing position. The Prior probability )(hp  is 

the initial probability that h  holds. )(hp may give us information about the chance that h  

is a correct hypothesis. x is a new data set. )(xp is the probability that x  will be observed. 

)|( hxp denotes the probability of observing data x given h . From a large number of 

training data sets, p(x) and p(x|h) can be estimated correctly. In Bayesian learning, our 

object is to classify the new instance x, i.e., calculate the posteriori probability )|( xhp . 

Bayes’ theorem provides a direct way to do this. 

 
)(

)()|(
)|(

xp

hphxp
xhp =        (1) 

Sometimes we are only interested in finding the maximum a posteriori (MAP) 

hypothesis MAPh  from the various candidates in a set of hypotheses, H. The MAP 

hypothesis can be determined by using Bayes’ theorem to calculate the posterior 

probability of each candidate hypothesis. To simply the calculation, we usually ignore the 

term p(x) because it is independent of h. So we have  

)()|(maxarg hphxph
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MAP
∈

=        (2) 

Applying log to both sides of equation (2), we get the discriminant 

function )(xgh : 

)(log)|(loglog)( hphxphxg MAPh +==      (3) 
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During the training stage, a number of training samples are evaluated. Each 

training sample is evaluated to a feature vector and classified to a hypothesis. For a 

hypothesis h, the corresponding mean vector hµ and variance-covariance matrix hV can be 

estimated as the following: 

∑
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where hN denotes the total number of training samples for hypothesis h, and ix  denotes 

the feature vector of the thi sample in h hypothesis. 

Let us assume the distribution of the features is multivariate normal. Then the 

density function p(x|h) can be written as a function of hµ and hV as:  
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Substituting (6) into (3), we have: 
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Furthermore, the posterior probability p(h|x) can be derived by 

normalizing )(xgh : 

  
∑

=
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3.3.2.2 Evaluation function learning 

 Based on Bayesian Learning, Lee et al introduce a new learning algorithm for 

evaluation function construction in [27]. They use the game of Othello as their test 
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domain and dramatically improve an Othello program BILL2.0 that has performed at the 

world championship level. Like Bayesian learning, this approach also includes two 

stages: training and recognition.  

 In the training stage, a database of labeled training positions is required. Lee et al 

took these positions from actual games generated from BILL 2.0’s self-play. All positions 

of the winning player were labeled as winning positions, and all positions of the losing 

player as losing positions. Of course, positions might be mislabeled, e.g., that Bill lost 

from a position in which an optimal player would win. First, although BILL2.0 was still 

using a linear evaluation function, it had been carefully tuned and it was a world-

championship-level player. Furthermore, the initial position of each game was generated 

by 20 random moves, after which the player that is ahead usually goes on to win the 

game. 

 To obtain the training positions, two copies of BILL2.0 are used to play with each 

other from initial positions. The initial positions were generated by 20 random moves. 

After that, each side played the remaining 40 half-moves in 15 minutes and the last 15 

moves were played using perfect endgame search. A total of 3000 games were played 

and their positions were recorded as training data.  

 For each training board, the four features were calculated and represented as a 

feature vector. Then, the mean vectors and covariance matrices for both categories, 

winning and losing, could be estimated. In the game of Othello, different strategies 

should be used for different stages of the game. Lee et al defined a stage as the number of 

discs on the board. For a stage with N discs, they used training positions with N-2, N-1, 

N, N+1, and N+2 discs to generate a corresponding discriminant function. Using a series 
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of slowly varying discriminant functions, the evaluation function provides a fine measure 

of game positions for different stages.   

 To recognize a new position, we first compute the features and combine them to 

form the feature vector, x. Then we can evaluate the position by substituting x into the 

final evaluation function. From (7), we know that the discriminant functions for winning 

and losing position are: 
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Since the final evaluation function should determine the possibility of winning, it 

is defined as: 

losswin
loss

win gg
P
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 Substituting (9) and (10) into (11), Lee et al. give the final evaluation function: 
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Note )(log winp and )(log lossp are cancelled here. The reason is that the possibilities of 

winning and losing are equal since we use the same program play against each other.  

Sometimes we might want to print out some useful search information for 

humans. In that case, the probability of winning is a more meaningful. It can be derived 

from g(x) as the following: 
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Using the final evaluation function (12) and the same four features as BILL2.0, a 

new version, BILL 3.0, was created. As we mentioned above, BILL2.0, which is using a 

linear evaluation function, already played at world-championship level. But surprisingly, 

dramatic improvements could still be observed in BILL3.0. Lee et al used three ways to 

comparing BILL2.0 and BILL3.0: (1) having the two versions of the program play 

against each other, (2) comparing their solutions for endgame problems with the known 

solution, (3) having the two versions of program play against human experts. In all three 

experiments, the results favored BILL3.0, which use the new evaluation function 

constructed by Bayesian learning. 

 Although Lee et al focus on applying Bayesian learning to the game of Othello, 

their approach may also be applicable to other games and search-based applications. In 

next chapter, we will apply Bayesian learning to our Amazons program—Mulan. 

 
3.4 Conclusion 

In this chapter, we first described three popular evaluation features of the game of 

Amazons. Furthermore, some automatic evaluation function construction methods and 

their applications in Checkers and Othello were introduced.  

There are two interesting questions left in this chapter. The first one is how 

important these features are in position evaluation. The second one is whether we can 

apply Bayesian learning to the game of Amazons effectively. In the next chapter, we will 

use a series of experiments to answer these two questions.  
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CHAPTER 4 EXPERIMENTAL RESULTS 

 

In this section, we discuss how we implemented and compared some popular 

Alpha-Beta enhancements and forward pruning algorithms using Mulan. Furthermore, we 

implemented and compared three existing features used for Amazons and four new 

features we developed. Starting with three features which gained the best results in our 

experiments, we combined them to form an evaluation function using two methods: 1) 

linear combination using tournaments; 2) a pattern classification approach based on 

Bayesian learning.  

 
4.1 Performances of Alpha-Beta Enhancements 

In chapter 2, we discussed several important Alpha-Beta enhancements. All of 

them have been proved to be useful Alpha-Beta refinements. However, their performance 

is game- and implementation-dependent. For Chess, a variety of studies have been 

performed investigating their relative performance. But for Amazons, no one seems to 

know how effective they are. In this section, we will try different combinations of 

enhancements to find out which combination performs best in Amazons.  

 

4.1.1 Implementation 

The implementations of these enhancements vary for different games. For each 

enhancement, many strategies have been developed over the years. Finding the best 

strategy for Amazons is a challenge. Here we briefly describe our implementations in 

Mulan. 
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a) Transposition Tables 

There are some interesting thoughts about implementing a Transposition Table for 

Amazons. As we mentioned in Chapter 2, a previous search and evaluation can be reused 

in two ways: 1) If the previous search on the position is at least the desired depth, then 

the corresponding score can be used to narrow the search window. 2) When the previous 

search is not deep enough, the corresponding best move can be retrieved and tried first. 

In Amazons, the number of “burnt” squares increases by one every move, so a 

given position can only occur at a fixed depth in the game. This dramatically reduces the 

occurrence of Transpositions, so most of the performance gained by using the 

Transposition Table is a result of reordering the moves. This is especially helpful for 

iterative deepening, where the interior nodes will be re-visited repeatedly. But as the 

previous searches of re-visited positions are always not deep enough, keeping the 

previous upper and lower bound in the Transposition Table is useless. So when no 

minimal window search enhancement is applied, we can simplify the Transposition Table 

and only save the best move from the previous search for the position. 

On the other hand, when a minimal window search enhancement is used, re-visits 

of positions at the same depth is common. To reduce the overhead of re-searching, we 

need to use the previous search score to narrow the search window. So in this case, 

storing the previous upper and lower bound makes sense. Table 4.1 shows the useful 

information in each entry of the hash table. Figure 4.1 contains pseudo-code showing 

how we implement the Transposition Table in Alpha-Beta search. 
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pos 
the information of the position, used to distinct 

different positions with the same hash key. 

depth 
the effective subtree height of the previous 

search, depth < 0 if the entry is empty. 

upper upper bound of the subtree 

lower lower bound of the subtree 

move the best move determined 

 

Table 4.1 Fields for the Transposition Table Entry 
 

      // pos : current board position 

      // d: search depth 

      // alpha: lower bound of expected value of the tree 

      // beta: upper bound of expected value of the tree 

      // Search game tree to given depth, and return evaluation of root. 

      int AlphaBeta(pos, d, alpha, beta) {   

retrieve(pos, depth, upper, lower, move); 

orgAlpha = alpha; 

if (depth >= d) { 

      if (upper <= alpha || upper == lower) 

return upper; 

      if (lower >= beta)  

 return lower; 

      if (lower > alpha) 

 orgAlpha = alpha = lower; 

      if (upper < beta) 

 beta = upper; 

} 

if (d=0 || game is over)  
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      return Eval (pos);    // evaluate leaf position from current player’s standpoint 

score = - INFINITY;   // preset return value 

 

Make(move);     // try the previous best move first. 

//call other player, and switch sign of returned value 

cur = - AlphaBeta(pos, d-1, -beta, -alpha); 

// compare returned value and score value, note new best score if necessary 

if (cur > score) score = cur; 

if (score > alpha) alpha = score;   //adjust the search window 

Undo(moves[i]);   // retract current move 

if (alpha >= beta) goto End;   // cut off 

  

moves = Generate(pos);  // generate successor moves 

for i =1 to sizeof(moves) do  { // look over all moves 

      Make(moves[i]);    // execute current move 

      //call other player, and switch sign of returned value 

      cur = - AlphaBeta(pos, d-1, -beta, -alpha);  

      //compare returned value and score value, note new best score if necessary 

      if (cur > score) score = cur; 

      if (score > alpha) alpha = score;   //adjust the search window 

      Undo(moves[i]);   // retract current move 

      if (alpha >= beta) goto End;   // cut off 

} 

End: 

      upper = +INFINITY; 

      lower = -INFINITY; 

      if (max <= orgAlpha) 

 upper = max; 

      if (max > orgAlpha && max < beta) 

 upper = lower = max; 

      if (max >= beta) 
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lower = max; 

      store(pos, depth, upper, lower, move); 

return score; 

      } 

Figure 4.1 Alpha-Beta Search with Transposition Tables 
 

The most popular hash key generation function for Transposition Tables is the 

well-known Zobrist method [13]. However, this method didn’t consider the increasing 

burnt squares in Amazons. In Mulan, we use the method proposed by Terry Van Belle to 

represent the board and generate the hash key. We represent the Amazons game board as 

two 10*10 bit matrices called “piece” and “type”. The representation is as follows: 

   piece     type    square value 

   0          0         empty 

      0          1         burnt 

     1          0         white 

      1          1         black 

 For simplicity and speed, we use an unsigned integer array whose size is 10 to 

represent each 10*10 bit matrix and use bit operations to access the specific bit. The 

index of the position is produced by the following function: 

  for (t = piece, p = type; t < piece+10; t++, p++) { 

hash <<= 1; 

  hash ^= (*p | (*t << 10)); 

  } 
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Now that hash key generation function enables rapid access to the Transposition 

Table, we need to choose a good replacement scheme to handle another problem - 

collisions.  

Unlike a normal hash table, saving all visited positions in the Transposition Table 

is impossible, so our Transposition Table always replaces the old position in the table 

when a collision occurs. This is because most re-visited positions are met locally, the new 

positions is more useful than the old one. This simple replacement scheme also simplifies 

the table access to a single probe. Many elaborate schemes have been proposed and tested 

[14]. Some of them do improve the table usage, but the cost of the increased complexity 

undermines the improvement of total performance. So in our experiment, we didn’t 

repeat these schemes.  

As we mentioned before, trying the best move determined by the previous 

iteration first can reduce the game search tree significantly. One interesting question is 

that if we try both the best and the second best move first, can we further improve the 

efficiency of the algorithm? To answer this question, we tried another type of 

Transposition Table which keeps both the best and the second best moves determined by 

the previous iteration. 

 
b) Killer Heuristic 

We use the moves saved while determining the principal continuation to serve as 

a killer list. Here the term principal continuation denotes the best sequence of moves 

found by the game tree search procedure. During the development of the principal 

continuation, we can gather the PRINC array. A move enters the PRINC array only if it 

can improve the provisional score of a node. Hence, the PRINC array maintains moves 
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that seem to cause the most cutoffs at each depth. The detailed description about how to 

generate and update the PRINC array can be found in [17].  

Many strategies have been developed to find killer moves in the PRINC array. 

The strategy used in Mulan is to compare all the relevant moves in PRINC. For example, 

suppose the PRINC array is as follows: 

 mv1 mv2 mv3 mv4 mv5 mv6 

  mv7 mv8 mv9 mv10 mv11 

   mv12 mv13 mv14 mv15 

    mv16 mv17 mv18 

     mv19 mv20 

      mv21 

and the search has arrived at a node n in ply 2. Then all moves generated at n will be 

compared with elements mv3, mv5, mv8, mv10, mv12, mv14, mv17 and mv19. When 

matches are found, the moves will be reordered and the matching moves will be moved to 

the top of the move list.  

To use the information obtained from iterative deepening, we keep two copies of 

the PRINC array: PrincCur and PrincPre. Until the current search iteration is as deep as 

the previous one, we use the information gotten from the previous iteration to sort the 

moves.  

 
 c) History Heuristic 

We illustrated how to implement the history heuristic in the alpha-beta algorithm 

in Chapter 2. But two questions remain for the implementation of the history heuristic in 

Amzons. The first one is how to map moves to the index in the history table.  For 
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Amazons, we use a method similar to [33]. We divide a move into two separate parts, the 

queen move and the arrow move. So all queen moves can be fixed in a 10*10*10*10 

array, whose index is generated by locations of from-square and to-square. Similarly, a 

10*10 array is used for arrow moves. 

The other question is how to weight results obtained from different search depths. 

For two reasons, we use d2 , as suggested by Schaeffer [18], as the weight in our 

program: first, we should heavily weight a higher score for successful moves on deeper 

searches, and second, we should heavily weight a higher score for successful moves near 

the root of the tree. 

