
 iii

THE EVOLUTION OF MULAN:

SOME STUDIES IN GAME-TREE PRUNING AND

EVALUATION FUNCTIONS IN THE GAME OF AMAZONS

BY

QIAN LIANG

B.S., Electronic Engineering,
South China University of Technology, 1994

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

 Computer Science

The University of New Mexico
Albuquerque, New Mexico

December, 2003

 iv

ACKNOWLEDGEMENTS

 I heartily acknowledge Dr. Cris Moore, my advisor and thesis chair, for his

guidance through the long time of working on this study. Without his continuous

encouragement, the completion of this thesis would have been simply impossible.

 I also thank Dr. Robert Veroff and Dr. Lance Williams, who shared their

extensive knowledge with me and give me expert opinions and ideas on the issues

involved in this thesis.

 My greatest gratitude also goes to Terry Van Belle, who provided a prototype of

the game of Amazons and gave me a lot of help with programming and AI game

techniques.

To my family, thanks for all the support over the years. And finally to my wife,

Ying Ning, you make my life bright.

 v

THE EVOLUTION OF MULAN:

SOME STUDIES IN GAME-TREE PRUNING AND

EVALUATION FUNCTIONS IN THE GAME OF AMAZONS

BY

QIAN LIANG

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

 Computer Science

The University of New Mexico
Albuquerque, New Mexico

December, 2003

 vi

THE EVOLUTION OF MULAN:

SOME STUDIES IN GAME-TREE PRUNING AND EVALUATION

FUNCTIONS IN THE GAME OF AMAZONS

by

Qian Liang

B.S., Electronic Engineering, South China University of Technology, 1994

M.S., Computer Science, University of New Mexico, 2003

ABSTRACT

 Amazons, as a relatively young game, has caught the attention of AI game

programmers. Though Amazons is a simple game for humans, it is difficult for

computers. It has 2176 possible moves at the initial position and about five hundred

possible moves on average during the game. This makes brute-force search highly

impractical. Hence, it is an excellent subject for AI techniques such as selective search

and evaluation functions.

In this project, we create a computer Amazons program—Mulan. Using this

program, we implemented and tested some popular Alpha-Beta enhancements and

forward pruning algorithms. For Chess, a variety of studies have been performed

investigating the relative performance of these techniques. But for Amazons, no one

seems to know how effective they are. We experimentally answered this question. For

studying evaluation functions in Amazons, we implemented and compared three existing

 vii

features used for Amazons and four new features we developed. Furthermore, starting

with the three features which gained the best results in our experiments, we combined

them to form an evaluation function using two methods: 1) linear combinations using

tournaments; 2) a pattern classification approach based on Bayesian learning. Though

Mulan is created as a test bed for Artificial Intelligence, it has evolved to a strong

Amazons playing program. Our test results show that Mulan can substantially beat some

strong Amazons playing programs such as Yamazon and Arrow.

 viii

TABLE OF CONTENTS

LIST OF FIGURES..xi

LIST OF TABLES ...xiv

CHAPTER 1. INTRODUCTION ...1

1.1 What is Amazons? ...2

1.1.1 Rules of Amazons..2

1.1.2 Notation ...3

CHAPTER 2 GAME TREE SEARCHING AND PRUNING..4

2.1 Game trees and Minimax Search ...4

2.2 The Alpha-Beta Algorithm ..8

2.3 Enhancements to the Alpha-Beta Algorithm ...10

2.3.1 Move ordering ...11

2.3.1.1 Iterative Deepening ...11

2.3.1.2 Transposition tables...12

2.3.1.3 Killer Move Heuristic..13

2.3.1.4 History Heuristic ...13

2.3.2 Minimal Window Search...16

2.3.2.1 NegaScout / PVS...16

2.3.2.2 MTD (f) ...19

2.3.3 Quiescence Search ...20

2.3.4 Forward Pruning ..21

2.3.4.1 N-Best Selective search...22

2.3.4.2 ProbCut..23

 ix

2.3.4.3 Multi-ProbCut ...25

2.4 Conclusions..28

CHAPTER 3 EVALUATION FUNCTIONS ...29

3.1 Introduction..29

3.2 Evaluation Features of Amazons ...29

3.2.1 Mobility ...30

3.2.2 Territory...31

3.2.3 Territory-and-Mobility ..32

3.3 Automatic Evaluation Function Construction..34

3.3.1 Samuel’s work on automatic feature combination ..34

3.3.1.1 Linear evaluation learning through self-play ..35

3.3.1.2 Nonlinear evaluation learning through book moves36

3.3.2 A pattern classification approach based on Bayesian learning..........................37

3.3.2.1 Bayesian learning ..37

3.3.2.2 Evaluation function learning ...39

3.4 Conclusion ...42

CHAPTER 4 EXPERIMENTAL RESULTS..43

4.1 Performances of Alpha-Beta Enhancements..43

4.1.1 Implementation..43

4.1.2 Experimental design ..51

4.1.3 Experiment results ...52

4.2 N-Best Selective Search versus Alpha-Beta with Enhancements............................69

4.2.1 Implementation..69

 x

4.2.2 Experiment design ...69

4.1.3 Experimental results ..70

4.3 ProbCut and Multi-ProbCut ..74

4.4 The Construction of the Evaluation Function ..86

4.4.1 New Features ...86

4.4.1.1 Min-Mobility...86

4.4.1.2 Regions..87

4.4.1.3 Ax & Bx ..89

4.4.1.4 Relative Distance Territory (RDT) ...89

4.4.2 Choosing good features ...91

4.4.3 Using Pattern Classification and Bayesian Learning to combine features100

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ...114

5.1 Conclusions..114

5.2 Future Work ...116

5.2.1 Finding more useful features ...116

5.2.2 Designing new automatic features combination method.................................116

5.2.3 Quiescence Search ...116

5.2.4 Opening books and Endgame improvement..117

APPENDICES...118

Appendix A. Tournament results of Mulan (Min-Mobility + Dominance version)118

Appendix B. Tournament results of Mulan (0.3*Min-Mobility + 0.5*Dominance +

0.2*Regions version)...126

REFERENCES..134

 xi

LIST OF FIGURES

Figure 1.1 The initial position of Amazons...3

Figure 2.1 MiniMax Search Tree ..5

Figure 2.2 Pseudo Code for NegaMax Algorithm ..7

Figure 2.3 NegaMax Search Tree ...7

Figure 2.4 Pseudocode for Alpha-Beta Algorithm..9

Figure 2.5 Alpha-Beta Search Tree...10

Figure 2.6 Alpha-Beta Search with History Heuristic ..15

Figure 2.7 Pseudocode for The NegaScout Algorithm ...18

Figure 2.8 Game Tree Showing NegaScount’s Superiority..18

Figure 2.9 Pseudocode for The MTD(f) Algorithm..20

Figure 2.10 Pesudocode of the ProbCut extension ...24

Figure 2.11 Pesudocode of MPC extension ..27

Figure 3.1 The procedure of the MSP function...32

Figure 3.2 The procedure of the TM function...33

Figure 4.1 Alpha-Beta Search with Transposition Tables ..47

Figure 4.2 Comparison of Iterative Deepening and direct search.....................................57

Figure 4.3 branching factor of different stages of Amazons...58

Figure 4.4 Time Comparison of Enhancements in Alpha-Beta ..59

Figure 4.5 Leaf Nodes Visited Comparison of Enhancements in Alpha-Beta..................60

Figure 4.6 Time Comparison of Enhancements in MTD(f)..62

Figure 4.7 Leaf Nodes Visited Comparison of Enhancements in MTD(f)63

Figure 4.8 Time Comparison of Enhancements in NegaScout ...65

 xii

Figure 4.9 Leaf Nodes Visited Comparison of Enhancements in NegaScout66

Figure 4.10 Time Comparison of Minimal Window Search...68

Figure 4.11 Leaf Nodes Visited Comparison of Minimal Window Search68

Figure 4.12 Relation between v=1 and v’=3 at move 5 ..80

Figure 4.13 Relation between v=1 and v’=3 at move 25 ..81

Figure 4.14 Relation between v=1 and v’=3 at move 40 ..81

Figure 4.15 Relation between v=2 and v’=4 at move 40 ..82

Figure 4.16 The procedure of the Regions feature..88

Figure 4.17 The procedure of the RDT feature ...90

Figure 4.18 Yamazon vs Mulan (without Regions feature): Yamazon plays red96

Figure 4.19 Yamazon vs Mulan (without Regions feature): Mulan plays red97

Figure 4.20 Invader vs Mulan (without Regions feature): Invader plays red97

Figure 4.21 Invader vs Mulan (without Regions feature): Mulan plays red98

Figure 4.22 Yamazon vs Mulan (with Regions feature): Yamazon plays red98

Figure 4.23 Yamazon vs Mulan (with Regions feature): Mulan plays red99

Figure 4.24 Invader vs Mulan (with Regions feature): Invader plays red99

Figure 4.25 Invader vs Mulan (with Regions feature): Mulan plays red100

Figure 4.26 Evaluation Functions Generated by Bayesian Learning..............................106