A well-known problem of the history heuristic is that a good move at the current 

stage may be overshadowed by its previous bad history. To overcome this problem, we 

divide all history scores by 2 before every new search. 

 
d) Minimal Window Search 

The “grain” of the evaluation value affects the effect of minimal window search 

significantly. This is even more obvious for MTD(f). The coarser the “grain”, the less 

passes MTD(f) has to make. Unfortunately we use a very fine-grained of the evaluation 

function in Mulan, where the value of a position ranges from –1000 to +1000. With this 

evaluation function, MTD(f) has to use hundreds of passes to converge to the minimax 

value. This is impractical even with a Transposition Table to reduce the overhead. To 

reduce the passes to a reasonable number, we increase the step size of every pass to 50 in 

our implementation. 

In MTD(f), the first guess of the expected minimal value is related to the size of 

the search tree. The better this first guess is, the fewer minimal searches are needed. In 
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iterative deepening, the new iteration typically uses the result of the previous iteration as 

its best guess. But in Amazons, the values found at odd and even search depths vary 

considerably. So if the return value of two plies before is available, we use it as the first 

guess of the current iteration. Otherwise we use 0 instead. 

 

4.1.2 Experimental design 

The popular way to assess various enhancements are trying all possible 

combinations of the enhancements on a set of positions and comparing their relative 

performance. For example, the standard Bratko-Kopec positions [30], which have an 

average branch factor of 34, have been used extensively as test positions for chess 

programs. But for Amazons, people still don’t know what the best test positions are yet.  

In our experiment, we use Mulan to generate the test positions through self-play. 

First, we selected 30 best positions from the opening book. Then for each selected initial 

position, we set two copies of Mulan to play with one another. The search depth of each 

stage is set to the most “practical” number, i.e. the deepest depth Mulan can search in the 

tournament. For each intermediate game position met during self-play, we try all possible 

combinations of the enhancements and compare their relative performance. 

There are two obvious advantages of our approach. First, the test positions used in 

the experiments are practical positions for Amazons that actually arise in play. Second, 

we compare the performance of different enhancements at the most useful search depth. 

Other researchers tend to use the same set of test positions to test the performance of 

different depths of search. In Amazons, a deep search in the early stage is impossible 

because of the huge branching factor. On the other hand, comparing the performance of a 
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shallow search in the middle and endgame stages is of no use because we can search 

them in a deeper depth in practical. Our approach avoided these problems by comparing 

the performance at the deepest depth the search can finish in the tournament. Table 4.2 

lists the corresponding search depth used for different stages of the game (given as the 

number of move).  

 

step 1-14 15-44 45-49 50-54 55-64 65-70 

depth 2 3 4 5 6 7 

 

Table 4.2 Search depths for different stages 
 

Two measures are used to compare search algorithm performance. One is the 

amount of CPU time required for the search. Practically, this seems to be the most useful 

measure. However, the execution time of the various enhancements is machine- and 

implementation-dependent. The other measure used is the number of leaf nodes (also 

called bottom positions) visited (LN). It assumes evaluating these nodes is usually more 

expensive than evaluating the interior nodes. In Amazons, this assumption is true since 

the relatively expensive evaluation function is applied only to the bottom positions.  We 

use this measurement to assess various enhancements in theory.  

 

4.1.3 Experiment results 

a) Notation 

In this chapter, we use one or two capitals to denote each enhancement. Typically 

it is the first letter of the name of the enhancement. So MTD(f), NegaScout, AlphaBeta, 
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Iterative Deepening, Transposition Table, Transposition Table with two best moves, 

Killer Heuristic and History Heuristic are denoted as M, N, A, I, T, TT, K and H 

respectively. Similarly, the different combinations of enhancements can be denoted as a 

series of capitals.  For example, MTKH means the MTD(f) algorithm with Transposition 

Table, Killer Heuristic and History Heuristic.  

 
b) Results and Interpretations 

Our experiments compared the performance of MTD(f), NegaScout, and 

AlphaBeta with different combinations of Iterative Deepening, Transposition Table, 

Killer heuristic and History Heuristic.  

Iterative deepening is a very good time control mechanism for game tree search, 

but it wastes some amount of time on previous iterations. Figure 4.2 and Table 4.3 

compare the relative time and leaf nodes visited between iterative deepening and direct 

search if we don’t use previous iteration to order moves. In fact, we found that even 

without using the results of previous searches to order moves, the amount of time/leaf 

nodes in previous searches is only a small fraction of the total time/leaf nodes. So we 

used Iterative Deepening in all our experiments. 

Figure 4.3 and Table 4.4 show that the average width (branching factor) of the 

game tree in Amazons decreases quickly as the game proceeds. At step 5, A and AITKH 

generate search trees whose nodes have an average width of 386.97 and 322.70 

respectively. But at step 70, the average widths drop to 7.95 and 7.41 respectively, since 

the number of possible moves decreases when more and more squares are burnt. This 

also explains why we can’t use the same set of test positions to test the performance of 

different search depths.  
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Tables 4.5 - 4.10 and Figure 4.4 - 4.9 illustrate the effect of different enhancement 

combinations in AlphaBeta, MTD(f) and NegaScout. These graphs show that: 

a) The percentage improvements contributed by all enhancement combinations 

seem to be highest in the middle game.  There are two reasons for this. The 

first is that at the beginning of the game, the search depth that can be reached 

is too shallow because of the huge branching factor. According to the result in 

Chess [11], the improvement of enhancements is typically not very obvious for 

a shallow search. A second reason is that the branching factor is too small in 

the endgame of Amazons and the enhancements typically work better for a 

bushy game tree. 

b) The relative performances of CPU time and leaf nodes visited are very similar. 

This indicates the practical enhancement’s performance is identical with the 

theory one in Amazons. 

c) Figure 4.5 and Table 4.6 indicate that the number of leaf nodes visited 

decreases slightly when we use a Transposition Table that keeps the two best 

moves instead of only the best move.  This implies that keeping two best 

moves in the Transposition Table can further improve the move order. But the 

cost of the increased complexity undermines the improvement of whole 

performance. From Figure 4.5 and Table 4.5, we can observe that the original 

Transposition Table is superior to the one with two best moves in total CPU 

time. 

d)  The killer moves have a good performance in Amazons. Actually, it seems to 

be the best enhancement we tested. The killer heuristic is a popular AlphaBeta 
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enhancement, but its effectiveness has been questioned. In Chess, Hyatt 

observed as much as 80% reductions [32] in search time, whereas Gillogly 

claimed no benefits [31]. In our experiment, we observed up to 90% 

reductions in the middle game of Amazons. 

e) Sometimes using two enhancements can only provide a small improvement 

compared with a single enhancement. For example, Figures 4.4 and 4.5 show 

that ATK does not significantly improve the performance of AK. There are 

two reasons for this. First, different enhancements may improve the move 

order in a similar way. For example, part of the improvement of the Killer 

heuristic comes from trying the previous iteration’s best moves first, which is 

also the major reason to use the Transposition Table. Another reason is that 

when applying several enhancements at the same time, the enhancement 

applied later may reorder the move sequence suggested by previous 

enhancements. For example, the History Heuristic may indicate some moves 

we should try first while Killer Heuristic says other moves are more important.  

So we have to decide which enhancement should have higher priority.  Our 

priority sequence is Transposition Table, then the Killer heuristic, and finally 

the History heuristic. 

f) In all three algorithms, AlphaBeta, MTD(f) and NegaScout, the combination 

of TKH provides the biggest overall improvement. 

As we discussed in Chapter 2, MTD(f) and NegaScout are actually two kinds of 

Alpha-Beta variants derived from minimal window search. Figure 4.10 and 4.11 compare 
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the performance of these two variants with the standard AlphaBeta algorithm. These two 

graphs show: 

a) The performance of MTD(f) is unstable. One possible reason is that MTD(f) 

is sensitive to the “grain” of the evaluation value. We adjusted the step size of 

MTD(f) to reduce this problem. But in Amazons, the range of the evaluation 

function can differ dramatically in different positions. Although we adjust the 

step size of MTD(f) for best overall performance, it is impossible to find a 

step size which works well in all positions, especially when the positions are 

from different stages of the game.  

b) The performance of NegaScout is very stable and slightly superior to the 

performance of the standard AlphaBeta search.  

Finally, we find out the combination of NegaScout, Iterative Deepening, 

Transposition Table, Killer Heuristic and History Heuristic is the combination of 

enhancements with the best overall performance in Amazons. 
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Figure 4.2 Comparison of Iterative Deepening and direct search 
 
 
 

 
A 

(Leaf 
Nodes) 

AI 
(Leaf 

Nodes) 

AI/A 
(Leaf 

Nodes) 

A 
(Time) 

AI 
(Time) 

AI/A 
(Time) 

Step5 (ply 2) 149743 151260 1.01 2.16 2.18 1.01 

Step25 (ply 3) 1675468 1693933 1.01 33.90 34.03 1.00 

Step45 (ply 4) 1127314 1186022 1.05 25.65 27.02 1.05 

Step54 (ply 5) 1076793 1160188 1.08 23.88 25.81 1.08 

Step56 (ply 6) 1541367 1886262 1.22 33.24 40.45 1.22 

Step70 (ply 7) 2009315 2149421 1.07 33.59 35.33 1.05 

 
 

Table 4.3 Comparison of Iterative Deepening and direct search 
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Figure 4.3 branching factor of different stages of Amazons 

 
 

 

 
A 

(Leaf Nodes 
Visited) 

A 
(branching factor) 

AITKH 
(Leaf Nodes 

Visited) 

AITKH 
(branching factor) 

Step5 (ply 2) 149743 386.97 104137 322.70 

Step25 (ply 3) 1675468 118.77 347858 70.33 

Step45 (ply 4) 1127314 32.58 64231 15.92 

Step54 (ply 5) 1076793 16.09 155348 10.92 

Step56 (ply 6) 1541367 10.75 436634 8.71 

Step70 (ply 7) 2009315 7.95 1228785 7.41 

 
 

Table 4.4 branching factor of different stages of Amazons 
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Figure 4.4 Time Comparison of Enhancements in Alpha-Beta 
 
 
 

 

 A AI AIT AIK AIH AITT 

Step5 (ply 2) 149743 151260 112117 112074 122657 98638 

Step25 (ply 3) 1675468 1693933 1400047 482021 758272 1378788 

Step45 (ply 4) 1127314 1186022 476202 107867 146210 402873 

Step54 (ply 5) 1076793 1160188 563325 172109 232256 569329 

Step56 (ply 6) 1541367 1886262 1127316 613480 910796 1190450 

Step70 (ply 7) 2009315 2149421 2086921 1232130 1991488 2142105 

 
Table 4.5 Time Comparison of Enhancements in Alpha-Beta 
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 AITK AITH AIKH AITKH 

Step5 (ply 2) 112074 104351 104137 104137 

Step25 (ply 3) 479419 647056 352565 347858 

Step45 (ply 4) 99375 116292 67262 64231 

Step54 (ply 5) 161854 214561 157291 155348 

Step56 (ply 6) 437070 719316 454454 436634 

Step70 (ply 7) 1230427 1897285 1247210 1228785 

 
Table 4.5 (cont.) 
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Figure 4.5 Leaf Nodes Visited Comparison of Enhancements in Alpha-Beta 
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 A AI AIT AIK AIH AITT 

Step5 (ply 2) 2.16 2.18 1.69 1.64 1.80 2.13 

Step25 (ply 3) 33.90 34.03 28.83 9.65 15.42 28.40 

Step45 (ply 4) 25.65 27.02 11.87 3.25 3.67 10.04 

Step54 (ply 5) 23.88 25.81 13.07 3.39 4.85 13.21 

Step56 (ply 6) 33.24 40.45 23.03 11.93 17.32 24.69 

Step70 (ply 7) 33.59 35.33 35.12 22.63 32.75 36.06 

 
Table 4.6 Leaf Nodes Visited Comparison of Enhancements in Alpha-Beta 

 
 

 AITK AITH AIKH AITKH 

Step5 (ply 2) 1.77 1.70 1.55 1.75 

Step25 (ply 3) 9.82 13.84 7.44 7.47 

Step45 (ply 4) 2.57 2.99 1.77 1.73 

Step54 (ply 5) 3.85 5.64 4.54 3.98 

Step56 (ply 6) 8.73 16.92 10.74 10.95 

Step70 (ply 7) 30.79 34.18 26.48 23.27 

 

Table 4.1.6 (cont.) 
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Figure 4.6 Time Comparison of Enhancements in MTD(f) 

 
 

 
Table 4.7 Time Comparison of Enhancements in MTD(f) 

 

 AI MI MIT MIK MIH 

Step5 (ply 2) 149743 179280 179280 183513 243824 

Step25 (ply 3) 1675468 1869969 1246754 558288 772309 

Step45 (ply 4) 1127314 1266889 500658 129719 179579 

Step54 (ply 5) 1076793 1313729 390552 175417 222649 

Step56 (ply 6) 1541367 1627051 852528 578470 854116 

Step70 (ply 7) 2009315 1452229 1241227 1242644 1244619 
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 MITT MITK MITH MIKH 

Step5 (ply 2) 174241 179255 171411 175418 

Step25 (ply 3) 1245520 516197 581063 397394 

Step45 (ply 4) 467254 107886 98395 81700 

Step54 (ply 5) 386729 150801 167412 158936 

Step56 (ply 6) 891421 394445 531011 587735 

Step70 (ply 7) 1241250 1065398 953918 1258596 

 
Table 4.7 (cont.) 
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Figure 4.7 Leaf Nodes Visited Comparison of Enhancements in MTD(f) 
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 AI MI MIT MIK MIH MITT 

Step5 (ply 2) 2.18 3.97 2.82 2.80 3.71 2.77 

Step25 (ply 3) 34.03 37.62 26.28 11.22 15.67 25.67 

Step45 (ply 4) 27.02 28.79 12.39 3.18 4.53 11.49 

Step54 (ply 5) 25.81 31.24 9.41 3.47 4.59 9.34 

Step56 (ply 6) 40.45 34.59 18.88 11.62 16.31 19.26 

Step70 (ply 7) 35.33 24.47 21.56 20.86 21.75 21.49 

 
Table 4.8 Leaf Nodes Visited Comparison of Enhancements in MTD(f) 

 
 
 

 MITK MITH MIKH MITKH 

Step5 (ply 2) 2.89 2.85 2.95 2.73 

Step25 (ply 3) 11.38 12.51 8.41 8.01 

Step45 (ply 4) 2.73 2.61 2.12 1.61 

Step54 (ply 5) 3.83 3.53 3.96 3.01 

Step56 (ply 6) 9.57 11.26 11.87 8.78 

Step70 (ply 7) 26.29 22.39 23.62 16.72 

 
Table 4.8 (cont.) 
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Figure 4.8 Time Comparison of Enhancements in NegaScout 

 
 
 
 

 AI NI NIT NIK NIH 

Step5 (ply 2) 149743 151260 112117 112074 122657 

Step25 (ply 3) 1675468 1035430 893798 412064 503388 

Step45 (ply 4) 1127314 1026527 405539 114937 158432 

Step54 (ply 5) 1076793 565390 331563 162472 200586 

Step56 (ply 6) 1541367 1602767 753652 556758 705649 

Step70 (ply 7) 2009315 1419900 1215287 1232113 1261702 

 
Table 4.9 Time Comparison of Enhancements in NegaScout 
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 NITT NITK NITH NIKH NITKH 

Step5 (ply 2) 98638 112074 104351 104137 104137 

Step25 (ply 3) 883401 406703 436909 298870 293637 

Step45 (ply 4) 329653 94275 94438 67032 54032 

Step54 (ply 5) 331422 146135 149789 151816 134591 

Step56 (ply 6) 796063 389368 462122 465399 370562 

Step70 (ply 7) 1214670 1050597 955325 1242209 947140 

 
Table 4.9 (cont.) 
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Figure 4.9 Leaf Nodes Visited Comparison of Enhancements in NegaScout 

 
 
 
 
 



 67

 

 AI NI NIT NIK NIH 

Step5 (ply 2) 2.18 2.18 1.69 1.66 1.81 

Step25 (ply 3) 34.03 20.87 19.05 8.90 10.24 

Step45 (ply 4) 27.02 23.29 10.11 2.83 3.98 

Step54 (ply 5) 25.81 13.78 8.43 3.21 4.15 

Step56 (ply 6) 40.45 32.49 15.50 10.78 13.34 

Step70 (ply 7) 35.33 23.97 22.32 20.69 21.53 

 
Table 4.10 Leaf Nodes Visited Comparison of Enhancements in NegaScout 

 
 

 NITT NITK NITH NIKH NITKH 

Step5 (ply 2) 1.51 1.78 1.60 1.60 1.64 

Step25 (ply 3) 18.25 8.50 9.42 6.55 6.13 

Step45 (ply 4) 8.82 2.40 2.52 1.73 1.45 

Step54 (ply 5) 9.10 3.71 3.86 3.18 2.88 

Step56 (ply 6) 17.32 9.08 9.92 11.04 8.19 

Step70 (ply 7) 21.11 18.13 16.58 23.32 19.19 

 
Table 4.10 (cont.) 
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Figure 4.10 Time Comparison of Minimal Window Search 

 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8

search depth (ply)

%

MI NI AITKH MITKH NITKH AI
 

 
Figure 4.11 Leaf Nodes Visited Comparison of Minimal Window Search 
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4.2 N-Best Selective Search versus Alpha-Beta with Enhancements  

As we discuss in Chapter 2, N-Best selective search [16] considers only the N-

Best moves at each node, so it can explore the bushy game tree more deeply. This 

heuristic is error prone, since sometimes the best move is excluded because of the 

horizon effect. Despite this disadvantage, N-Best is still a popular search technique, since 

it can reduce the tree size dramatically, making it even smaller than the minimal Alpha-

Beta game tree.  

 

4.2.1 Implementation 

To reduce the possibility of cutting off the best move, we use the board evaluation 

values as the criterion to select promising positions. Two kinds of N-best selective search 

are implemented. One divides a move into two separated operations: queen-move and 

arrow-move. For each node, N promising queen-moves are selected first, and then M 

favorable arrow-locations are determined for each queen-move. The other one simply 

selects F promising moves (combinations of queen-move and arrow-move). for each 

node. In both of them, we sort the selected moves in descending order of evaluation 

values. 

 

4.2.2 Experiment design 

We use two experiments to find out which kind of N-best selective search is better 

and what is the best selective factor.   

The first one is based on comparing the performance of different selective 

searches on the same test positions. We use a method similar to the one we used in 
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section 4.1 to generate the test positions; the only difference is that this time we use 150 

initial positions from the opening book. Table 4.11 lists the corresponding search depth 

used for different stages. For each intermediate game position, we compare different 

selective searches with the best combination of enhancements, NITKH. The comparison 

statistics include speed-up and how close the value gotten from selective search is to the 

correct value. This experiment helps us to understand the performance of different 

selective searches in different stage of the game.  

 

step 1-14 15-44 45-49 50-54 55-64 65-70 

depth 2 3 4 5 6 7 

 
Table 4.11 Search Depths for Different Stages 

 
 

Another experiment is playing a tournament to determine the optimal selective 

factor. Starting with 75 initial positions from the opening book, 150 games are played 

between the non-selective program and each version of the selective program under 

normal tournament conditions-30 seconds per move. The optimal selective factor is the 

one used in the version with the highest winning score. This experiment can determine 

the most practical selective factor.  

 

4.1.3 Experimental results 

Table 4.12 lists some statistics about different selective searches on the test 

positions. These statistics show that: 
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a) In Amazons, selective searches have good speed-up on the early stage. But 

during the middle and the endgame, the overhead of selective search becomes 

worse. After step 55, N-selective search is not practical in Amazons anymore.  

b) Dividing a move into two separate operations (queen-move and arrow-move) 

is not a good idea for selective search in Amazons. Though this approach can 

further reduce the size of the game tree, the chance of cutting off decisive 

variations during move selection increases. Comparing statistics of F=20 with 

N=10 and M=6, we find that the former gets greater speed-up and accuracy. 

c) The selective search F=40 seems to be the optimal selective factor, since it 

balances speed-up with accuracy. 

Since we proved that N-Best search is not practical during the endgame of 

Amazons, all versions of the selective program here will change to use NITKH after 

move 55 during a tournament.  Table 4.13 shows the tournament results from the point of 

view of the selective programs. The best winning percentage is 69%, which proved that 

F=40 seems to be the optimal selective factor. 

 

NITKH Selective Search (F=20) 
Step (Ply) CPU 

Time 
Speed-

up 
Same 
Move 

Same 
Value 

+/- 2 +/- 5 +/- 10 

Step5 (Ply 2) 6.93  8.45 75% 81% 81% 83% 88% 

Step25 (Ply 3) 25.07  12.78 56% 55% 59% 59% 65% 

Step45 (Ply 4) 5.01  3.10 73% 78% 79% 79% 81% 

Step50 (Ply 5) 17.26  4.01 66% 89% 89% 90% 91% 

Step54 (Ply 5) 9.09  2.13 66% 97% 97% 97% 97% 

Step55 (Ply 6) 17.09  0.44 69% 99% 99% 99% 99% 

 
Table 4.12 Comparison of N-best Searches and Brute-Force (NITKH) 
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NITKH Selective Search (F=30) 
Step (Ply) CPU 

Time 
Speed-

up 
Same 
Move 

Same 
Value 

+/- 2 +/- 5 +/- 10 

Step5 (Ply 2) 6.93  6.83 83% 89% 89% 91% 96% 

Step25 (Ply 3) 25.07  8.78 64% 65% 65% 65% 71% 

Step45 (Ply 4) 5.01  2.07 80% 88% 89% 89% 89% 

Step50 (Ply 5) 17.26  2.02 67% 93% 93% 95% 95% 

Step54 (Ply 5) 9.09  1.46 67% 97% 97% 97% 97% 

Step55 (Ply 6) 17.09  0.36 69% 99% 99% 99% 99% 

 
Table 4.12 (cont.) 

 

NITKH Selective Search (F=40) 
Step (Ply) CPU 

Time 
Speed-

up 
Same 
Move 

Same 
Value +/- 2 +/- 5 +/- 10 

Step5 (Ply 2) 6.93  5.84 85% 91% 91% 93% 96% 

Step25 (Ply 3) 25.07  6.61 70% 75% 76% 77% 80% 

Step45 (Ply 4) 5.01  1.56 81% 91% 91% 91% 92% 

Step50 (Ply 5) 17.26  1.38 70% 97% 97% 97% 97% 

Step54 (Ply 5) 9.09  1.20 68% 99% 99% 99% 99% 

Step55 (Ply 6) 17.09  0.33 70% 100% 100% 100% 100% 

 
Table 4.12 (cont.) 

 

NITKH Selective Search (F=50) 
Step (Ply) CPU 

Time 
Speed-

up 
Same 
Move 

Same 
Value 

+/- 2 +/- 5 +/- 10 

Step5 (Ply 2) 6.93  5.19 90% 96% 96% 97% 100% 

Step25 (Ply 3) 25.07  5.40 75% 81% 82% 83% 85% 

Step45 (Ply 4) 5.01  1.29 83% 94% 94% 94% 94% 

Step50 (Ply 5) 17.26  1.06 69% 98% 98% 98% 98% 

Step54 (Ply 5) 9.09  1.03 68% 99% 99% 99% 99% 

Step55 (Ply 6) 17.09  0.31 70% 100% 100% 100% 100% 

 
Table 4.12 (cont.) 
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NITKH Selective Search (N=5, M=4) 
Step (Ply) CPU 

Time 
Speed-

up 
Same 
Move 

Same 
Value 

+/- 2 +/- 5 +/- 10 

Step5 (Ply 2) 6.93  31.00 61% 56% 58% 72% 77% 

Step25 (Ply 3) 25.07  28.99 37% 29% 33% 35% 46% 

Step45 (Ply 4) 5.01  1.98 43% 45% 48% 49% 51% 

Step50 (Ply 5) 17.26  3.97 29% 75% 75% 75% 77% 

Step54 (Ply 5) 9.09  2.83 18% 95% 95% 95% 95% 

Step55 (Ply 6) 17.09  0.46 18% 98% 98% 98% 98% 

 
Table 4.12 (cont.) 

 

NITKH Selective Search (N=6, M=5) 
Step (Ply) CPU 

Time 
Speed-

up 
Same 
Move 

Same 
Value 

+/- 2 +/- 5 +/- 10 

Step5 (Ply 2) 6.93  19.00 67% 66% 68% 77% 81% 

Step25 (Ply 3) 25.07  16.62 43% 33% 35% 41% 51% 

Step45 (Ply 4) 5.01  1.01 49% 55% 57% 57% 59% 

Step50 (Ply 5) 17.26  1.92 35% 79% 79% 80% 81% 

Step54 (Ply 5) 9.09  2.04 22% 96% 96% 96% 96% 

Step55 (Ply 6) 17.09  0.40 21% 99% 99% 99% 99% 

 
Table 4.12 (cont.) 

 

NITKH Selective Search (N=8, M=6) 
Step (Ply) CPU 

Time 
Speed-

up 
Same 
Move 

Same 
Value 

+/- 2 +/- 5 +/- 10 

Step5 (Ply 2) 6.93  10.00 76% 80% 83% 88% 93% 

Step25 (Ply 3) 25.07  8.39 51% 44% 46% 51% 59% 

Step45 (Ply 4) 5.01  0.45 60% 65% 65% 67% 70% 

Step50 (Ply 5) 17.26  0.85 42% 89% 89% 89% 91% 

Step54 (Ply 5) 9.09  1.31 32% 97% 97% 97% 97% 

Step55 (Ply 6) 17.09  0.34 32% 99% 99% 99% 100% 

 
Table 4.12 (cont.) 
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NITKH Selective Search (N=10, M=6) 
Step (Ply) CPU 

Time 
Speed-

up 
Same 
Move 

Same 
Value 

+/- 2 +/- 5 +/- 10 

Step5 (Ply 2) 6.93  6.88 79% 85% 85% 90% 95% 

Step25 (Ply 3) 25.07  5.71 55% 53% 55% 60% 67% 

Step45 (Ply 4) 5.01  0.27 71% 76% 76% 77% 79% 

Step50 (Ply 5) 17.26  0.53 65% 92% 92% 93% 93% 

Step54 (Ply 5) 9.09  1.11 48% 97% 97% 97% 97% 

Step55 (Ply 6) 17.09  0.32 43% 99% 99% 99% 100% 

 
Table 4.12 (cont.) 

 
 

 
Table 4.13 Tournament Results between N-best search and Brute-Force (NITKH) 

 
 
 
4.3 ProbCut and Multi-ProbCut 

Both ProbCut and Multi-ProbCut are based on the assumption that evaluations 

obtained from searches of different depths are strongly correlated, so the result V_D’ of a 

shallow search at height D’ can be used as a predictor for the result V_D of deeper search 

at height D. ProbCut uses fixed values of D and D’ in different stages, while Multi-

ProbCut performs several check searches of increasing depth. In Amazons, the search 

branches in different stages vary a lot. If we use fixed D and D’, the search strength 

would be similar to that of the non-selective search program in most stages. We choose to 

implement Multi-ProbCut in Amazons. 

Selective Factor F Result 
(Win-Loss) 

Winning 
Percentage 

20 65: 45 59% 

30 75: 35 68% 

40 76: 34 69% 

50 73: 37 66% 
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The parameters a, b and sigma can be estimated by three steps. First, we used a 

method similar to the one we used in section 4.2 to generate test positions from 150 

games. Thereafter, for each test position, we do the iterative search up to a specific 

maximum search depth. Table 4.14 lists the corresponding search depth used for different 

stages. In the third step, for each stage and each pair of (D’, D), the parameters a, b and 

sigma can estimated by a linear regression. Table 4.14 lists the heights and check depths 

that we chose to test in Mulan. 

Table 4.15 lists the parameters gotten from the experiments. Figures 4.12 - 4.15 

show 150 evaluation pairs in different stages in Amazons. From these figures and the 

regression coefficient of determination -- 2r -- listed in Table 4.15, it is obvious that the 

linear model is only suitable for the endgame stages of the Amazons. For example, the 

linear relationship of evaluation pairs at move 40 is visually obvious, and its 2r is larger 

than 0.95 indicating that less than 5% of the variance in the data is caused by the random 

error.  