Figure 4.27 Normalized Dominance Feature at Move 10 ...108

Figure 4.28 Normalized Dominance Feature at Move 20 ...108

Figure 4.29 Normalized Dominance Feature at Move 30 ...109

Figure 4.30 Normalized Dominance Feature at Move 40 ...109

Figure 4.31 Normalized Min-Mobility Feature at Move 10 ...110

 xiii

Figure 4.32 Normalized Min-Mobility Feature at Move 20 ...110

Figure 4.33 Normalized Min-Mobility Feature at Move 30 ...111

Figure 4.34 Normalized Min-Mobility Feature at Move 40 ...111

Figure 4.35 Normalized Regions Feature at Move 10 ..112

Figure 4.36 Normalized Regions Feature at Move 20 ..112

Figure 4.37 Normalized Regions Feature at Move 30 ..113

Figure 4.38 Normalized Regions Feature at Move 40 ..113

 xiv

LIST OF TABLES

Table 2.1 Check depths for different heights h ...27

Table 4.1 Fields for the Transposition Table Entry ..45

Table 4.2 Search depths for different stages ...52

Table 4.3 Comparison of Iterative Deepening and direct search57

Table 4.4 branching factor of different stages of Amazons ..58

Table 4.5 Time Comparison of Enhancements in Alpha-Beta..59

Table 4.6 Leaf Nodes Visited Comparison of Enhancements in Alpha-Beta61

Table 4.7 Time Comparison of Enhancements in MTD(f) ...62

Table 4.8 Leaf Nodes Visited Comparison of Enhancements in MTD(f).........................64

Table 4.9 Time Comparison of Enhancements in NegaScout ..65

Table 4.10 Leaf Nodes Visited Comparison of Enhancements in NegaScout..................67

Table 4.11 Search Depths for Different Stages...70

Table 4.12 Comparison of N-best Searches and Brute-Force (NITKH)...........................71

Table 4.13 Tournament Results between N-best search and Brute-Force (NITKH)74

Table 4.14 Check depths for different heights h used in Mulan75

Table 4.15 Search depths for different stages ...75

Table 4���������	
	����������� �	�
���
	�������	����	��	�����76

Table 4.17 Comparison of Multi-ProbCut and Brute-Force (NITKH)84

Table 4.18 Tournament results between Multi-ProbCut and Brute-Force (NITKH)........85

Table 4.19 RDT VS Dominance with 100000 Leaf Positions per Move..........................93

Table 4.20 Using RDT in First 15 moves against Dominance with 100000 Leaf Positions

per Move...93

 xv

Table 4.21 Min-Mobility+Dominance VS Dominance...94

Table 4.22 TM+Dominance vs Dominance (100000 leaf pos. per move)96

Table 4.23 TM+Dominance vs Dominance (10 Sec. per Move)96

Table 4.24 Regions+Min-Mobility+Dominance vs Min-Mobility+Dominance96

Table 4.25 Tournament Results between Mulan-Bayesian and Mulan-Origianl............106

 iii

 1

CHAPTER 1 INTRODUCTION

In the past decades, researchers have put a lot of effort into improving the strength

of computer program for games such as Othello, Checkers, and Chess -- not just because

it is fun, but also because games are useful test beds for Artificial Intelligence. Many

search algorithms and pattern recognition methods can be easily tested on game playing

programs. After years of hard work, many amazing results have been obtained. One of

the most impressive examples is Deep Blue’s defeat of Garry Kasparov, the World Chess

Champion, in 1997 [4]. However, for some games such as Shogi(Japanese Chess) and Go,

computers still have considerable room for improvement and humans are still far superior.

Amazons, as a relative young game, has caught the attention of AI game

programmers. There are two reasons for this. First, though Amazons is a simple game for

humans, it is difficult for computers. Amazons has 2176 possible moves at the initial

positions and about five hundred possible moves on average during the game. Since this

large branching number makes brute-force search impractical, Amazons is an excellent

subject for the study of search algorithms and evaluation functions. Secondly, in

Amazons, humans and computers are still in a stage of learning from each other. Since

Amazons is a newly invented game, there are not many mature strategies known.

Therefore, programmers have to develop implicit strategic knowledge gained from their

own playing experience and convert them into rules which can be used by computers.

This is a far more challenging and exciting experience than creating game playing

programs for more mature games such as Chess.

 2

1.1 What is Amazons?

The game of Amazons is a simple board game invented by Argentinian Walter

Zamkauskas in 1988. Amazons shares many characteristics with other games, such as

Chess and Go. On one hand, it has a Go-like subgoal of controlling and enlarging

territory. On the other hand, players have to keep the mobility of their own pieces as large

as possible. This is just the idea which has been used in some other board games like

Othello, Checkers, and Chess.

1.1.1 Rules of Amazons

Amazons is a two-person, perfect-information and zero-sum game. Two players

compete on a board of size10*10 and each side has four queens (called amazons). Figure

1.1 shows the initial position of the game. The rules can be summarized as the following:

(1) Two players alternate choosing an amazon of their color to move. In this thesis

we assume the player with white pieces moves first.

(2) The amazons move like chess queens except they cannot capture. After each

move, an amazon shoots an arrow to burn off a square reachable by second queen move

from its position.

(3) Any amazon or arrow cannot move to or pass over a square that is burnt off or

occupied by another queen.

 (4) The last player who is able to complete a move is the winner.

 3

Figure 1.1 The initial position of Amazons

1.1.2 Notation

In this thesis, the columns on the board are labeled by letters (a to j) and rows by

number (1 to 10). A move is denoted as initial_position – end_position(shoot). For

example, d1-d6 (i6) means “amazon at d1 moves to d6 and then shoots an arrow to i6”.

 4

CHAPTER 2 GAME TREE SEARCHING AND PRUNING

In this chapter, we concentrate on game tree searching and pruning aspects.

Section 2.1 presents background knowledge on game playing programs: how to build a

game tree and how to decide the next move. In section 2.2, we further introduce the most

successful refinement of minimax search—the alpha-beta algorithm. Section 2.3 is about

some of the most important enhancements to alpha-beta algorithm based on following

principles: move ordering, minimal window search, quiescence search and forward

pruning. Then we conclude this chapter in Section 2.4. For more information about game

tree searching and pruning, we refer to [11].

2.1 Game trees and Minimax Search

Almost all game playing programs use a game tree to represent positions and

moves. Nodes represent game positions, and the root node corresponds to the current

position of the game. The branches of a node represent the legal moves from the position

represented by the node. A node is called a leaf if it doesn’t have a successor. Using the

rules of the game, we can evaluate a leaf as a win, lose, draw, or a specific score.

But unfortunately the whole game tree size is tremendously huge for almost all

interesting games. For example, checkers is 2010 , and chess is 4010 . The total number of

nodes in game tree is roughly DW , where W stands for the number of possible moves on

average for each node, and D is the typical game length. For Amazons game, W is about

479 in randomized computer-game playing and D is around 80 [33]. Therefore, no any

practical algorithm can manage such a full tree due to lack of time.

 5

One solution of such games is to stop generating the tree at a fixed depth, d, and

use an evaluation function to estimate the positions d moves ahead of the root. In this

thesis, we will use the term ply, which was first introduced by Samuel [5], to represent

the depth of a game tree. The nodes at the deepest layer will be leaves. Typically, the

value of a leaf, estimated by the evaluation function, is represented the number in

proportion to the chance of winning the game.