 
 

h 3 4 5 6 7 8 
d 1 2 1 2 3 4 

 
Table 4.14 Check depths for different heights h used in Mulan 

 
 

step 1-4 5-34 35-45 46-55 56-61 62-65 66-70 

depth 2 3 4 5 6 7 8 

 
Table 4.15 Search depths for different stages 
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Step 5 6 7 8 9 10 11 12 13 14 15 

v 1 1 1 1 1 1 1 1 1 1 1 

v ’ 3 3 3 3 3 3 3 3 3 3 3 

a 0.78 0.64 0.64 0.45 0.61 0.66 0.70 0.80 0.75 0.63 0.75 

b 38.70 30.14 28.84 43.19 30.52 16.29 13.93 -6.36 -3.96 25.12 2.14 

 21.13 25.43 31.28 33.27 35.18 35.49 36.47 41.01 43.18 44.84 48.52 

2r  0.71 0.64 0.52 0.38 0.50 0.54 0.58 0.61 0.56 0.59 0.63 

 
��������	
�������������������� ������������������������������ 

 
 

Step 16 17 18 19 20 21 22 23 24 25 26 

v 1 1 1 1 1 1 1 1 1 1 1 

v ’ 3 3 3 3 3 3 3 3 3 3 3 

a 0.72 0.72 0.74 0.77 0.75 0.76 0.74 0.78 0.82 0.81 0.83 

b -2.91 1.04 -3.72 -3.92 -8.43 -13.75 -6.9 -10.4 -24.0 -20.2 -28.5 

 54.84 57.14 55.66 48.85 60.96 60.94 65.75 67.58 65.26 65.30 61.29 

2r  0.57 0.60 0.61 0.72 0.60 0.67 0.61 0.64 0.69 0.72 0.76 

 
Table 4.16 (cont.) 

 
 

Step 27 28 29 30 31 32 33 34 35 35 36 

v 1 1 1 1 1 1 1 1 1 2 1 

v ’ 3 3 3 3 3 3 3 3 3 4 3 

a 0.79 0.86 0.79 0.84 0.81 0.90 0.91 0.89 0.88 1.02 0.88 

b -28.1 -33.7 -24.5 -30.4 -30.4 -39.4 -55.2 -40.4 -41.3 45.4 -69.9 

 72.57 70.05 80.98 75.64 92.52 72.65 90.24 79.14 91.20 52.73 89.60 

2r  0.71 0.76 0.68 0.75 0.63 0.81 0.71 0.82 0.74 0.93 0.79 

 
Table 4.16 (cont.) 
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Step 36 37 37 38 38 39 39 40 40 41 41 

v 2 1 2 1 2 1 2 1 2 1 2 

v ’ 4 3 4 3 4 3 4 3 4 3 4 

a 0.99 0.93 1.00 0.94 1.02 0.99 1.03 1.00 1.02 0.98 1.03 

b 0.5 -41.7 11.2 -35.5 -2.7 -19.6 5.7 -26.3 0.2 -21.8 -0.3 

 39.04 71.52 36.72 54.29 34.81 50.24 28.76 47.49 32.13 43.11 27.63 

2r  0.96 0.86 0.97 0.92 0.97 0.94 0.98 0.95 0.98 0.96 0.98 

 
Table 4.16 (cont.) 

 
 

Step 42 42 43 43 44 44 45 45 46 46 46 

v 1 2 1 2 1 2 1 2 1 2 1 

v ’ 3 4 3 4 3 4 3 4 3 4 5 

a 0.98 1.04 1.01 1.03 1.03 1.04 1.01 1.03 0.97 1.03 1.01 

b -22.5 5.7 -19.4 1.1 -14.4 2.4 -16.2 5.3 -20.7 2.62 -20.7 

 48.42 29.54 40.04 23.56 37.18 20.50 35.87 23.20 57.85 20.12 63.90 

2r  0.95 0.98 0.97 0.99 0.97 0.99 0.97 0.99 0.94 0.99 0.93 

 
Table 4.16 (cont.) 

 
 

Step 47 47 47 48 48 48 49 49 49 50 50 

v 1 2 1 1 2 1 1 2 1 1 2 

v ’ 3 4 5 3 4 5 3 4 5 3 4 

a 1.01 1.04 1.03 1.01 1.03 1.05 1.01 1.04 1.06 1.01 1.05 

b -20.7 -1.53 -20.7 -20.7 1.30 -20.7 -6.83 1.39 -20.7 -20.7 4.28 

 30.67 19.52 44.40 34.90 20.19 47.67 29.09 21.38 42.20 36.19 17.37 

2r  0.98 0.99 0.97 0.98 0.99 0.96 0.99 0.99 0.97 0.98 1.00 

 
Table 4.16 (cont.) 
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Step 50 51 51 51 52 52 52 53 53 53 54 

v 1 1 2 1 1 2 1 1 2 1 1 

v ’ 5 3 4 5 3 4 5 3 4 5 3 

a 1.05 1.04 1.05 1.09 1.03 1.05 1.08 1.05 1.06 1.11 1.06 

b -20.7 -8.73 2.77 -20.7 -6.83 2.31 -11.0 -6.01 1.73 -9.00 -2.25 

 43.96 25.31 18.01 32.50 24.11 14.95 34.62 20.15 11.44 25.31 16.46 

2r  0.97 0.99 1.00 0.99 0.99 1.00 0.98 0.99 1.00 0.99 1.00 

 
Table 4.16 (cont.) 

 
 

Step 54 54 55 55 55 56 56 56 56 57 57 

v 2 1 1 2 1 1 2 1 2 1 2 

v ’ 4 5 3 4 5 3 4 5 6 3 4 

a 1.06 1.12 1.06 1.06 1.14 1.06 1.07 1.13 1.14 1.07 1.07 

b 1.36 -3.09 -2.01 0.02 -6.50 -1.64 2.74 -2.42 5.09 -4.16 0.11 

 11.64 21.82 11.05 11.62 21.36 14.99 16.39 22.01 26.01 22.48 8.08 

2r  1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 

 
Table 4.16 (cont.) 

 
 

Step 57 57 58 58 58 58 59 59 59 59 60 

v 1 2 1 2 1 2 1 2 1 2 1 

v ’ 5 6 3 4 5 6 3 4 5 6 3 

a 1.14 1.15 1.06 1.07 1.14 1.16 1.07 1.07 1.16 1.16 1.07 

b -6.65 1.25 -1.99 1.87 -3.73 2.97 -2.14 1.13 -4.21 -0.75 -2.48 

 30.92 19.98 14.23 14.04 26.78 29.52 14.08 15.39 29.02 32.43 14.80 

2r  0.99 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 

 
Table 4.16 (cont.) 
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Step 60 60 60 61 61 61 61 62 62 62 62 

v 2 1 2 1 2 1 2 1 2 1 2 

v ’ 4 5 6 3 4 5 6 3 4 5 6 

a 1.08 1.15 1.17 1.08 1.08 1.17 1.17 1.07 1.08 1.17 1.18 

b 0.71 -2.95 1.74 -0.49 0.25 -1.78 -0.21 -1.04 1.26 -0.64 2.69 

 10.60 28.45 17.79 10.27 16.01 17.77 26.12 17.49 10.43 27.20 19.03 

2r  1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 

 
Table 4.16 (cont.) 

 
 

Step 62 63 63 63 63 63 64 64 64 64 64 

v 3 1 2 1 2 3 1 2 1 2 3 

v ’ 7 3 4 5 6 7 3 4 5 6 7 

a 1.75 1.07 1.08 1.17 1.18 1.19 1.08 1.09 1.18 1.21 1.21 

b 1.19 -1.04 1.26 -0.64 2.69 1.75 -0.56 1.30 0.32 4.07 3.82 

 21.29 17.49 10.43 27.20 19.03 21.29 12.88 10.75 20.61 36.84 40.95 

2r  1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 

 
Table 4.16 (cont.) 

 
 

Step 65 65 65 65 65 66 66 66 66 66 66 

v 1 2 1 2 3 1 2 1 2 3 4 

v ’ 3 4 5 6 7 3 4 5 6 7 8 

a 1.09 1.09 1.20 1.21 1.22 1.09 1.10 1.20 1.22 1.23 1.25 

b -0.86 -0.70 -1.94 -1.12 -2.10 -0.96 0.08 -1.78 -0.63 -1.85 -0.83 

 10.01 11.73 21.74 25.05 34.57 13.42 11.28 23.07 24.32 29.77 37.68 

2r  1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 

 
Table 4.16 (cont.) 
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Step 67 67 67 67 67 67 68 68 68 68 68 68 

v 1 2 1 2 3 4 1 2 1 2 3 4 

v ’ 3 4 5 6 7 8 3 4 5 6 7 8 

a 1.10 1.10 1.22 1.23 1.25 1.27 1.10 1.11 1.22 1.24 1.26 1.29 

b 0.19 0.68 0.57 1.22 -0.34 -0.07 -2.15 -0.71 -3.38 -0.72 -1.29 -0.56 

 10.68 13.48 24.12 27.14 35.72 41.50 15.28 14.76 26.75 32.30 37.73 50.59 

2r  1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99 

 
Table 4.16 (cont.) 

 

Step 69 69 69 69 69 69 70 70 70 70 70 70 

v 1 2 1 2 3 4 1 2 1 2 3 4 

v ’ 3 4 5 6 7 8 3 4 5 6 7 8 

a 1.10 1.11 1.23 1.24 1.27 1.29 1.10 1.11 1.23 1.25 1.27 1.31 

b -0.69 -0.44 -3.08 -3.03 -5.76 -3.11 -1.81 0.80 -1.27 0.94 -3.09 2.92 

 8.32 9.89 24.53 26.20 41.49 57.22 10.71 14.13 20.08 21.82 42.16 53.82 

2r  1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99 

 
Table 4.16 (cont.)  
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Figure 4.12 Relation between v=1 and v’=3 at move 5 
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Figure 4.13 Relation between v=1 and v’=3 at move 25 
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Figure 4.14 Relation between v=1 and v’=3 at move 40 
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Figure 4.15 Relation between v=2 and v’=4 at move 40 
 
 
As we discuss in section 2.4.2, we can predict the probability that V_D>=beta 

from V,&'-#����� ��)) �  + beta –�������.��
�#��� �����	
	����	��
�	���
�**�
��	�������*�

the search. Choosing a correct t is essential for the performance of Multi-ProbCut. 

Choosing a larger t can cause more cuts, but also increases the probability of cutting off 

the best move. We use two methods, which are identical to those used in the last section, 

to compare the effect of different values of t. The first one is collecting statistics include 

speed-up and accuracy; the other one is using tournaments. 

Table 4.17 shows statistics including speed-up and accuracy about Multi-ProbCut 

with different thresholds on the set of test positions. These statistics show that: 

a) In Amazons, Multi-ProbCut is not practical at the beginning of the game. For 

example, in the first 25 moves, typically the computer can only search to ply 

2-3 in 10 seconds. Since ply 4 is the minimum depth at which we can use 
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Multi-ProbCut, we cannot take any advantage by applying Multi-ProbCut at 

this stage.  

b) In our experiment, the performance of Multi-ProbCut is bad during the 

midgame of Amazons. Typically Multi-ProbCut can only get at speed-up of a 

factor of 2-4 compared to non-selective search in this stage, and 40-60% of 

the best moves are cut off. For Multi-ProbCut, a stable evaluation function is 

necessary, but unfortunately building a stable evaluation function for 

Amazons is very difficult. Figures 4.12 - 4.15 shows that the evaluation 

function we use in Mulan cannot fit the linear prediction model used by Multi-

ProbCut during the beginning and midgame. So the large difference between 

the true and the predicted value makes Multi-ProbCut error-prone. 

c) The performance of Multi-ProbCut becomes better and better as we approach 

the endgame. This is because almost all territories on the board have been 

determined by this time, so evaluations obtained from searches of different 

depths are strongly correlated. 

To further investigate the performance of Multi-ProbCut in Amazons, we played a 

tournament to compare Multi-ProbCut with a non-selective search algorithm. Table 4.18 

shows the results. They show that t=1.5 is the optimal cutting cutoff for our 

implementation. The tournament results also suggest that Multi-ProbCut cannot improve 

the playing strength of Mulan.  
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NITKH 
Step25 

(Ply 3) 

Step35 

(Ply 4) 

Step40 

(Ply 4) 

Step50 

(Ply5) 

Step55 

(Ply5) 

Step60 

(Ply6) 

Step63 

(Ply7) 

Step68 

(Ply8) 

CPU Time 6.80 11.53 3.62 4.48 1.69 3.16 16.24 22.68 

Leaf Nodes 320596 452930 129924 208787 79682 160714 902219 1291226 

 

Selective Search (t=1.0) 
Step (Ply) Speed-up 

(time) 
Speed-up 

(LN) 
Same 
Move 

Same 
Value +/- 2 +/- 5 +/- 10 

Step25 (Ply 3) 1.74 1.00 100% 100% 100% 100% 100% 

Step35 (Ply 4) 3.37 3.45 34% 34% 37% 42% 44% 

Step40 (Ply 4) 2.99 3.02 56% 59% 60% 63% 64% 

Step50 (Ply5) 9.89 10.44 83% 87% 88% 88% 88% 

Step55 (Ply5) 8.16 8.12 93% 93% 93% 94% 94% 

Step60 (Ply6) 18.11 18.37 92% 97% 97% 97% 97% 

Step63 (Ply7) 80.39 87.31 96% 98% 98% 98% 98% 

Step68 (Ply8) 76.98 76.46 90% 97% 97% 97% 97% 

 
Table 4.17 Comparison of Multi-ProbCut and Brute-Force (NITKH) 

 

Selective Search (t=1.2) 
Step (Ply) Speed-up 

(time) 
Speed-up 

(LN) 
Same 
Move 

Same 
Value 

+/- 2 +/- 5 +/- 10 

Step25 (Ply 3) 1.01 1.00 100% 100% 100% 100% 100% 

Step35 (Ply 4) 3.00 3.05 42% 43% 44% 45% 47% 

Step40 (Ply 4) 2.59 2.58 63% 65% 66% 68% 70% 

Step50 (Ply5) 8.10 8.13 88% 90% 89% 92% 93% 

Step55 (Ply5) 8.02 8.00 95% 95% 97% 97% 98% 

Step60 (Ply6) 15.90 16.31 93% 96% 96% 96% 96% 

Step63 (Ply7) 70.45 70.27 95% 98% 98% 98% 98% 

Step68 (Ply8) 70.16 70.49 93% 98% 98% 98% 98% 

 
Table 4.17 (cont.) 
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Selective Search (t=1.5) 
Step (Ply) Speed-up 

(time) 
Speed-up 

(LN) 
Same 
Move 

Same 
Value 

+/- 2 +/- 5 +/- 10 

Step25 (Ply 3) 1.01 1.00 100% 100% 100% 100% 100% 

Step35 (Ply 4) 2.67 2.75 48% 48% 49% 51% 54% 

Step40 (Ply 4) 2.39 2.27 68% 69% 69% 70% 72% 

Step50 (Ply5) 7.59 7.75 92% 93% 93% 93% 94% 

Step55 (Ply5) 7.36 7.31 93% 93% 93% 94% 94% 

Step60 (Ply6) 13.11 13.31 96% 97% 97% 97% 97% 

Step63 (Ply7) 70.39 77.03 95% 97% 97% 98% 98% 

Step68 (Ply8) 76.98 75.01 96% 97% 98% 98% 98% 

 
Table 4.17 (cont.) 

 

Selective Search (t=2.0) 
Step (Ply) Speed-up 

(time) 
Speed-up 

(LN) 
Same 
Move 

Same 
Value 

+/- 2 +/- 5 +/- 10 

Step25 (Ply 3) 1.01 1.00 100% 100% 100% 100% 100% 

Step35 (Ply 4) 2.24 2.09 54% 54% 55% 57% 59% 

Step40 (Ply 4) 2.01 2.07 70% 72% 73% 73% 74% 

Step50 (Ply5) 6.44 6.14 90% 93% 93% 94% 95% 

Step55 (Ply5) 6.16 6.10 94% 95% 95% 95% 96% 

Step60 (Ply6) 10.13 10.18 91% 94% 95% 96% 99% 

Step63 (Ply7) 69.88 66.71 96% 98% 98% 98% 98% 

Step68 (Ply8) 65.31 63.39 96% 98% 98% 99% 99% 

 
Table 4.17 (cont.) 

 
 

Threshold 
t 

Result 
(Win-Loss) 

Winning 
Percentage 

1.0 52-98 34.7% 
1.2 58-92 38.7% 
1.5 63-87 42% 
2.0 60-90 40% 

 
Table 4.18 Tournament results between Multi-ProbCut and Brute-Force (NITKH) 



 86

4.4 The Construction of the Evaluation Function 

Being able to search game-tree deeper and faster is important for creating a high 

quality game-playing program. But for almost all interesting games, the corresponding 

game tree is bushy. Since it is impossible to exhaustively search the whole tree, we need 

an evaluation function to assess leaf positions. Typically constructing evaluation 

functions includes two phases: selecting good features and combining selected features. 

In this section, we tested some existing features used for Amazons and some new features 

we developed. After that, we tried two methods to combine them into an evaluation 

function: 1) linear combination using tournament; 2) a pattern classification approach 

based on Bayesian learning. 

 

4.4.1 New Features 

In Chapter 3, we explained three published features for Amazons: Mobility, 

Territory and Territory-and-Mobility. Based on the ideas of enlarging legal moves and 

controlling more squares, we developed several new features: Min-Mobility, Regions, Ax 

and Bx series, and Relative Distance Territory. In this section, we introduce the ideas and 

implementations of these new features. 

 
4.4.1.1 Min-Mobility  

As we played Amazons, we found that keeping all our pieces mobile at the early 

stage is very important. Neither the Mobility nor the Territory feature can notice that a 

particular piece is in danger of being trapped at the early stage. We developed a new 

feature called Min-Mobility to solve this problem. The Min-Mobility of a player is the 

minimum over the player’s four pieces of how many squares it can reach in one step. The 



 87

Min-Mobility feature is evaluated by subtracting the opponent’s Min-Mobility from the 

player’s.  

The Min-Mobility feature can efficiently avoid one or two of a player’s pieces 

being blocked. This is very useful when the territory classification is not clear enough. 

But in the mid-game and endgame, “sacrificing” a piece and letting it be trapped might 

allow you to do well elsewhere on the board.  

 
4.4.1.2 Regions 

During the play of Amazons, the board will typically be divided into different 

regions in the middle game. We want to place all four amazons in coordinated way: the 

number of queens in a specific region should be proportional to the empty squares in the 

region, and we do not want to be outnumbered by our opponent in an important region. 

However, neither Mobility nor Dominance can detect this. The territory feature assumes 

queens can go in all directions at once, and defend against attackers approaching from 

different sides at the same time. Therefore, it optimistically evaluates unbalanced 

situations. Mobility can make sure amazons don’t get trapped in very small regions, but it 

tends to move all pieces into the biggest regions of the board.  

The Regions feature is designed to place all four amazons in different regions in 

coordinated way. The idea of this feature is illustrated by the following. 

 

int Regions(pos) { 

      Find out all regions in the current position pos. 

      double whiteScore = 0.0; 

      double blackScore = 0.0; 

      // A “Shared region” means both sides have at least one place inside.   
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      // The Totally dominant region is more important then the shared region.  

      For each white piece i 

whitePieceValue[i] = 2*(the number totally dominant regions) + (the number of 

“shared” regions); 

      For each black piece i 

blackPieceValue[i] = 2*(the number totally dominant regions) + (the number of 

“shared” regions); 

      For each region  { 

 score = the number of empty squares in the region. 

 blackNum = 0.0; 

 whiteNum = 0.0; 

 For each white piece i which can reach the region 

       whiteNum = whiteNum + 1.0 / whitePieceValue[i]; 

 For each black piece i which can reach the region 

       blackNum = blackNum + 1.0 / blackPieceValue[i]; 

 whiteScore += score * whiteNum/(whiteNum+blackNum); 

 blackScore += score * blackNum/(whiteNum+blackNum); 

      } 

      value = (int)((1000*(whiteScore - blackScore))/(whiteScore + blackScore)); 

      if (white’s turn to play) 

return value; 

      else 

 return –value; 

} 

Figure 4.16 The procedure of the Regions feature 
 

There are two obvious shortcomings in the Regions feature. First, the Regions 

feature does not consider how quickly the amazons can get to an empty square. Thus it is 

quite easy to enter some bad positions. By combining Regions with the MSP feature, this 

problem can be solved. Second, the horizon effect can also affect the value of Region 
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feature, since Regions cannot detect when a region is almost, but not quite enclosed; that 

is, if a wall between regions still has holes in it at the horizon. Because of this, the effect 

of the Region feature strongly depends on the search depth.  

 
4.4.1.3 Ax & Bx  

Ax represents a series of features we derived from the Mobility feature. The score 

of Ax is based on how many squares each side can reach in x steps. The basic idea behind 

Ax is that the squares which can be reached in different numbers of steps should be 

weighted differently. So combining A1, A2, etc with appropriate weights may give a 

more precise evaluation of the board. 

Similarly, Bx is a series of features which are essentially the same as the territory 

feature. It represents how many squares the player can reach in x steps that the opponent 

cannot. Using B1, B2, etc, we can evaluate not only whether a square belongs to the 

player’s territory, but also how fast the player can reach it.  

 
4.4.1.4 Relative Distance Territory (RDT) 

As we mentioned above, the Territory feature does not work well in unbalanced 

situations, such as when 1 queen is outnumbered by two or more. To solve this problem, 

we developed a new feature called the Relative Distance Territory (RDT). The 

implementation of the RDT feature is described as the following.  

 

      // pos : current board position 

      // evaluate the RDT feature for the board position “pos” and return the result.  

      double RDT(pos)  

      { 

blackPoints = 0; 
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whitePoints = 0; 

for all empty squares x do    

{ 

     blackFraction = 0; 

     whiteFraction = 0; 

     minStonePly = the minimum number of moves that a piece needs to arrive at x; 

     for (i=0; i<4; i++) {    

b = the number of moves that i th black piece needs to arrive at x; 

 w = the number of moves that i th white piece needs to arrive at x; 

 b = b – minStonePly; 

 w = w – minStonePly; 

 blackFraction = blackFraction + bweight)/1( ; 

 whiteFraction = whiteFraction + wweight)/1( ; 

     } 

     whitePoints = whitePoints + 
ionwhiteFractionblackFract

ionwhiteFract

+
 ; 

     blackPoints = blackPoints + 
ionwhiteFractionblackFract

ionblackFract

+
; 

} 

if (white’s turn to play) 

      return (whitePoints – blackPoints); 

else 

      return (blackPoints – whitePoints); 

      } 

Figure 4.17 The procedure of the RDT feature 
 

As we mentioned before, the Territory feature optimistically assumes queens can 

go all directions at once. But in reality, a queen can’t defend against multiple attackers 

approaching from different sides at the same time. In the Relative Distance Territory, for 

each square each player gets a fractional score. The fractional score that each player gets 



 91

depends on two factors: how many of his/her pieces can reach that square, and their 

relative speeds, i.e., how quickly they can get there. So the RDT feature can evaluate the 

position more precisely in unbalanced situations. By considering relative speed, the RDT 

feature may also be able to use “barricade” positions intelligently to maximize the moves 

necessary for the opponent to reach empty squares. 

The main shortcoming of the RDT feature is its evaluation speed. There are two 

reasons why evaluating the RDT feature is more time-consuming than the Territory 

feature. First, RDT needs to evaluate how quickly each piece can reach a square, while 

the Territory feature only needs to know which player’s pieces can reach a square first. 

Furthermore, dividing the square score into two fractions introduces expensive floating-

point or integer operations, while the Territory feature can be implemented efficiently 

using bitmap operations. 

 

4.4.2 Choosing good features 

We described several new features for the game of Amazons in the previous 

section. Now we need to determine which features are the most valuable ones. Selecting 

good features is important and difficult. First, we need to avoid too few features as well 

as redundant ones. Furthermore, there is the well-known tradeoff between speed and 

accuracy of evaluation. We used Mulan as a test bed for this investigation. 

Ideally, every feature should measure characteristic of the board position. To 

avoid redundant features, we divided all features into three groups based on the 

characteristic they represented: mobility (including Mobility, Ax series and Min-

Mobility), coordination (including TM and Regions) and territory (including MSP, Bx 
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series and Relative Distance Territory). First, we need to find out the best feature in each 

group, i.e. the best measure of that characteristic of the board position. Then we can 

combine them according to the characteristics of different stages of the game.  

We used two methods to examine the performance of the different features: 

computer tournaments and human-computer playing experience. We modified Mulan to 

produce different versions, each applying different features in its evaluation function. We 

set two of them to play at a time on a set of random initial board positions. Each version 

played both white and black on each board position. The other method we used was our 

experience of playing Amazons against different versions of Mulan. This method of 

feature selection is a very intuitive process; Humans are good at trying different strategies 

during the game. So Human vs. computer playing experience can help us to further 

improve the program to handle different situations. 

First, we tested territory features. For Bx and MSP, we found that the result of 

combining Bx series was very similar to MSP. To keep the evaluation function simple 

and reduce the effort of combining features, we eliminated the Bx feature first. Then we 

had two choices left: MSP and RDT. As we mentioned before, the RDT evaluator is 

inherently slower than MSP. To remove the speed difference, we limited each search in 

the tournament to 100,000 leaf positions. The results listed in Table 4.19 shows that MSP 

beat RDT in the computer tournament even without considering the speed factor. To 

further investigate RDT’s effect in the stage of the early game, we did an additional 

tournament where we used RDT only in the first 15 moves. The results are given in Table 

4.20. They show that RDT is superior to MSP when we set the RDT weight to 2.8.  This 

result seems also to imply that we should set different RDT weights in different game 
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stages. Our playing experience also shows that the RDT feature is able to use barricade 

positions in a smarter way than MSP by considering relative speed. However, the 

evaluation speed of the RDT feature is extremely slow compared with MSP. When we 

include time (not just number of leaf positions) in our criteria, the MSP is much superior 

to RDT. Because of this reason, we decided to select MSP as territory feature.   

 
RDT 

Weight 
1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 

Win-
Loss 

12:88 25:75 38:62 34:66 39:61 41:59 31:69 38:62 38:62 44:56 42:58 

 
Table 4.19 RDT VS Dominance with 100000 Leaf Positions per Move 

 
 

RDT  
Weight 

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 

Win-Loss 42:58 42:58 47:53 45:55 41:59 49:51 56:44 50:50 42:58 41:59 
 

Table 4.20 Using RDT in First 15 moves against Dominance with 100000 Leaf 
Positions per Move 

 

We next chose a feature from the mobility-related group. We eliminated Ax first 

since the result of combining the Ax series is very similar to Mobility. Then we compared 

Mobility and Min-Mobility. We found that neither of them can form a strong evaluation 

function alone. According to our playing experience, mobility-related features are only 

valid in the early stage, typically during the first 20 moves. So we used a linear 

combination of a mobility-related feature and MSP in the first 20 moves, and pure MSP 

after that. Our experimental results show that Min-Mobility is superior to Mobility. We 

didn’t find any obvious improvement from the combination of Mobility and MSP, 

whereas we got an unequivocal improvement from using Min-Mobility and MSP. Table 

4.21 illustrates the effect of Min-Mobility, which is combined with MSP using the 
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equation (weight*mobility_feature + (1 – weight)*MSP). The best result is 194 -111 

when the weight is set to 0.5.   

 
Weight  0.1 0.2 0.3 0.4 0.5 

Win-Loss 143:157 176:124 170:130 189:111 194:106 
 

Weight  0.6 0.7 0.8 0.9 1.0 
Win-Loss 189:111 174:126 175:125 129:171 92:208 

 
Table 4.21 Min-Mobility+Dominance VS Dominance  

 

To test the effect of Min-Mobility, we compared Mulan with several existing 

programs for Amazons. Using an evaluation function consisting of Min-Mobility and 

Dominance, Mulan can compete with many world championship level Amazons 

programs, including Yamazon and Arrow. Appendix A lists the playing record of Mulan 

vs Yamazon and Mulan vs Arrow. From Figure 4.18 – Figure 4.21, we can see that 

Mulan can effectively block one of its opponent’s pieces during the opening stage. But 

the new evaluation function still has a weakness: it cannot place all four of its amazons in 

a coordinated way. Figure 4.21 is an example, in which the opponent occupied a big 

region while Mulan was attacking one of their pieces.  The situation becomes worse 

when playing with a human. For example, my adviser, Prof. Moore, developed a strategy 

against this version of Mulan. He used one of his pieces as the bait, then blocked all of 

Mulan’s pieces in a big region while they attacked this bait. He finally successfully beat 

this version of Mulan by more than ten squares.  

To solve this problem, we need a feature to coordinate all four pieces’ moves. We 

tested two features related to coordination: TM and Regions. Though Hashimoto et al. 