Game playing programs depend on game tree search to find the best move for the

current position, assuming the best play of the opponent. In a two-person game, two

players choose a legal move alternately, and both of them intuitively try to maximize

their advantage. Because of this reason, finding the best move for a player must assume

the opponent also plays his/her best moves. In other words, if the leaves are evaluated on

the viewpoint of player A, player A will always play moves that maximize the value of

the resulting position, while the opponent B plays moves that minimize the value of the

resulting position. This gives us the MiniMax algorithm.

Player A: Maximize

Opponent B: Minimize

Player A: Maximize

Figure 2.1 MiniMax Search Tree

B 6

D 6

 6 5 3 7 0

E 7

C 4

F 4

 1 4 2 8 9

G 9

A 6

I
PC

PC

PC

PC

H

 6

Figure 2.1 simulates a MiniMax search in a game tree. Every leaf has a

corresponding value, which is approximated from player A’s viewpoint. When a path is

chosen, the value of the child will be passed back to the parent. For example, the value

for D is 6, which is the maximum value of its children, while the value for C is 4, which

is the minimum value of F and G. In this example, the best sequence of moves found by

the maximizing / minimizing procedure is the path through nodes A, B, D and H, which

is called the principal continuation [7]. The nodes on the path are denoted as PC

(principal continuation) nodes.

For simplicity, we can modify the game tree values slightly and use only

maximization operations. The trick is to maximize the scores by negating the returned

values from the children instead of searching for minimum scores, and estimate the

values at leaves from the player’s own viewpoint. This is called the NegaMax algorithm.

Since most game-playing programs examine large trees, game tree search algorithms are

commonly implemented as a depth-first search, which requires memory only linear with

the search depth. Figure 2.2 is the pesudocode of NegaMax algorithm, implemented as a

depth-first search, and Figure 2.3 illustrates the NegaMax procedure using the same game

tree as Figure 2.1.

 // pos : current board position

 // d: search depth

 // Search game tree to given depth, and return evaluation of root node.

 int NegaMax(pos, d)

 {

 if (d=0 || game is over) return Eval (pos);

 // evaluate leaf position from current player’s standpoint

 7

 score = - INFINITY; // present return value

 moves = Generate(pos); // generate successor moves

 for i =1 to sizeof(moves) do // look over all moves

 {

 Make(moves[i]); // execute current move

 // call other player, and switch sign of returned value

 cur = -NegaMax(pos, d-1);

 // compare returned value and score value, update it if necessary

 if (cur > score) score = cur;

 Undo(moves[i]); // retract current move

 }

 return score;

 }

Figure 2.2 Pseudo Code for NegaMax Algorithm

Figure 2.3 NegaMax Search Tree

A NegaMax search has to evaluate every leaf of the game tree. For a uniform tree

with exactly W moves at each node, a d-ply NegaMax search will evaluate dW leaves.

This makes a deeper search of a “bushy” tree impossible. Fortunately, a refinement we

will talk about in next section, Alpha-Beta pruning, can reduce the amount of work

D 6 (6, 5, 3)

B -6 (-6, -7)

 -6 -5 -3 -7 0

E 7 (7, 0)

C -4 (-4, -9)

F 4 (1, 4, 2)

 -1 -4 -2 -8 -9

G 9 (8, 9)

A 6 (6, 4)

 8

considerably: in the best case, to twice the depth we might reach using NegaMax search

in same amount of time.

2.2 The Alpha-Beta Algorithm

As we mentioned in previous section, it is not necessary to explore all the nodes

to determine the minimax value for the root. It can be proved that large chunks of the

game tree can be pruned away. Knuth and Moore [8] showed that the minimax value of

the root can be obtained from a traversal of a subset of the game tree, which has at most

 12/2/ ++ dd WW leaves, if the “best” move is examined first at every node.

McCarthy (1956) was the first to realize that pruning was possible in a minimax

search, but the first thorough solution was provided by Brudno (1963) [9]. A few years

later, Knuth and Moore (1975) [10] further refined it and proved its properties.

The success of alpha-beta search is achieved by cutting away uninteresting

chunks of the game tree. For example, max(6, min(5, A)) and min(5, max(6, B)) are

always equal to 6 and 5 respectively, no matter what values A and B are. Therefore, we

can prune the subtrees corresponding to A and B during game tree search. To realize

these cut-offs, the alpha-beta algorithm employs a search window (alpha, beta) on the

expected value of the tree. Values outside the search window, i.e., smaller than alpha or

larger than beta, cannot affect the outcome of the outcome of the search.

Figure 2.4 shows the pseudocode for the alpha-beta algorithm in NegaMax form.

In order to return the correct minimax value, alpha-beta search should be invoked with an

initial window of alpha = -∞ and beta = ∞.

 // pos : current board position

 9

 // d: search depth

 // alpha: lower bound of expected value of the tree

 // beta: upper bound of expected value of the tree

 // Search game tree to given depth, and return evaluation of root.

 int AlphaBeta(pos, d, alpha, beta)

 {

if (d=0 || game is over)

 return Eval (pos); // evaluate leaf position from current player’s standpoint

score = - INFINITY; // preset return value

moves = Generate(pos); // generate successor moves

for i =1 to sizeof(moves) do // look over all moves

{

 Make(moves[i]); // execute current move

 //call other player, and switch sign of returned value

 cur = - AlphaBeta(pos, d-1, -beta, -alpha);

 //compare returned value and score value, note new best score if necessary

 if (cur > score) score = cur;

 if (score > alpha) alpha = score; //adjust the search window

 Undo(moves[i]); // retract current move

 if (alpha >= beta) return alpha; // cut off

}

return score;

 }

Figure 2.4 Pseudocode for Alpha-Beta Algorithm

In order to illustrate the alpha-beta search process we discuss an example.

Figure2.5 shows the same game tree as Figure 2.3, in which one node (L) and one subtree

(the subtree of G) are pruned by alpha-beta search.

 10

Figure 2.5 Alpha-Beta Search Tree

The leftmost branches are traversed with the initial window (-∞, ∞). After having

evaluated the left child of D, the middle child of D is searched with the window (-∞, -6)

since the value for D is at least 6. At node E, alpha is updated to -6 after completing the

search of left child D. So the search window of the right sibling E is (-∞, 6). After E’s left

child is visited, the new alpha is adjusted to 7, which is larger than beta, so its right

sibling L is cut off. We can also look this procedure as determining the value of min(6,

max(7, -L)), or max(-6, - max(7, -L)) in NegaMax form. No matter what value L is, the

result we get is always 6, or –6 in NegaMax form.

2.3 Enhancements to the Alpha-Beta Algorithm

 In the last three decades, a large number of enhancements to the Alpha-Beta

algorithm have been developed. Many of them are used in practice and can dramatically

improve the search efficiency. In the section, we will briefly discuss some major Alpha-

Beta enhancements, which are based on one or more of the four principles: move

ordering, minimal window search, quiescence search and forward pruning.

B -6

D 6

 -6 -5 -3 -7 --

E 7

C -4

F 4

 -1 -4 -2 --- ---

G --

A 6

(-∞, -6)

(-∞, ∞)

(-∞, ∞)

(-∞, 6)

(-∞, -6)

(-∞, -6)

(-6, ∞)

(6, ∞)

(-∞, -6) (-∞, -6)

(-∞, ∞)

(-∞, -6) L

 11

2.3.1 Move ordering

 The efficiency of the alpha-beta algorithm depends on the move search order. For

example, if we swap the positions of D, E and F, G in Figure 2.5, then a full tree search

will be necessary to determine the value of the root. To maximize the effectiveness of

alpha-beta cut-offs, the “best” move should be examined first at every node. Hence many

ordering schemes have been developed for ordering moves in a best-to-worst order. Some

techniques such as iterative deepening, transposition tables, killer moves and the history

heuristic have proved to be quite successful and reliable in many games.

2.3.1.1 Iterative Deepening

Iterative deepening was originally created as a time control mechanism for game

tree search. It handles the problem that how we should choose the search depth depends

on the amount of time the search will take. A simple fixed depth is inflexible because of

the variation in the amount of time the program takes per move. So David Slate and Larry

Atkin introduced the notion of iterative deepening [12]: start from 1-ply search,

repeatedly extend the search by one ply until we run out of time, then report the best

move from the previous completed iteration. It seems to waste time since only the result

of last search is used. But fortunately, due to the exponential nature of game tree search,

the overhead cost of the preliminary D-1 iterations is only a constant fraction of the D-ply

search.