[26] believes that the TM feature allows the program to place all four amazons in a 

coordinated way, our experiments show that it cannot improve the playing strength of 
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Mulan at all. Our results on TM appear in Tables 4.22 and 4.23. The test results of our 

newly developed feature, Regions, are far more promising. After Regions is applied, 

Mulan’s coordination ability was improved significantly. When we tuned the 

combination coefficients of the evaluation function to 0.2*Regions+0.5*Dominance 

+0.3*Min-Mobility, Mulan’s playing strength become so strong that we have never 

beaten her.  

The Computer’s self-play tournaments also show that the evaluation function with 

Regions is superior to the original one. To further examine the performance of the 

Regions feature, we used the new version of Mulan to play against Yamazon and Arrow 

again. The result is surprising: Mulan won all the games! The tournament records are 

shown in Appendix B. From Figure 4.22—4.25, we can see that Mulan not only blocked 

one of her opponent’s pieces successfully but also placed all four amazons in different 

regions in a coordinated way in the early stage.  

Now we have found three effective features: MSP, Min-Mobility and Regions. By 

combining these features linearly, we got a very effective evaluation function. In our 

experiment, we determined the coefficients of the linear combination from our experience 

and from tournament results. Though the outcome is promising, there are still three 

problems left. First, it is very difficult for humans to estimate these coefficients precisely 

since we don’t use game tree search and evaluation functions. Furthermore, though we 

try to reduce redundancies between features, it is difficult to totally avoid correlations 

among them. Finally, we divide the whole Amazons game into only two stages. This is 

obviously not enough. To solve these problems, we will test a pattern classification 

approach and Automatic Evaluation Function Construction in next section.  
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Weight 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Win-Loss 40:60 30:70 31:69 30:70 16:84 23:77 22:78 12:88 6:94 13:87 
 

Table 4.22 TM+Dominance vs Dominance (100000 leaf pos. per move) 
 

 
 

Weight 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Win-
Loss 

106:94 77:123 62:138 32:168 30:170 18:182 12:188 7:193 1:199 1:199 

 
Table 4.23 TM+Dominance vs Dominance (10 Sec. per Move) 

 
 
 

Tournament criterion  100000 leaf pos. per move 10 sec. per move 
Win-Loss 106:94     108:92 

 
Table 4.24 Regions+Min-Mobility+Dominance vs Min-Mobility+Dominance 

 

 

 
 

Figure 4.18 Yamazon vs Mulan (without Regions feature): Yamazon plays red 
 



 97

 
 

Figure 4.19 Yamazon vs Mulan (without Regions feature): Mulan plays red 
 
 

 
 

Figure 4.20 Invader vs Mulan (without Regions feature): Invader plays red 
 



 98

 
 

Figure 4.21 Invader vs Mulan (without Regions feature): Mulan plays red 
 
 

 
 

Figure 4.22 Yamazon vs Mulan (with Regions feature): Yamazon plays red 
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Figure 4.23 Yamazon vs Mulan  (with Regions feature): Mulan plays red 
 
 
 

 
 

Figure 4.24 Invader vs Mulan (with Regions feature): Invader plays red 
 

 



 100

 
 

Figure 4.25 Invader vs Mulan (with Regions feature): Mulan plays red 
 

4.4.3 Using Pattern Classification and Bayesian Learning to combine features 

In this chapter, we will apply Bayesian learning to our Amazons program—

Mulan. Similar to Lee et al’s Bayesian learning approach to the game of Othello, our 

approach also includes two stages: training and recognition. 

In the training stage, a database of labeled training positions is required. We 

obtained these positions from the actual games generated from Mulan’s self-play. We 

generated 2 random initial moves for each game, after which, two copies of Mulan played 

against each other. During the game, each side is given 30 seconds for each move. 

Usually, one player will get quite a big advantage in the beginning and go on to win the 

game. After the game is terminated, all positions are recorded as training data. All 

positions of the winning player are labeled as winning positions, and all positions of the 

losing player are labeled as losing positions. A total of 2000 games were played and 

recorded as the training data. 
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It is well known that different strategies should be used for different stages of 

Amazons. We used the number of burnt squares to classify stages. For a stage with N 

burnt squares, we used training positions with N burnt squares to estimate the parameters. 

For each training position, the three features were calculated and represented as a feature 

vector. Then, the mean vectors and covariance matrices for both categories, winning and 

losing, were estimated. After that, the corresponding evaluation function was calculated 

via the following equation: 
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Using this method, a series of slowly varying discriminant functions, which can 

provide a fine measure of game positions for different stages, were generated. The 

functions for different stages are listed as the following, where x, y and z represent 

evaluation values of Dominance, Min-Mobility and Regions respectively. 

 

Move 5: 

�0.997422�0.0015418x�5.42157�10�7x2�0.00140515y�5.20371�10�6xy�

8.21226�10�7y2�0.00604553z�3.71359�10�7xz�5.61574�10�6yz�0.00202669z2 

Move 6:  

�0.275975�0.000544858x�3.43234�10�6x2�0.00139084y�1.60483�10�6xy�

7.66591�10�7y2�0.00411963z�0.0000605542xz�2.46082�10�7yz�0.00184263z2 

Move 7: 

�2.15991�0.000231133x�4.25596�10�7x2�0.00404007y�1.40761�10�6xy�

2.21537�10�6y2�0.0047651z�0.0000160546xz�0.0000313477yz�0.00132382z2  

Move 8: 
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0.571769�0.00177234x�5.98155�10�7x2�0.00148389y�2.65102�10�6xy�

1.55761�10�6y2�0.0037633z�0.000042359xz�0.0000105338yz�0.00116309z2  

Move 9: 

�1.88075�0.00163066x�2.2281�10�7x2�0.0026073y�2.27333�10�7xy�

7.82549�10�7y2�0.00779871z�0.0000109059xz�0.0000233588yz�0.000603111z2  

Move 10: 

0.675081�0.00196876x�2.93109�10�6x2�0.00168869y�2.12433�10�6xy�

1.7376�10�6y2�0.00444221z�9.34201�10�6xz�0.0000187061yz�0.000425721z2 

Move 11: 

�1.87805�0.00385968x�1.4842�10�7x2�0.00285252y�3.64952�10�6xy�

5.38946�10�7y2�0.00505107z�0.0000142436xz�0.0000149833yz�0.000277929z2  

Move 12: 

0.457485�0.0027442x�2.54617�10�6x2�0.00149188y�2.02435�10�6xy�

1.0778�10�6y2�0.0098241z�0.0000242371xz�1.80991�10�6yz�0.000164668z2 

Move 13: 

�1.82138�0.00404531x�4.19231�10�7x2�0.00179823y�3.43449�10�6xy�

1.20298�10�7y2�0.0103534z�0.0000208647xz�0.0000203898yz�0.000308181z2  

Move 14: 

0.669872�0.00380293x�5.31363�10�6x2�0.00122248y�7.01452�10�7xy�

1.58175�10�6y2�0.0128523z�9.28096�10�6xz�7.47522�10�6yz�0.000148753z2 

Move 15: 

�1.77574�0.00351681x�5.29749�10�6x2�0.00081019y�2.15915�10�7xy�

8.44543�10�7y2�0.0146666z�0.0000127563xz�0.0000157202yz�0.000202421z2  
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Move 16: 

0.341292�0.00494561x�3.93172�10�6x2�0.000858505y�2.15312�10�6xy�

8.49635�10�7y2�0.0174589z�0.0000154577xz�6.86939�10�6yz�0.0000201464z2 

Move 17: 

�1.27815�0.00538262x�2.53047�10�6x2�0.000623036y�1.55175�10�6xy�

8.55594�10�7y2�0.0142406z�0.0000247121xz�9.99416�10�6yz�0.0000797396z2 

Move 18: 

0.199416�0.00529466x�8.19045�10�7x2�0.000320933y�3.09733�10�6xy�

3.14474�10�7y2�0.0198604z�0.0000308927xz�5.67722�10�6yz�0.0000300763z2 

Move 19: 

�1.41592�0.00733786x�3.6445�10�6x2�0.000555011y�1.45849�10�6xy�

1.08294�10�6y2�0.0157919z�0.0000247817xz�0.0000142676yz�0.0000977267z2  

Move 20: 

0.261509�0.00544465x�1.28232�10�6x2�0.000523453y�1.08382�10�6xy�

7.71907�10�7y2�0.019619z�0.000023834xz�6.02909�10�6yz�0.000061187z2 

Move 21: 

�1.2491�0.00632449x�2.63308�10�6x2�0.000384885y�7.10138�10�7xy�

8.4948�10�7y2�0.0200342z�0.0000102646xz�0.0000163035yz�0.0000953523z2  

Move 22: 

0.197349�0.00669165x�3.31637�10�6x2�0.000741352y�1.72331�10�6xy�

8.79389�10�7y2�0.0197532z�0.0000218525xz�0.0000180918yz�0.0000935729z2  

Move 23: 

�1.4514�0.00840189x�4.09187�10�6x2�0.000493894y�6.61764�10�7xy�

9.46314�10�7y2�0.0173127z�0.0000176894xz�0.0000169801yz�0.000105015z2  
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Move 24: 

0.148123�0.00759464x�2.14168�10�6x2�0.000507131y�4.01306�10�7xy�

9.19167�10�7y2�0.0193556z�0.0000275413xz�0.0000150671yz�0.0000722716z2  

Move 25: 

�1.47002�0.00890548x�3.89289�10�6x2�0.000531111y�3.9986�10�7xy�

8.84134�10�7y2�0.0148957z�0.0000223929xz�0.0000158818yz�0.0000776215z2  

Move 26: 

0.159465�0.008858x�3.54746�10�6x2�0.000625495y�1.33753�10�6xy�

7.06728�10�7y2�0.0174154z�0.0000189698xz�0.000014148yz�0.0000622167z2  

Move 27: 

�1.48221�0.00992909x�4.87572�10�6x2�0.000303827y�7.04131�10�7xy�

8.29595�10�7y2�0.0136949z�0.0000243875xz�0.0000161583yz�0.0000629963z2  

Move 28: 

0.0234448�0.0116827x�9.22348�10�6x2�0.000572712y�1.79459�10�7xy�

4.54154�10�7y2�0.0128658z�2.52242�10�6xz�7.25174�10�6yz�0.0000400919z2 

Move 29: 

�1.52986�0.010753x�2.09874�10�6x2�0.000376512y�6.18421�10�7xy�

6.92063�10�7y2�0.0136772z�7.87649�10�6xz�0.0000120484yz�0.0000460114z2 

Move 30: 

�0.117816�0.0117813x�6.94781�10�6x2�0.000813082y�2.0933�10�6xy�

4.62371�10�7y2�0.0118742z�3.95867�10�6xz�7.50346�10�6yz�0.0000168311z2 

Move 31: 

�1.40136�0.0105505x�1.25999�10�6x2�0.000719051y�1.69102�10�6xy�

3.31923�10�7y2�0.0107472z�7.10553�10�6xz�8.24051�10�6yz�0.0000275633z2 
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Move 32: 

�0.181637�0.0132378x�5.57432�10�6x2�0.000997469y�3.09664�10�6xy�

1.70471�10�7y2�0.00914412z�2.50853�10�6xz�5.82315�10�6yz�0.0000178108z2 

Move 33: 

�1.35425�0.0120342x�1.36855�10�6x2�0.000710516y�1.55918�10�6xy�

2.37216�10�7y2�0.0103306z�5.01664�10�6xz�8.22007�10�6yz�0.0000115233z2 

Move 34: 

�0.221935�0.0143446x�6.53812�10�6x2�0.000958794y�1.0975�10�6xy�

2.96128�10�7y2�0.00895052z�5.55709�10�6xz�3.30902�10�6yz�9.75586�10�7z2 

Move 35: 

�1.34031�0.0128117x�2.8601�10�6x2�0.000666913y�2.8446�10�7xy�

2.68348�10�7y2�0.00981992z�5.02738�10�6xz�3.89887�10�6yz�1.49128�10�6z2 

Move 36: 

�0.255715�0.0145341x�5.31408�10�6x2�0.000641949y�1.22053�10�6xy�

7.35374�10�8y2�0.00903889z�0.0000167525xz�6.8738�10�7yz�0.0000126681z2 

Move 37: 

�1.17315�0.0136987x�1.66189�10�6x2�0.000662974y�5.23591�10�7xy�

3.183�10�7y2�0.00799443z�0.0000150853xz�3.006�10�6yz�5.52443�10�6z2 

Move 38: 

�0.108538�0.0145749x�1.88254�10�6x2�0.000699398y�4.22236�10�7xy�

2.41759�10�7y2�0.00727268z�0.0000147027xz�1.50719�10�6yz�9.72286�10�7z2 

Move 39: 

�1.281�0.0150188x�1.28283�10�6x2�0.000544859y�1.45805�10�6xy�

1.55606�10�7y2�0.00656979z�9.40797�10�7xz�4.21504�10�6yz�9.3528�10�6z2 
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Move 40: 

0.00821834�0.0163908x�6.71716�10�6x2�0.000534039y�1.36918�10�7xy�

8.74644�10�8y2�0.00699702z�3.21866�10�6xz�9.74231�10�7yz�9.09629�10�6z2 

Move 50: 

0.478788�0.0238406x�0.0000104875x2�0.000705451y�9.36295�10�7xy�

8.79864�10�8y2�0.00503608z�5.84642�10�7xz�6.46336�10�7yz�4.99071�10�6z2 

Figure 4.26 Evaluation Functions Generated by Bayesian Learning 
 

Using Evaluation Functions Generated by Bayesian Learning and the same three 

features as the original version of Mulan, a new version, Mulan--Bayesian, was created. 

The original version, Mulan-Original, used a linear combination of three features, 

0.2*Regions+0.5*Dominance+0.3*Min-Mobility, which was tuned using tournaments as 

described in the previous section. We set Mulan-Bayesian and Mulan-Original to play 

against each other based on two criteria: time and number of boards evaluated per move. 

For each tournament, we selected 100 initial positions from the opening book. For each 

selected initial position, two games between the two versions of Mulan were played. 

Each version played once as white and once as black. The results are listed in Table 4.25. 

 

Criterion Result 
(Win-Loss) 

Winning 
Percentage 

30 Seconds per 
Move 

55: 145 27.5% 

100000 leaf nodes 
per Move 

68: 132 34% 

 
Table 4.25 Tournament Results between Mulan-Bayesian and Mulan-Origianl 

  

Although Lee et al got a very good improvement by applying Bayesian learning 

to the game of Othello, the results of applying it to Amazons are not very promising. By 
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comparing the characteristics of two games, we think there are three possible reasons for 

this. 

First of all, we observed that the Mulan-Bayesian’s performance is better when 

using board evaluations instead of time as criterion. This is a major problem with 

Bayesion learning, efficiency. Using the functions obtained from Bayesion learning, the 

number of floating point multiplications needed to combine N features is 2N(N+1). This 

substantially affects the speed of evaluation.  

Secondly, mislabeled positions may decrease the accuracy of the evaluation 

function’s coefficients. This problem is more harmful for Amazons than the game of 

Othello. In Amazons, we know less about how to play Amazons, so we don’t have good 

experts to provide training data. So a poor subsequent move may cause a losing result for 

a winning position. In Lee et al’s experiments on the game of Othello, this less likely 

happens since typically Logistello plays better than any expert.  

Finally, the underlying distributions of the features we used in Mulan do not obay 

the Multivariate normal distribution assumption on which Bayesian learning largely 

depends. To investigate whether this assumption is true in our domain, the distribution of 

the three features from all 2000 training games were plotted in Figure 4.27-4.38. From 

these figures, we can see this assumption is not quite reasonable for our selected features.  
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Figure 4.27 Normalized Dominance Feature at Move 10 

 
Figure 4.28 Normalized Dominance Feature at Move 20 
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Figure 4.29 Normalized Dominance Feature at Move 30 

 

 
Figure 4.30 Normalized Dominance Feature at Move 40 
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Figure 4.31 Normalized Min-Mobility Feature at Move 10 

 

 
Figure 4.32 Normalized Min-Mobility Feature at Move 20 
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Figure 4.33 Normalized Min-Mobility Feature at Move 30 

 
Figure 4.34 Normalized Min-Mobility Feature at Move 40 
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Figure 4.35 Normalized Regions Feature at Move 10 

 
Figure 4.36 Normalized Regions Feature at Move 20 
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Figure 4.37 Normalized Regions Feature at Move 30 

 
Figure 4.38 Normalized Regions Feature at Move 40 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

 
5.1 Conclusions 

Throughout this thesis, we implemented and tested some major algorithms for 

selective and non-selective search. All these algorithms have been proved valuable in 

many domains, but their performance may vary for different games. Currently there are 

no published results about how well they perform in Amazon. Our experiments 

investigated this question experimentally. We found that for non-selective search, a 

combination of NegaScout, Iterative Deepening, Transposition Table, Killer Heuristic 

and History Heuristic can achieve the best result. We also tested two kinds of forward 

pruning enhancements, N-best search and Multi-ProbCut. Our results show that N-best 

search is superior to Multi-ProCut in Amazons. Two kinds of N-best selective search 

were implemented and tested in our experiment. One divides a move into two separated 

operations: queen-move and barricade-move. For each node, N promising queen-moves 

are selected first, and then M favorable barricade-moves are determined for each queen-

move. The other kind of N-best selective search simply selects F promising moves for 

each node. We found that this second approach gets better results; when we chose F=40, 

we got a 69% winning percentage comparing with the best non-selective search.   

Most successful game-playing programs apply heuristic evaluation functions at 

terminal nodes to estimate the probability that the current player will win. Typically, 

constructing a good evaluation function includes two working phrases:  

1) Selecting good features. 

2) Combining them appropriately to obtain a single numerical value.  
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Selecting features is important and difficult. We have to avoid too few features as 

well as redundant ones. We implemented the three most important published features of 

Amazons. Based on our practical playing experience on Amazons, we also designed four 

new features. To avoid redundant features, we divided all these features into three groups 

based on the board characteristics they evaluated. For each group, we used tournaments 

to select the most effective feature. The features we finally selected are Dominance, Min-

Mobility and Regions.  

Furthermore, we used tournaments to combine these features linearly. We divided 

the whole game to two phases: Before and after 30 moves. We found the best 

combination of features is 0.2*Regions+0.5*Dominance+0.3*Min-Mobility for the first 

30 moves, and a pure Dominance feature after that. 

The last question is whether we can apply Bayesian learning to Amazons 

effectively. To answer this question, we used our linear combination of features to create 

a version of Mulan called Mulan-Original. Using Mulan-Original as an expert, we 

collected training data and applied the Bayesian learning method to get a new version 

called Mulan-Bayesian. We used tournaments to compare these two versions of Mulan. 

The result shows that Bayesian learning doesn’t work out in Mulan. There may be three 

possible reasons: 1) The efficiency problem of floating point multiplications needed for 

evaluations generated by Bayesian learning; 2) Mislabeling of positions in Bayesian 

learning; 3) The underlying distributions of the features we selected don’t meet the 

Multivariate normal distribution assumption required by Bayesian learning.   
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5.2 Future Work 

In this section, some techniques and ideas related with future studies are 

discussed.  

 

5.2.1 Finding more useful features 

Finding more useful features is critical for creating a strong game playing 

program. It also requires both expert game knowledge and programming skill because of 

the well-known tradeoff between the complexity of the evaluation function and the 

number of positions we can evaluate in a given time. Thought Mulan has combined three 

important features and evolved to a strong Amazons playing program, there is still 

considerable room for improvement.  

 

5.2.2 Designing new automatic features combination method 

Though our experimental results on Bayesian Learning are not very impressive, 

we still believe automatic evaluation function construction has a brilliant future in 

Amazons. Many other new methods of automatic evaluation function have been proposed 

and achieved promising results on some complicated games  [34], and we believe that it 

is also possible to find out a good approach to suit Amazons.  

 

5.2.3 Quiescence Search  

Although we don’t have experiments to show this, we believe that Quiescence 

Search is beneficial for improving the play strength of Mulan. In Amazons, some 

“quiescent” positions such as “dead piece”, “region invasion” should be assessed 
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accurately, but they cannot be evaluated correctly without further search. Quiescence 

Search can increase the search depth for positions that have potential and should be 

explored further. Currently, applying Quiescence Search in Amazons is difficult since 

humans are still in the learning stage and haven’t accumulated enough information about 

“quiescent” positions. So further research is necessary to investigate how to implement 

Quiescence Search in Amazons and how useful Quiescence Search is in Amazon.  

 

5.2.4 Opening books and Endgame improvement 

Creating large endgame databases can extend the search horizon in the endgame 

phase. This is the approach taken by Arrow using combinatorial game theory. However, 

we find that combinatorially complicated positions rarely occur in play and the large-

scale dynamics of the early and mid-game seems to be more important. 

At the beginning of the game, a large opening book would be helpful. But one of 

the charms of Amazons is that we still don’t know enough about the game to be sure 

what the good opening moves are! This is another area for future research. 
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APPENDICES 

Appendix A. Tournament results of Mulan (Min-Mobility + Dominance version) 

Game1: Yamazon vs Mulan (10 Sec. per Move and Yamazon plays first) 

Mulan wins 5 squares. 

D1-D7 (G7)   D10-F8 (B4) 

J4-J6 (F10)   G10-E8 (J3) 

J6-I6 (F6)   E8-E2 (F1) 

G1-F2 (B6)   J7-H9 (B3) 

I6-H7 (C2)   E2-H5 (B5) 

A4-A1 (A6)   A7-C9 (C3) 

A1-D1 (D2)   H9-E6 (E2) 

H7-I8 (H9)   H5-I5 (G3) 

F2-F5 (E5)   F8-H8 (H2) 

F5-F4 (I4)   I5-H5 (H7) 

F4-G4 (H4)   E6-D5 (F7) 

G4-E4 (G4)   H5-J7 (I7) 

I8-I9 (J8)   H8-C8 (H8) 

D1-E1 (F2)   D5-D3 (F3) 

I9-H10 (C5)   J7-J5 (F5) 

D7-D9 (E8)   D3-D6 (G9) 

E4-D5 (E6)   C9-D10 (C9) 

D9-C10 (A8)   C8-B9 (B7) 

C10-D9 (D7)   D10-E9 (D10) 
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D9-D8 (B8)   J5-G5 (E3) 

D5-E4 (D5)   E9-F9 (G10) 

D8-E9 (F8)   B9-C8 (D9) 

E9-D8 (E7)   F9-E10 (E9) 

D8-C7 (C6)   G5-H6 (F4) 

H10-I10 (H10)  H6-H5 (J7) 

C7-D8 (C7)   C8-B9 (C8) 

E1-A1 (E1)   B9-B10 (B9) 

A1-A4 (A5)   B10-A9 (A10) 

A4-A3 (A4)   A9-B10 (A9) 

A3-C1 (D1)   B10-C10 (B10) 

E4-D4 (E4)   H5-H6 (H5) 

D4-D3 (D4)   H6-I5 (I6) 

D3-C4 (D3)   I5-J6 (J5) 

C1-A3 (C1)   J6-I5 (J6) 

I10-J10 (I10)   I5-H6 (G5) 

J10-J9 (J10)   E10-F9 (E10) 

J9-I9 (J9)   H6-I5 (H6) 

I9-I8 (I9)   I5-J4 (I5) 

A3-A2 (A3)   J4-I3 (J4) 

A2-B2 (B1)   I3-I2 (I3) 

B2-A2 (B2)   I2-H3 (I2) 

A2-A1 (A2)   H3-G2 (H3) 
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Game2: Mulan vs Yamazon (10 Sec. per Move and Mulan plays first)  

Mulan wins 9 squares. 

D1-D8 (E9)   A7-E3 (A7) 

J4-J5 (E10)   D10-B8 (I1) 

G1-G8 (F9)   J7-G4 (C4) 

G8-H9 (G9)   G10-J10 (J7) 

A4-A1 (I9)   G4-E6 (D5) 

J5-F5 (J9)   E6-H6 (G5) 

H9-E6 (I10)   H6-G6 (G8) 

D8-C7 (B7)   B8-C8 (B8) 

C7-H7 (I7)   C8-D7 (D6) 

E6-E8 (C8)   E3-C3 (A3) 

E8-D8 (E8)   C3-B2 (B1) 

F5-G4 (E2)   G6-I4 (G6) 

G4-H3 (C3)   B2-B6 (B2) 

H3-E3 (C5)   I4-G4 (F3) 

E3-F4 (F7)   D7-F5 (D7) 

H7-H6 (H3)   F5-E5 (E3) 

F4-G3 (H4)   E5-G7 (H7) 

H6-H5 (H6)   G7-E5 (E7) 

G3-E1 (G3)   E5-D4 (D2) 

E1-D1 (A4)   D4-D3 (C2) 

D8-C7 (C6)   B6-B3 (B6) 
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A1-A2 (A1)   D3-D4 (D3) 

D1-E1 (F2)   D4-H8 (J8) 

E1-F1 (G2)   H8-H10 (F10) 

F1-G1 (H2)   H10-G10 (H10) 

G1-H1 (I2)   G10-H9 (G10) 

H1-G1 (H1)   H9-I8 (H9) 

G1-F1 (G1)   I8-H8 (I8) 

F1-E1 (F1)   H8-G7 (F8) 

E1-D1 (E1)   G7-H8 (G7) 

D1-C1 (D1)   B3-B4 (B3) 

H5-I6 (H5)   B4-B5 (B4) 

I6-I5 (I6)   B5-A5 (B5) 

I5-J6 (J5)   A5-A6 (A5) 

J6-I5 (J6)   G4-D4 (G4) 

I5-I4 (I5)   D4-E4 (D4) 

I4-I3 (I4)   E4-F4 (E4) 

I3-J4 (J3)   F4-F5 (F4) 

J4-I3 (J4)   F5-E5 (F5) 

I3-J2 (I3)   E5-E6 (F6) 

J2-J1 (J2)   E6-E5 (E6) 

C7-D8 (C7) 
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Game3: Invader vs Mulan (10 Sec. per Move and Invader plays first) 

Mulan wins 11 squares.   

  1. G1 - G7 (D7)  2. G10 - E8 (I4) 

  3. A4 - A6 (E10)  4. D10 - F8 (A3) 

  5. A6 - B6 (E6)  6. F8 - F2 (E1) 

  7. J4 - H2 (J4)  8. A7 - C9 (H4) 

  9. D1 - C2 (C8)  10. E8 - G6 (G3) 

  11. C2 - F5 (F9)  12. G6 - G4 (I2) 

  13. F5 - F4 (J8)  14. G4 - F5 (H3) 

  15. F4 - F3 (D5)  16. J7 - I7 (I6) 

  17. F3 - D3 (C2)  18. I7 - H8 (G8) 

  19. H2 - G1 (G2)  20. F2 - C5 (F2) 

  21. D3 - E2 (C4)  22. C5 - B4 (C3) 

  23. E2 - H5 (D9)  24. F5 - F4 (C7) 

  25. G1 - F1 (D3)  26. F4 - E3 (E2) 

  27. G7 - F8 (F4)  28. C9 - A7 (B7) 

  29. H5 - H7 (E4)  30. B4 - E7 (B4) 

  31. B6 - A6 (D6)  32. E7 - G7 (E7) 

  33. H7 - I8 (I7)  34. H8 - H9 (H7) 

  35. A6 - A5 (C5)  36. E3 - C1 (D1) 

  37. A5 - A4 (A6)  38. C1 - B2 (B3) 

  39. A4 - A5 (B6)  40. G7 - F7 (G7) 

  41. F8 - D10 (B8)  42. A7 - A9 (B10) 
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  43. D10 - C9 (B9)  44. F7 - F8 (D8) 

  45. C9 - D10 (C10)  46. F8 - E8 (E9) 

  47. I8 - I9 (J9)  48. E8 - F8 (H10) 

  49. I9 - I8 (I10)  50. H9 - H8 (H9) 

  51. I8 - J7 (I8)  52. F8 - F5 (J5) 

  53. J7 - J6 (I5)  54. F5 - F6 (F7) 

  55. D10 - C9 (D10)  56. F6 - F5 (F6) 

  57. J6 - J7 (J6)  58. F5 - G6 (G5) 

  59. A5 - A4 (A5)  60. G6 - H5 (H6) 

  61. A4 - C6 (A4)  62. H5 - G6 (H5) 

  63. C6 - B5 (C6)  64. G6 - F5 (G6) 

  65. F1 - H1 (F1)  66. F5 - G4 (F5) 

  67. H1 - H2 (H1)  68. G4 - F3 (G4) 

  69. H2 - I1 (J2)  70. F3 - E3 (C1) 

  71. I1 - H2 (G1)  72. E3 - D4 (E5) 

  73. H2 - I3 (J3)  74. D4 - E3 (D4) 

  75. I3 - H2 (I3)  76. B2 - B1 (B2) 

  77. H2 - I1 (H2)  78. E3 - D2 (E3) 

  79. I1 - J1 (I1)  80. B1 - A2 (A1) 
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Game4: Mulan vs Invader (10 Sec. per Move and Mulan plays first) 

 Invader wins 13 squares. 