Besides providing good control of time, iterative deepening is usually more

efficient than an equivalent direct search. The reason is that the results of previous

iterations can improve the move ordering of new iteration, which is critical for efficient

 12

searching. So compared to the additional cut-offs for the D-ply search because of

improved move order, the overhead of iterative deepening is relatively small.

Many techniques have proved to further improve the move order between

iterations. In this thesis, we focus on three of them: transposition tables, killer moves and

history heuristic.

2.3.1.2 Transposition tables

In practice, interior nodes of game trees are not always distinct. The same position

may be re-visited multiple times. Therefore, we can record the information of each sub-

tree searched in a transposition table [12, 15, 16]. The information saved typically

includes the score, the best move, the search depth, and whether the value is an upper

bound, a lower bound or an exact value. When an identical position occurs again, the

previous result can be reused in two ways:

1) If the previous search is at least the desired depth, then the score corresponding to

the position will be retrieved from the table. This score can be used to narrow the

search window when it is an upper or lower bound, and returned as a result

directly when it is an exact value.

2) Sometimes the previous search is not deep enough. In such a case the best move

from the previous search can be retrieved and should be tried first. The new

search can have a better move ordering, since the previous best move, with high

probability, is also the best for the current depth. This is especially helpful for

iterative deepening, where the interior nodes will be re-visited repeatedly.

To minimize access time, the transposition table is typically constructed as a hash

table with a hash key generated by the well-known Zobrist method [13].

 13

For a detailed description about how to implement alpha-beta search with

transposition tables, we refer to [11].

2.3.1.3 Killer Move Heuristic

The transposition table can be used to suggest a likely candidate for best move

when an identical position occurs again. But it can neither order the remaining moves of

revisited positions, nor give any information on positions not in the table. So the “killer

move” heuristic is frequently used to further improve the move ordering.

The philosophy of the killer move heuristic is that different positions encountered

at the same search depth may have similar characters. So a good move in one branch of

the game tree is a good bet for another branch at the same depth. The killer heuristic

typically includes the following procedures:

1) Maintain killer moves that seem to be causing the most cutoffs at each depth.

Every successful cutoff by a non-killer move may cause the replacement of the

killer moves.

2) When the same depth in the tree is reached, examine moves at each node to see

whether they match the killer moves of the same depth; if so, search these killer

moves before other moves are searched.

A more detailed description and empirical analysis of the killer move heuristic

can be found in [17].

2.3.1.4 History Heuristic

The history heuristic, which is first introduced by Schaeffer [18], extends the

basic idea of the killer move heuristic. As in the killer move heuristic, the history

 14

heuristic also uses a move’s previous effectiveness as the ordering criterion. But it

maintains a history for every legal move instead of only for killer moves. In addition it

accumulates and shares previous search information throughout the tree, rather than just

among nodes at the same search depth.

Figure 2.6 illustrates how to implement the history heuristic in the alpha-beta

algorithm. The bold lines are the part related to the history heuristic. Note that every time

a move causes a cutoff or yields the best minimax value, the associated history score is

increased. So the score of a move in the history table is in proportion to its history of

success.

 // pos : current board position

 // d: search depth

 // alpha: lower bound of expected value of the tree

 // beta: upper bound of expected value of the tree

 // Search game tree to given depth, and return evaluation of root.

 int AlphaBeta(pos, d, alpha, beta)

 {

if (d=0 || game is over)

 return Eval (pos);

score = - INFINITY; // preset return value

moves = Generate(pos); // generate successor moves

for i =1 to sizeof(moves) do // rating all moves

 rating[i] = HistoryTable[moves[i]];

Sort(moves, rating); // sorting moves according to their history scores

for i =1 to sizeof(moves) do { // look over all moves

 Make(moves[i]); // execute current move

 //call other player, and switch sign of returned value

 cur = - AlphaBeta(pos, d-1, -beta, -alpha);

 15

 //compare returned value and score value, note new best score if necessary

 if (cur > score) {

score = cur;

bestMove = moves[i]; // update best move if necessary

 }

 if (score > alpha) alpha = score; //adjust the search window

 Undo(moves[i]); // retract current move

 if (alpha >= beta) goto done; // cut off

}

done:

 // update history score

 HistoryTable[bestMove] = HistoryTable[bestMove] + Weight(d);

 return score;

 }

Figure 2.6 Alpha-Beta Search with History Heuristic

Two questions remain for the implementation of the history heuristic above. The

first one is how to map moves to the index of history table. For Amazons, we use a

method similar to [33]. We divide a move into two separate parts, the queen move and

the barricade move. So all queen moves can be fixed in a 10*10*10*10 array, whose

index is generated by locations of from-square and to-square. Similarly, a 10*10 array is

used for barricade moves.

The other question is how to weight results obtained from different search depths.

Two reasons cause us to use d2 , as suggested by Schaeffer [18], as the weight in our

program: first, we should increase a higher score for successful moves on deeper

searches, and second, we should increase a higher score for successful moves near the

root of the tree.

 16

A well-known problem of the history heuristic is that a good move at the current

stage may be overshadowed by its previous bad history. To overcome this problem, we

divide all history scores by 2 before every new search.

2.3.2 Minimal Window Search

In the Alpha-Beta procedure, the narrower the search window, the higher the

possibility that a cutoff occurs. A search window with alpha = beta –1 is called the

minimal window. Since it is the narrowest window possible, many people believe that

applying minimal window search can further improve search efficiency. Some alpha-beta

refinements such as NegaScout and MTD(f) are derived from minimal window search.

For some games with bushy trees, they provide a significant advantage. Since bushy trees

are typical for Amazons, minimal window search has the potential of improving its

search power.

2.3.2.1 NegaScout / PVS

NegaScout [19] and Principal Variation Search (PVS) [20] are two similar

refinements of alpha-beta using minimal windows. The basic idea behind NegaScout is

that most moves after the first will result in cutoffs, so evaluating them precisely is

useless. Instead it tries to prove them inferior by searching a minimal alpha-beta window

first. So for subtrees that cannot improve the previously computed value, NegaScout is

superior to alpha-beta due to the smaller window. However sometimes the move in

question is indeed a better choice. In such a case the corresponding subtree must be

revisited to compute the precise minimax value.

 17

Figure 2.7 demonstrates NegaScout search procedures. Note that for the leftmost

child moves[1], line 9 represents a search with the interval (-beta, -alpha) whereas a

minimal window search for the rest of children. If the minimal window search fails, i.e.,

(cur > score) at line 10, that means the corresponding subtree must be revisited with a

more realistic window (-beta, -cur) (line 15) to determine its exact value. The conditions

at line 11 show that this re-search can be exempted in only two cases: first, if the search

performed at line 9 is identical to actual alpha-beta search, i.e., n=beta, and second, if the

search depth is less than 2. In that case NegaScout’s search always returns the precise

minimax value.

// pos : current board position

// d: search depth

// alpha: lower bound of expected value of the tree

// beta: upper bound of expected value of the tree

// Search game tree to given depth, and return evaluation of root.

1 int NegaScout(pos, d, alpha, beta) {

2 if (d=0 || game is over)

3 return Eval (pos);

4 score = - INFINITY; // preset return value

5 n = beta;

6 moves = Generate(pos); // generate successor moves

7 for i =1 to sizeof(moves) do { // look over all moves

8 Make(moves[i]); // execute current move

9 cur = -NegaScout(pos, d-1, -n, -alpha);

10 if (cur > score) {

11 if (n = beta) OR (d <= 2)

12 score = cur;

13 else

 18

15 score = -NegaScout(pos, d-1, -beta, -cur);

}

16 if (score > alpha) alpha = score; //adjust the search window

17 Undo(moves[i]); // retract current move

18 if (alpha >= beta) return alpha; // cut off

19 n = alpha + 1;

 }

20 return score;

}

Figure 2.7 Pseudocode for The NegaScout Algorithm

Figure 2.8 illustrates how NegaScout prunes nodes (node N and O) which alpha-

beta must visit. After the left subtree has been visited, NegaScout gets the temporary

minimax value cur = 6. So the right successor is visited with the minimal window (-7, -

6). Then at node F, the leftmost child’s value (-9) causes cutoffs of its right successors (at

line 18 in Figure 2.7).

Figure 2.8 Game Tree Showing NegaScount’s Superiority

A good move ordering is even more favorable to NegaScout than to alpha-beta.

The reason is that the number of re-searches can be dramatically reduced if the moves are

D 6

 M N O

(-∞, ∞) (-7, -6)

(-∞, ∞)

B -6

 -6 -5 -3 -7 --

E 7

C -4

F --

 -9 --- --- -4 -1

G 4

A 6

(-7, -6) (-∞, ∞)

(5, 6)

(-∞, -6)

(-∞, -6)

(-6, -5)

(6, 7)
(6, 7)

(-7, -6) (-7, -6)

 19

sorted in a best-first order. So other move ordering enhancements such as iterative

deepening, the killer heuristic, etc, can be expected to give more improvement to

NegaScout than to alpha-beta.

When performing a re-search, NegaScout has to traverse the same subtree again.

This expensive overhead of extra searches can be prevented by caching previous results.

Therefore a transposition table of sufficient size is always preferred in NegaScout.

2.3.2.2 MTD (f)

MTD(f) [21] is a new alpha-beta refinement which always searches with minimal

windows. Minimal window search can cause more cutoffs, but it can only return a bound

on the minimax value. To obtain the precise minimax value, MTD(f) may have to search

more than once, and use returned bounds to converge toward it.

The general idea of MTD(f) is illustrated by figure 2.9. Note that the score for

node “pos” is bound by two values: upper and lower bound. After each AlphaBeta search,

the upper or lower bound is updated. When both the upper and lower bound collide at f,

i.e. both the minimal window search (f-1, f) and (f, f+1) return f, the minimax score for

node “pos” is assured to be f.

 // pos : current board position

 // d: search depth

 // f: first guess of expected value of the tree

 // Search game tree to given depth, and return evaluation of root.

 int MTDF(node pos, int d, int f) {

int score = f; // preset return value

// initialize lower and upper bounds of expected

upperBound = + INFINITY;

 20

lowerBound = - INFINITY; // evaluation of root

while (upperBound > lowerBound) do {

 if (score = = lowerBound) then beta = score + 1;

 else beta = score;

 score = AlphaBeta(pos, beta – 1, beta, d); // minimal window search

 // re-set lower and upper bounds of expected

 if (score < beta) then upperBound = score;

 else lowerBound = score; // evaluation of root

}

return score;

 }

Figure 2.9 Pseudocode for The MTD(f) Algorithm

In MTD(f), the argument f is our first guess of the expected minimal value. The

better this first guess is, the fewer minimal searches are needed. In iterative deepening

search, the new iteration typically uses the result of the previous iteration as its best

guess. For some games, the values found for odd and even search depths vary

considerably. In that case feeding MTD(f) its return value of two plies ago, not one, may

be even better.

Similar to NegaScout / PVS, MTD(f) also depends on the usage of a transposition

table to reduce the overhead of re-searching, so a good transposition table is essential to

the performance of MTD(f).

2.3.3 Quiescence Search

A fixed-depth approximate algorithm searches all possible moves to the same

depth. At this maximum search depth, the program depends on the evaluation of

intermediate positions to estimate their final values. But actually all positions are not

 21

equal. Some “quiescent” positions can be assessed accurately. Other positions may have a

threat just beyond the program’s horizon (maximum search depth), and so cannot be

evaluated correctly without further search.

 The solution, which is called quiescence search, is increasing the search depth for

positions that have potential and should be explored further. For example, in chess

positions with potential moves such as capture, promotions or checks, are typically

extended by one ply until no threats exist. Although the idea of quiescence search is

attractive, it is difficult to find out a good way to provide automatic extensions of non-

quiescence positions.

 We did not implement quiescence search in our experiments. The first reason is

because it is hard to apply the idea of quiescence search in Amazons. In relatively new

games such as Amazons, humans are still in the learning stage, so not enough strategic

knowledge is known about the game to decide what kind of positions should be extended.

Another very important reason is it is very difficult to quantify the effect of the quiescent

search. A fair way of comparing different quiescence searches is difficult to find.

Therefore we decided not to implement quiescence search for the moment, but try to

develop better evaluation functions to avoid threats beyond the horizon.

2.3.4 Forward Pruning

Forward pruning discards some seemingly unpromising branches to reduce the

size of the game tree. The depth of the search tree explored strongly influences the

strength of the game-playing program. So sometimes exploring the best moves more

deeply is better than considering all moves. Many techniques have been developed to

 22

perform forward pruning. For example, N-best selective search [16] considers only the N-

best moves at each node. Other methods, such as ProbCut and Multi-ProbCut, developed

by Michael Buro [22, 23], use the result of a shallow search to decide with a prescribed

possibility whether the return value of a deep search will fall into the current search

window. Although forward pruning can reduce the tree size dramatically, it is also error

prone. The major problem is that the best move may be excluded because of its bad

evaluation value at a low level in the game tree.

2.3.4.1 N-Best Selective search

To find out a good selection criterion, we need to consider the tradeoff between

reducing the possibility of cutting off the best move and increasing the search depth. In

our experiments, we implemented N-best selective search in two ways. Both of them use

the board evaluation function as the selection criterion. One simply selects N promising

moves for each node. The other divides a move into two separate operations: queen-move

and arrow-location. For each node, N promising queen-moves are selected first, and then

M favorable arrow-locations are determined for each queen-move. Obviously the second

approach can further reduce the size of the game tree. On the other hand, the chance of

cutting off decisive variations during moves selections may also be increased.

We can order moves based on board evaluation values obtained during move

selection. This will give us a very good move ordering and prune more branches during

alpha-beta search. For different evaluation functions, the best selective factor N may be

different. For example, for faster but worse estimators, a bigger N should be used to

increase the possibility that the best move is chosen. To compare the true performance of

 23

different evaluation functions, we tune N for every evaluator and chose the value with

best performance.

2.3.4.2 ProbCut

The idea of ProbCut is based on the assumption that evaluations obtained from

searches of different depths are strongly correlated. So the result V_D’ of a shallow

search at height d’ can be used as a predictor for the result V_D of deeper search at height

d. Before a deeper search is performed, the position is first searched to a shallow depth

d’. From the return value, we predict the probability that the deeper search will lie outside

the current (alpha, beta) window. If it is high, the deeper search is ignored since it is

unlikely to affect the final result. Otherwise, the deeper search is performed to obtain the

precise result. Note that the effort of shallow search is always negligible compared to a

relatively expensive deeper search.

Michael Buro [22] suggested that V_D and V_D’ are related by a linear

expression V_D = a * V_D’ + b + e, where the coefficients a and b are real numbers and

e is a normally distributed error term with mean 0 and variance 2σ . For stable evaluation

functions, we can expect that a �������������� 2σ is small. So we can predict the

probability that V_D>=beta from the following equivalences.

V_D >= beta � a * V_D’ + b + e >= beta � V_D’ >= (-e + beta –b) / a

 � V_D’ >= ((-e/ �� + beta –b) / a

From the definition of e, we know that (-e/ �����������������
���
	����
���	�����

and variance 1. So the probability that V_D >= beta is larger than p if and only if V_D’ is

����	��
��������� ������ + beta –b) / a. Similarly we can deduce that the probability of

V_D <= alpha is larger than p if and only if V_D’ is larger than (-��� ������ + alpha –

 24

b) / a. The implementation of the ProbCut extension illustrated in Figure 2.10 is just

based on these bounds. To further improve the efficiency of the new algorithm, we use a

minimum window for shallow search at D’.

 // pos : current board position

 // d: search depth

 // alpha: lower bound of expected value of the tree

 // beta: upper bound of expected value of the tree

 // Search game tree to given depth, and return evaluation of root.

 int AlphaBeta(pos, d, alpha, beta)

 {

…

// D is the depth of deeper search.

// D’ is the height of shallow search

���
����
�	���
�
��	���������������	 ����
���� ����

if (d = = D) {

������!	
��	"	�����	��������������	
	��� �������������������
������	�
��
��	�

 // Is V_D’ >= beta likely? If so, cut off and return beta.