  1. D1 - D8 (E9)  2. G10 - G3 (G8) 

  3. J4 - F4 (F10)  4. D10 - C10 (C1) 

  5. D8 - C8 (D9)  6. A7 - D4 (D7) 

  7. C8 - C9 (B9)  8. D4 - F6 (G5) 

  9. G1 - H2 (J4)  10. G3 - F2 (H4) 

  11. F4 - E4 (D4)  12. J7 - I6 (H7) 

  13. A4 - A3 (A10)  14. F6 - D6 (E7) 

  15. E4 - F5 (G6)  16. D6 - B6 (F6) 

  17. C9 - B8 (C9)  18. F2 - C2 (C8) 

  19. H2 - I2 (E2)  20. I6 - I4 (H5) 

  21. F5 - E6 (C6)  22. C2 - B3 (D5) 

  23. E6 - F7 (F8)  24. I4 - I5 (G7) 

  25. B8 - G3 (D3)  26. I5 - I4 (I3) 

  27. I2 - J1 (H3)  28. C10 - E10 (F9) 

  29. G3 - C7 (B7)  30. I4 - J3 (H1) 

  31. J1 - I1 (I2)  32. B6 - B4 (B6) 

  33. I1 - F4 (D2)  34. J3 - J2 (J1) 

  35. A3 - A5 (C5)  36. J2 - I1 (G3) 

  37. F4 - F2 (H2)  38. B3 - D1 (A4) 

  39. A5 - B5 (A5)  40. D1 - G1 (E1) 

  41. B5 - C4 (C2)  42. E10 - B10 (E10) 
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  43. C7 - E5 (A9)  44. G1 - G2 (E4) 

  45. C4 - B3 (C3)  46. G2 - F3 (F5) 

  47. E5 - F4 (E3)  48. F3 - G2 (F1) 

  49. B3 - A3 (B3)  50. B4 - B5 (B4) 

  51. F2 - F3 (F2)  52. B5 - A6 (A8) 

  53. F4 - B8 (A7)  54. B10 - D10 (B10) 

  55. A3 - A2 (A3)  56. D10 - C10 (D10) 

  57. A2 - A1 (A2)  58. A6 - C4 (A6) 

  59. A1 - B2 (B1)  60. C4 - B5 (C4) 

  61. B2 - A1 (B2)  62. I1 - J2 (I1) 

  63. F7 - E8 (F7)  64. J2 - J3 (J2) 

  65. E8 - D8 (C7)  66. J3 - I4 (I10) 

  67. D8 - E8 (D8)  68. I4 - I8 (I9) 

  69. F3 - F4 (F3)  70. G2 - G1 (G2) 

  71. F4 - E5 (E6)  72. I8 - J7 (J10) 

  73. E5 - F4 (G4)  74. J7 - I8 (J9) 

  75. F4 - E5 (D6)  76. I8 - J7 (I7) 

  77. E5 - F4 (E5)  78. J7 - H9 (H8) 
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Appendix B. Tournament results of Mulan (0.3*Min-Mobility + 0.5*Dominance + 

0.2*Regions version) 

 

Game1: Yamazon vs Mulan (10 Sec. per Move and Yamazon plays first) 

Mulan wins 11 squares. 

D1-D7 (G7)   D10-F8 (B4) 

J4-J6 (F10)   G10-E8 (J3) 

J6-I6 (F6)   F8-C5 (F2) 

G1-G4 (G6)   C5-D5 (B5) 

D7-C7 (E5)   D5-B3 (A3) 

A4-A6 (B6)   A7-B7 (A7) 

I6-G8 (D5)   B3-D1 (A4) 

C7-C4 (F1)   D1-F3 (F5) 

C4-C5 (E3)   B7-C6 (B7) 

C5-C4 (E2)   C6-C5 (C9) 

G4-H4 (D4)   F3-I3 (H3) 

G8-F9 (F8)   J7-H9 (H5) 

F9-D9 (C8)   C5-D6 (C5) 

D9-E9 (D9)   D6-A9 (C7) 

E9-F9 (E9)   H9-G9 (G8) 

H4-I5 (I4)   G9-I7 (G9) 

F9-G10 (I8)   I7-J8 (H10) 

I5-G3 (F4)   J8-H6 (H9) 
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G3-J6 (I7)   I3-J4 (I5) 

J6-J8 (J5)   E8-F9 (E10) 

C4-D3 (C4)   J4-H2 (G2) 

J8-J10 (J6)   H6-H8 (I9) 

D3-E4 (F3)   H8-H7 (I6) 

A6-A5 (A6)   H2-I3 (J4) 

J10-J8 (J7)   I3-H4 (G5) 

J8-J9 (J8)   H4-I3 (H4) 

J9-J10 (J9)   I3-I2 (I3) 

J10-I10 (J10)   I2-I1 (I2) 

E4-D3 (E4)   I1-J2 (J1) 

D3-D1 (E1)   J2-I1 (J2) 

D1-A1 (D1)   I1-H1 (I1) 

A1-A2 (A1)   H1-G1 (H1) 

A2-D2 (D3)   G1-H2 (G1) 

D2-A2 (D2)   H2-G3 (H2) 

A2-B1 (C1)   G3-G4 (G3) 

B1-A2 (B1)   H7-H8 (H6) 

A2-B2 (A2)   H8-H7 (H8) 

B2-C2 (B2)   F9-E8 (F9) 

C2-C3 (C2)   E8-D8 (E8) 

C3-B3 (C3)   D8-D7 (D8) 
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Game2: Yamazon vs Mulan (10 Sec. per Move and Mulan plays first) 

Mulan wins 20 squares. 

D1-D8 (E9)   A7-E3 (A7) 

J4-J5 (E10)   D10-B8 (I1) 

G1-G7 (B7)   J7-H5 (H8) 

A4-C4 (C7)   H5-F5 (D5) 

C4-C2 (D3)   F5-F6 (G6) 

D8-C8 (B9)   G10-J7 (H7) 

G7-E7 (C9)   E3-G5 (G2) 

C8-E6 (C8)   G5-E5 (I5) 

J5-I6 (J6)   J7-G10 (G8) 

C2-C1 (G5)   F6-F4 (F8) 

E6-G4 (G3)   E5-E1 (E6) 

I6-I9 (F9)   E1-H1 (D1) 

C1-E3 (E4)   H1-H3 (I4) 

E7-F6 (E5)   F4-F2 (B2) 

E3-D2 (E3)   G10-I8 (J9) 

D2-E1 (E2)   B8-A9 (B8) 

F6-F7 (F3)   A9-B10 (D10) 

F7-E8 (C10)   F2-F1 (F2) 

G4-H4 (G4)   H3-I3 (H3) 

H4-H5 (H4)   I8-H9 (J7) 

H5-I6 (I8)   I3-J4 (J5) 
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I9-H10 (I10)   H9-I9 (J10) 

H10-H9 (H10)   I9-J8 (H6) 

H9-I9 (G9)   J8-I7 (J8) 

I6-H5 (I6)   B10-A10 (B10) 

I9-H9 (I9)   A10-A9 (A8) 

H9-G10 (F10)   A9-A10 (A9) 

G10-H9 (G10)   J4-J1 (J4) 

E1-D2 (E1)   F1-G1 (F1) 

D2-C2 (D2)   G1-H1 (G1) 

C2-C1 (C2)   H1-H2 (H1) 

C1-B1 (C1)   J1-J2 (J1) 

B1-A1 (B1)   J2-I2 (J2) 

A1-A2 (A1)   I2-I3 (J3) 

A2-A4 (A2)   I3-I2 (I3) 

A4-B4 (A3) 
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Game3: Invader vs Mulan (10 Sec. per Move and Invader plays first) 

Mulan wins 2 squares. 

  1. G1 - G7 (D7)  2. G10 - E8 (I4) 

  3. A4 - A6 (E10)  4. D10 - F8 (A3) 

  5. A6 - B6 (E6)  6. F8 - F2 (E1) 

  7. J4 - H2 (J4)  8. J7 - F3 (D3) 

  9. D1 - C2 (D1)  10. A7 - C9 (C3) 

  11. G7 - G8 (F9)  12. E8 - H5 (A5) 

  13. C2 - D2 (H6)  14. F3 - E4 (E3) 

  15. D2 - E2 (F3)  16. F2 - G3 (F2) 

  17. B6 - B8 (B3)  18. G3 - G7 (G1) 

  19. H2 - H4 (H3)  20. E4 - F4 (G4) 

  21. G8 - H8 (C8)  22. G7 - G9 (G8) 

  23. H8 - I9 (E5)  24. G9 - H8 (F6) 

  25. H4 - G3 (H4)  26. F4 - C4 (F4) 

  27. I9 - I8 (I5)  28. C4 - C7 (B7) 

  29. B8 - A7 (D4)  30. C7 - B6 (C7) 

  31. A7 - A10 (D10)  32. H5 - J7 (H7) 

  33. I8 - I9 (J8)  34. C9 - B9 (B10) 

  35. A10 - A7 (A10)  36. B9 - B8 (A8) 

  37. I9 - G9 (H9)  38. B8 - C9 (E7) 

  39. G9 - F8 (D8)  40. J7 - H5 (E8) 

  41. F8 - H10 (J10)  42. H5 - I6 (I10) 
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  43. H10 - G9 (F10)  44. I6 - H5 (J7) 

  45. G9 - H10 (G10)  46. H8 - I7 (I9) 

  47. H10 - F8 (E9)  48. I7 - H8 (G7) 

  49. A7 - A6 (C4)  50. B6 - B5 (B6) 

  51. A6 - A7 (B8)  52. H8 - G9 (H10) 

  53. F8 - F7 (G6)  54. G9 - F8 (G9) 

  55. A7 - A6 (A7)  56. H5 - I6 (J5) 

  57. E2 - C2 (B1)  58. I6 - I7 (H8) 

  59. G3 - I1 (I3)  60. I7 - I8 (J9) 

  61. C2 - B2 (A1)  62. I8 - I7 (I8) 

  63. I1 - H2 (H1)  64. I7 - I6 (I7) 

  65. B2 - C2 (A2)  66. I6 - H5 (G5) 

  67. C2 - B2 (C1)  68. H5 - I6 (H5) 

  69. B2 - C2 (B2)  70. I6 - J6 (I6) 

  71. C2 - D2 (C2)  72. B5 - A4 (B5) 

  73. D2 - E2 (D2)  74. A4 - B4 (A4) 

  75. E2 - F1 (E2)  76. B4 - C5 (B4) 

  77. F1 - G2 (G3)  78. C5 - C6 (C5) 

  79. G2 - F1 (G2)  80. C6 - D6 (C6) 

  81. H2 - I2 (H2)  82. D6 - D5 (D6) 

  83. I2 - I1 (J1)  84. D5 - E4 (D5) 

  85. I1 - I2 (I1)  86. E4 - F5 (E4) 

  87. I2 - J2 (I2)  88. C9 - C10 (D9) 
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Game4: Mulan vs Invader (10 Sec. per Move and Mulan plays first) 

Mulan wins 13 squares. 

  1. D1 - D8 (E9)  2. G10 - G3 (G8) 

  3. J4 - F4 (F10)  4. D10 - C10 (C1) 

  5. D8 - C8 (D9)  6. A7 - D4 (D7) 

  7. C8 - C9 (B9)  8. D4 - F6 (G5) 

  9. G1 - H2 (J4)  10. G3 - F2 (H4) 

  11. A4 - A6 (A10)  12. F2 - C2 (A4) 

  13. C9 - C3 (C9)  14. F6 - D6 (F6) 

  15. F4 - E4 (J9)  16. J7 - I6 (H7) 

  17. E4 - E8 (E2)  18. C2 - E4 (E3) 

  19. E8 - F8 (I5)  20. I6 - I9 (G7) 

  21. H2 - H3 (F3)  22. I9 - G9 (F9) 

  23. H3 - G4 (F4)  24. E4 - G6 (I6) 

  25. G4 - H3 (I2)  26. G6 - I4 (E8) 

  27. F8 - F7 (D5)  28. D6 - B4 (C5) 

  29. A6 - B6 (B5)  30. I4 - I3 (I4) 

  31. H3 - H2 (H3)  32. I3 - J2 (J1) 

  33. F7 - G6 (B1)  34. G9 - I7 (G9) 

  35. H2 - G1 (I1)  36. J2 - I3 (J3) 

  37. G1 - H1 (H2)  38. B4 - B3 (B2) 

  39. C3 - B4 (D4)  40. B3 - D3 (A3) 

  41. B4 - C3 (C2)  42. I7 - H6 (J8) 
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  43. B6 - D6 (E5)  44. C10 - B10 (E10) 

  45. D6 - C7 (A9)  46. B10 - C10 (D10) 

  47. H1 - G1 (G4)  48. I3 - J2 (I3) 

  49. C3 - C4 (C3)  50. D3 - D1 (F1) 

  51. C4 - D3 (D2)  52. D1 - E1 (G3) 

  53. G1 - G2 (F2)  54. E1 - D1 (E1) 

  55. G6 - H5 (G6)  56. C10 - B10 (C10) 

  57. C7 - C8 (C7)  58. H6 - I7 (H6) 

  59. C8 - B7 (B8)  60. I7 - I9 (H8) 

  61. B7 - C8 (B7)  62. I9 - H9 (I10) 

  63. C8 - D8 (C8)  64. H9 - I9 (I7) 

  65. D8 - E7 (F8)  66. I9 - H9 (G10) 

  67. E7 - E6 (F7)  68. H9 - I9 (H10) 

  69. E6 - E7 (D8)  70. I9 - I8 (H9) 

  71. E7 - E6 (E7)  72. I8 - I9 (J10) 

  73. E6 - F5 (E6)  74. I9 - I8 (I9) 

  75. F5 - E4 (F5)  76. I8 - J7 (I8) 

  77. D3 - C4 (D3)  78. J7 - J5 (J7) 

  79. C4 - B3 (C4)  80. J5 - J6 (J5) 

  81. B3 - A2 (A1) 
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