�����������#���������
��� $�	
��– b) / a);

 if (AlphaBeta(pos, D’, bound-1, bound) >= bound) return beta;

 // Is V_D’ <= alpha likely? If so, cut off and return alpha.

 bound = round((-
��� $�������– b) / a);

 if (AlphaBeta(pos, D’, bound, bound+1) <= bound) return alpha;

}

…

 }

Figure 2.10 Pesudocode of the ProbCut extension

 25

%
��	������
�������	�&��&'������
�	���
�
��	������
#�� ��������	�
���
	�
�	�

����	��������������	
	����������� ��(�	��	������	�
���&�����&'���n affect the

performance of ProbCut a lot. The difference D-D’ is in proportion to the depth of the cut

subtree. On the other hand, if the difference is too large, the numbers of cuts will be

reduced since the variance of the error will be also large. In the ProbCut implementation

in the Othello program LOGISTELLO, the author chooses D’=4 and D=8

)�	���	�
������(�	�������	
	����������� �����	�	�
���
	��*���	�������	��
��	�������

evaluation pairs (V_D’, V_D) generated by non-selective searches. After that the best t is

determined using a tournament between versions of the selective program with different

cut thresholds and non-selective version.

The ProbCut extension can increase some game programs’ playing strengths

considerably. In the Othello game LOGISTELLO, Buro [22] reports that the ProbCut-

enhanced version defeats the brute-force version with a winning percentage of 74%. This

tournament uses 35 balanced opening positions as starting positions and all program

versions are with quiescence search and iterative deepening.

2.3.4.3 Multi-ProbCut

Multi-ProbCut [23] (or MPC for short) generalizes the ProbCut procedure to

prune even more unpromising subtrees by using additional checks and cut thresholds.

MPC refines the ProbCut procedure in three ways:

1) MPC allows cutting irrelevant subtrees recursively at several heights instead of

only at one specific height.

 26

2) By performing several check searches of increasing depth, MPC can detect

extremely bad moves at very shallow check searches.

3) MPC optimizes the cut thresholds separately for different game stages instead of

using a constant cut threshold for the whole game.

Figure 2.11 illustrates the implementation of MPC. Note that MPC uses a for loop

to perform check searches at several depths. For every check search, a different cut

threshold t is used. To avoid search depth degeneration, MPC does not call itself

recursively in the check part.

 // pos : current board position

 // d: search depth

 // alpha: lower bound of expected value of the tree

 // beta: upper bound of expected value of the tree

 // Search game tree to given depth, and return evaluation of root.

 int MPC(pos, d, alpha, beta)

 {

…

// MAX_DEPTH maximum height of shallow checks

// NUM_TRY maximum number of shallow checks

���
����
�	���
�
��	���������������	 ����
���� ����

if (d <= MAX_DEPTH) {

 for i =1 to NUM_TRY do {

!	
��	"	�����	��������������	
	����'��
�� �������������������
������	�
�

stage height and i.

// Is V_d’ >= beta likely? If so, cut off and return beta.

 �����#���������
��� $�	
��– b) / a);

if (AlphaBeta(pos, d’, bound-1, bound) >= bound) return beta;

 27

// Is V_d’ <= alpha likely? If so, cut off and return alpha.

 bound = round((-�
��� $�������– b) / a);

 if (AlphaBeta(pos, d’, bound, bound+1) <= bound) return alpha;

 }

}

…

 }

Figure 2.11 Pesudocode of MPC extension

Michael Buro uses the following steps to determine MPC parameters for

LOGISTELLO. First, the brute-force evaluations of thousands of example positions up to

depth 13 are collected. Then he applies linear regression to this data to estimate the

para�	
	����������� �*���	������������	����	������	���
�������	�+��	�
���%��
�	�
�����

step, the first check sequence is decided and additional check depth is added to minimize

the total running time. Table 2.1 lists the check depths for different heights. After that

two cut thresholds were determined for positions with <36 and >=36 discs respectively

using two sets of tournaments.

h 3 4 5 6 7 8 9 10 11 12 13
d1 1 2 1 2 3 4 3 4 3 4 5
d2 -- -- -- -- -- -- 5 6 5 -- --

Table 2.1 Check depths for different heights h

Buro’s experiments in Othello game programs show that MPC outperforms

ProbCut. The winning percentage of the MPC version of LOGISTELLO playing against

the ProbCut version was 72% in a tournament of 140 games of 30 minutes per move.

 28

2.4 Conclusions

In this chapter we discussed some major algorithms for tree searching and

pruning. The performance of these algorithms will vary for different games. One

interesting question is how well they perform in the game of Amazon. We will

investigate this question experimentally in Chapter 4.

Being able to search game-trees deeper and faster is essential for creating a high

quality game-playing program. However, it is not possible to exhaustively search the

whole bushy game tree. So we still need a good evaluation function to assess the merits

of the game position at maximum depth. For some forward pruning enhancements, such

as ProbCut and Multi-ProbCut, stable evaluate function is required. In the next chapter,

we will discuss evaluation functions for Amazons.

 29

CHAPTER 3 EVALUATION FUNCTIONS

3.1 Introduction

Most successful game-playing programs apply heuristic evaluation functions at

terminal nodes to estimate the probability that the player to move will win. Typically a

successful evaluation function is the combination, e.g., a weighted sum, of a number of

distinct features. Each feature measures a property of the board position. Thus

constructing evaluation functions has two phases:

1) selecting good features.

2) combining them appropriately to obtain a single numerical value.

Selecting features is important and difficult. We have to avoid too few features as

well as redundant ones. It also requires both expert game knowledge and programming

skill because of the well-known tradeoff between the complexity of the evaluation

function and the number of positions we can evaluate in a given time: a more accurate

evaluation function might actually result in inferior play if it takes too long to calculate.

Feature combination is also critical and very unintuitive. We need to not only establish a

balance among diversified strategies but also be aware of the interactions between related

features.

In this chapter, we will introduce the existing features used for Amazons and

some automatic evaluation function construction methods.

3.2 Evaluation Features of Amazons

Recently three different evaluation features have been proposed for Amazons.

These are Mobility [24], Territory [25] and Territory-and-Mobility (TM) [26]. As

 30

explained in Chapter 1, Amazons has characteristics of both Chess and Go. The idea of

the Mobility feature is from Chess. It focuses on the number of possible moves since the

more possible moves a player has, the less likely it is that the player will run out of legal

moves. Similar to Go, the territory feature is based on the concept of controlling more

squares, since controlling more squares can provide more space for the pieces to move.

The feature Territory-and-Mobility, suggested by Hashimoto [26], combines the merits of

Mobility and Territory in a way which we describe below.

3.2.1 Mobility

In the game of Amazons, the last player who is able to complete a move wins the

game, so having more possible moves than the opponent is a key factor for winning. The

mobility of a player is defined as the sum of the possible moves of all his/her queens, and

the mobility feature [24] is calculated by subtracting the opponent’s mobility from the

player’s.

The mobility feature may be useful for the opening stage where the territory

classification is not clear enough. But in the mid-game and endgame, the board is divided

into several battlefields. So controlling your own territories and invading the opponent’s

territories are more important than enlarging your mobility.

Another problem is that if we maximize mobility, all the player’s pieces tend to

stay in the middle of the largest territory [26]. So a human player can block the

computer’s pieces in the center of the board and occupy all four corners easily.

The main advantage of this feature is its evaluation speed. Typically the evaluator

can evaluate the mobility feature faster than the territory feature.

 31

3.2.2 Territory

Amazons is a game with Go-like characteristics. The number of possible moves is

huge in the opening phase and decreases gradually. From the mid-game phase on, the

board is separated into several battlefields. Therefore, keeping your own territory as large

as possible is critical for winning the game.

Kotani [25] introduces the Minimum Stone Ply (MSP) function to evaluate the

territory feature of Amazons. In the MSP function, a square belongs to the player who

can reach it faster with one of his/her pieces without counting arrows. If both players can

reach a square in the same minimum number of moves, this square is neutral, i.e., it

doesn’t belong to either player. Figure 3.1 shows the procedure of the MSP function. In

our program, we used bitmap operations, which are designed and coded by Terry, to

implement this algorithm efficiently.

 // pos : current board position

 // evaluate the territory feature for the board position “pos” and return the result.

 int MSP(pos)

 {

blackSquares = 0;

whiteSquares = 0;

for all empty squares x do

{

 blackStonePly = the minimum number of moves that a black piece needs to arrive at x;

 whiteStonePly = the minimum number of moves that a white piece needs to arrive at x;

 if (blackStonePly < whiteStonePly)

 blackSquares = blackSquares + 1;

 else

whiteSquares = whiteSquares + 1;

 32

}

if (white’s turn to play)

 return (whiteSquares – blackSquares);

else

 return (blackSquares – whiteSquares);

 }

Figure 3.1 The procedure of the MSP function

The territory feature can correctly evaluate enclosed and almost-enclosed areas.

Its performance is reasonably good in the endgame and in well-balanced situations.

However, the territory feature assumes queens can go all directions and defend against

attackers approaching from different sides at the same time. Therefore, in unbalanced

situations such as where one queen is facing several, this feature evaluates the board too

optimistically.

3.2.3 Territory-and-Mobility

Hashimoto et al. [26] combined the concepts of Mobility and Territory to build a

new evaluation function, called Territory-and-Mobility, or TM.

Typically the TM feature is evaluated via three steps: (1) Use the MSP function to

evaluate the each player’s territory; (2) Count mobility in each player’s territory; (3) Sum

the results of (1) and (2) using a specific weight. Figure 3.2 demonstrates the procedure

of the TM function.

 // pos : current board position

 // evaluate the TM feature for the board position “pos” and return the result.

 33

 int TM(pos)

 {

blackPoints = 0;

whitePoints = 0;

for all empty squares x do

{

 blackStonePly = the minimum number of moves that a black piece needs to arrive at x;

 whiteStonePly = the minimum number of moves that a white piece needs to arrive at x;

 blackMob = the number of black queens which can arrive at square x in one move.

 whiteMob = the number of white queens which can arrive at square x in one move.

 if (blackStonePly < whiteStonePly)

 blackPoints = blackPoints + weight + blackMob;

 else

whitePoints = whitePoints + weight + whiteMob;

}

if (white’s turn to play)

 return (whitePoints – blackPoints);

else

 return (blackPoints – whitePoints);

 }

Figure 3.2 The procedure of the TM function

Hashimoto et al. [26] believes that adding mobility to the territory feature allows

the program to place all four queens in a coordinated way. In addition, the calculation of

territory becomes more precise by adding the mobility scores in Step 3. After testing

various values, they suggest that setting the weight to 4 gives the best performance.

 34

3.3 Automatic Evaluation Function Construction

We now describe how we combine features to create an evaluation function.

Traditionally, an evaluation function is a linear combination of a number of features (F1,

F2, …, Fn), i.e., a weighted sum:

Eval = C1 * F1 + C2 * F2 + … + Cn * Fn

where the coefficients (C1, C2, … , Cn) are either guessed by the implementer or

found by some optimization process.

But there are two problems with this method. First, it is difficult for humans to

estimate these coefficients correctly, since they don’t use game tree search and evaluation

functions. That was also the initial motivation for Samuel to propose ways to tune

weights automatically in [5, 29]. Furthermore, this method assumes that no correlations

or redundancies between features exist. This assumption is clearly false since almost

every pair of features is correlated to some degree. To solve this problem, Lee et al [27]

present a pattern classification approach.

3.3.1 Samuel’s work on automatic feature combination

Arthur Samuel, a novice Checkers player, is one of the earliest and most

important researchers on Checkers learning programs. From 1947 to 1967, he proposed

and experimented on many different methods of machine learning. In the next two

sections, we introduce the two most important ones: (1) linear evaluation learning

through self-play, and (2) nonlinear evaluation learning through book moves.

 35

3.3.1.1 Linear evaluation learning through self-play

In linear evaluation learning [5], Samuel tuned the coefficients by arranging two

copies of the Checkers programs Alpha and Beta to play against each other. At the

beginning, Alpha and Beta are identical. The only difference is that Beta keeps its

weights fixed while Alpha continuously tunes its weights during the experiment. If Alpha

beats Beta, Beta adopts Alpha’s evaluation on the next round of experiments. Otherwise,

Alpha tries other ways to tune its weight. Sometimes manual intervention is necessary if

the learning process gets stuck. When Alpha consistently defeats Beta, its evaluation

function is considered as the stabilized final version. After this learning procedure, the

final program can play a reasonably good game of checkers.

As one of the first machine learning examples, Samuel’s procedure is a milestone

in automatic evaluation function construction. But as Lee et al pointed out in [27], it is

based on several incorrect assumptions. First, it incorrectly assumes that all features in

the evaluation function are independent, so it cannot capture the relationships between

features. Second, it assumes that all the inaccurate evaluations are caused by the

evaluation function, while sometimes the real reason is the limited horizon of the search.

Third, it assumes that when the evaluation function is overly optimistic, the problem must

come from positive features. This is clearly incorrect because it may be due to negative

features are not negative enough. Finally, it assumes that Alpha’s evaluation must be

better than Beta’s if player Alpha beats Beta. But when both two programs are naive, a

win may be the result of luck or the opponent’s errors.

 36

3.3.1.2 Nonlinear evaluation learning through book moves

In order to cope with these incorrect assumptions, Samuel introduces a new

procedure to construct nonlinear evaluation functions through book moves in [29].

To handle nonlinear interactions among features, Samuel devised signature tables.

These are multi-dimensional tables where each dimension is indexed by the value of

some feature. For each game position, the table cell indexed by its feature values contains

the corresponding evaluation value. Samuel collected 24 features for the game of

Checkers. Obviously applying this scheme directly could result in an impractically large

table. Samuel dealt with this problem using two methods. First, he organized the tables

using a three-level hierarchical organization. At the first level, each table combines four

features, and only interactions between those four features are considered. Each table in

level one or two produces a value to index into tables in the higher level. Furthermore,

Samuel restricted the feature values to (-1,0,1) or (-2,-1,0,1,2). This results in a final

configuration with a reasonable number of cells.

To avoid the incorrect assumptions in self-play, Samuel used book moves to train

these cells. He collected a “book” of board positions and the corresponding moves played

by human masters. For each cell, he counted how many times the corresponding feature

combination was chosen in book moves, A, and how many times the corresponding

combination was a legal move but was not chosen in book moves, D. The cell value was

then evaluated as (A-D)/(A+D).

According to Samuel’s experiments, signature table learning through book moves

substantially outperformed the self-play learning procedure. But there are a number of

new problems with this approach. First, this approach is based on a problematic

 37

assumption that no other moves are as good as or better than book moves. Second,

restricting feature values causes some smoothness problems. Finally, the higher-level

signature tables cannot handle inter-table correlations. So the correlated features must be

arranged into the same group at the first level.

As a result, Samuel’s procedure needs excessive human tuning. The implementer

has to put a lot of effort in determining how to restrict the feature values and arranging

the structure of signature tables. This is undesirable since the learning procedure may be

affected by human errors. In the next section, we will introduce another approach to

evaluation function learning, which is exempt from weary and dangerous human

intervention.

3.3.2 A pattern classification approach based on Bayesian learning

In this section, we will introduce a pattern classification approach to evaluation

function learning, which was first introduced by Lee et al in [27]. Unlike Samuel’s

approaches, it is based on Bayesian learning, and can be easily applied to different

domains. First, we give a brief introduction for Bayesian learning. After that, its

applications to evaluation function learning will be described in detail.

3.3.2.1 Bayesian learning

Bayesian reasoning provides a way to encode probability relationships among

variables of interests. Over the last decade, Bayesian learning has become a popular

representation for learning uncertain knowledge in expert systems [29]. A Bayesian

model can be used to learn causal relationships, and hence can be used to gain

 38

understanding about a problem domain and to predict the consequences of intervention; it

is ideal for combining prior knowledge (which often comes in causal form) with data.

Bayes’ theorem is the cornerstone of Bayesian learning methods. Before defining

Bayes’ theorem, let’s first introduce some basic notation. h is a hypothesis, for instance,

the hypothesis that a board is a wining or losing position. The Prior probability)(hp is

the initial probability that h holds.)(hp may give us information about the chance that h

is a correct hypothesis. x is a new data set.)(xp is the probability that x will be observed.

)|(hxp denotes the probability of observing data x given h . From a large number of

training data sets, p(x) and p(x|h) can be estimated correctly. In Bayesian learning, our

object is to classify the new instance x, i.e., calculate the posteriori probability)|(xhp .

Bayes’ theorem provides a direct way to do this.

)(

)()|(
)|(

xp

hphxp
xhp = (1)

Sometimes we are only interested in finding the maximum a posteriori (MAP)

hypothesis MAPh from the various candidates in a set of hypotheses, H. The MAP

hypothesis can be determined by using Bayes’ theorem to calculate the posterior

probability of each candidate hypothesis. To simply the calculation, we usually ignore the

term p(x) because it is independent of h. So we have

)()|(maxarg hphxph
Hh

MAP
∈

= (2)

Applying log to both sides of equation (2), we get the discriminant

function)(xgh :

)(log)|(loglog)(hphxphxg MAPh +== (3)

 39

During the training stage, a number of training samples are evaluated. Each

training sample is evaluated to a feature vector and classified to a hypothesis. For a

hypothesis h, the corresponding mean vector hµ and variance-covariance matrix hV can be

estimated as the following:

∑
=

=
hN

i
i

h
h x

N 1

1µ (4)

T
hih

N

i
i

h
h xx

N
V

h

))((
1

1

µµ −−= ∑
=

 (5)

where hN denotes the total number of training samples for hypothesis h, and ix denotes

the feature vector of the thi sample in h hypothesis.

Let us assume the distribution of the features is multivariate normal. Then the

density function p(x|h) can be written as a function of hµ and hV as:

)}()(
2

1
exp{

||2

1
)|(1

2/12/ hh
T

h
h

N
xVx

V
hxp µµ

π
−−−= −

− (6)

Substituting (6) into (3), we have:

)(log||log
2

1
2log

2

1
)()(

2

1
)(1 hpVNxVxxg hhh

T
hh +−−−−−= − πµµ (7)

Furthermore, the posterior probability p(h|x) can be derived by

normalizing)(xgh :

∑

=
)(exp

)(exp
)|(log

xg

xg
xhp h (8)

3.3.2.2 Evaluation function learning

 Based on Bayesian Learning, Lee et al introduce a new learning algorithm for

evaluation function construction in [27]. They use the game of Othello as their test

 40

domain and dramatically improve an Othello program BILL2.0 that has performed at the

world championship level. Like Bayesian learning, this approach also includes two

stages: training and recognition.

 In the training stage, a database of labeled training positions is required. Lee et al

took these positions from actual games generated from BILL 2.0’s self-play. All positions

of the winning player were labeled as winning positions, and all positions of the losing

player as losing positions. Of course, positions might be mislabeled, e.g., that Bill lost

from a position in which an optimal player would win. First, although BILL2.0 was still

using a linear evaluation function, it had been carefully tuned and it was a world-

championship-level player. Furthermore, the initial position of each game was generated

by 20 random moves, after which the player that is ahead usually goes on to win the

game.

 To obtain the training positions, two copies of BILL2.0 are used to play with each

other from initial positions. The initial positions were generated by 20 random moves.

After that, each side played the remaining 40 half-moves in 15 minutes and the last 15

moves were played using perfect endgame search. A total of 3000 games were played

and their positions were recorded as training data.

 For each training board, the four features were calculated and represented as a

feature vector. Then, the mean vectors and covariance matrices for both categories,

winning and losing, could be estimated. In the game of Othello, different strategies

should be used for different stages of the game. Lee et al defined a stage as the number of

discs on the board. For a stage with N discs, they used training positions with N-2, N-1,

N, N+1, and N+2 discs to generate a corresponding discriminant function. Using a series

 41

of slowly varying discriminant functions, the evaluation function provides a fine measure

of game positions for different stages.

 To recognize a new position, we first compute the features and combine them to

form the feature vector, x. Then we can evaluate the position by substituting x into the

final evaluation function. From (7), we know that the discriminant functions for winning

and losing position are:

)(log||log
2

1
2log

2

1
)()(

2

1
)(1 winpVNxVxxg winwinwin

T
winwin +−−−−−= − πµµ (9)

)(log||log
2

1
2log

2

1
)()(

2

1
)(1 losspVNxVxxg losslossloss

T
lossloss +−−−−−= − πµµ (10)

Since the final evaluation function should determine the possibility of winning, it

is defined as:

losswin
loss

win gg
P

P
xg −==)((11)

 Substituting (9) and (10) into (11), Lee et al. give the final evaluation function:

||log
2

1
)()(

2

1
||log

2

1
)()(

2

1
)(11

losslossloss
T

losswinwinwin
T

win VxVxVxVxxg +−−+−−−−= −− µµµµ (12)

Note)(log winp and)(log lossp are cancelled here. The reason is that the possibilities of

winning and losing are equal since we use the same program play against each other.

Sometimes we might want to print out some useful search information for

humans. In that case, the probability of winning is a more meaningful. It can be derived

from g(x) as the following:

)(exp)(exp

)(exp

)|()|(

)|(

xgxg

xg

xlosspxwinp

xwinp

losswin

win

+
=

+

 42

 =
1)}()(exp{

)}()(exp{

+−
−

xgxg

xgxg

losswin

losswin

 =
1)(exp

)(exp

+xg

xg
 (13)

Using the final evaluation function (12) and the same four features as BILL2.0, a

new version, BILL 3.0, was created. As we mentioned above, BILL2.0, which is using a

linear evaluation function, already played at world-championship level. But surprisingly,

dramatic improvements could still be observed in BILL3.0. Lee et al used three ways to

comparing BILL2.0 and BILL3.0: (1) having the two versions of the program play

against each other, (2) comparing their solutions for endgame problems with the known

solution, (3) having the two versions of program play against human experts. In all three

experiments, the results favored BILL3.0, which use the new evaluation function

constructed by Bayesian learning.

 Although Lee et al focus on applying Bayesian learning to the game of Othello,

their approach may also be applicable to other games and search-based applications. In

next chapter, we will apply Bayesian learning to our Amazons program—Mulan.

3.4 Conclusion

In this chapter, we first described three popular evaluation features of the game of

Amazons. Furthermore, some automatic evaluation function construction methods and

their applications in Checkers and Othello were introduced.

There are two interesting questions left in this chapter. The first one is how

important these features are in position evaluation. The second one is whether we can

apply Bayesian learning to the game of Amazons effectively. In the next chapter, we will

use a series of experiments to answer these two questions.

 43

CHAPTER 4 EXPERIMENTAL RESULTS

In this section, we discuss how we implemented and compared some popular

Alpha-Beta enhancements and forward pruning algorithms using Mulan. Furthermore, we

implemented and compared three existing features used for Amazons and four new

features we developed. Starting with three features which gained the best results in our

experiments, we combined them to form an evaluation function using two methods: 1)

linear combination using tournaments; 2) a pattern classification approach based on

Bayesian learning.

4.1 Performances of Alpha-Beta Enhancements

In chapter 2, we discussed several important Alpha-Beta enhancements. All of

them have been proved to be useful Alpha-Beta refinements. However, their performance

is game- and implementation-dependent. For Chess, a variety of studies have been

performed investigating their relative performance. But for Amazons, no one seems to

know how effective they are. In this section, we will try different combinations of

enhancements to find out which combination performs best in Amazons.

4.1.1 Implementation

The implementations of these enhancements vary for different games. For each

enhancement, many strategies have been developed over the years. Finding the best

strategy for Amazons is a challenge. Here we briefly describe our implementations in

Mulan.

 44

a) Transposition Tables

There are some interesting thoughts about implementing a Transposition Table for

Amazons. As we mentioned in Chapter 2, a previous search and evaluation can be reused

in two ways: 1) If the previous search on the position is at least the desired depth, then

the corresponding score can be used to narrow the search window. 2) When the previous

search is not deep enough, the corresponding best move can be retrieved and tried first.

In Amazons, the number of “burnt” squares increases by one every move, so a

given position can only occur at a fixed depth in the game. This dramatically reduces the

occurrence of Transpositions, so most of the performance gained by using the

Transposition Table is a result of reordering the moves. This is especially helpful for

iterative deepening, where the interior nodes will be re-visited repeatedly. But as the

previous searches of re-visited positions are always not deep enough, keeping the

previous upper and lower bound in the Transposition Table is useless. So when no

minimal window search enhancement is applied, we can simplify the Transposition Table

and only save the best move from the previous search for the position.

On the other hand, when a minimal window search enhancement is used, re-visits

of positions at the same depth is common. To reduce the overhead of re-searching, we

need to use the previous search score to narrow the search window. So in this case,

storing the previous upper and lower bound makes sense. Table 4.1 shows the useful

information in each entry of the hash table. Figure 4.1 contains pseudo-code showing

how we implement the Transposition Table in Alpha-Beta search.

 45

pos
the information of the position, used to distinct

different positions with the same hash key.

depth
the effective subtree height of the previous

search, depth < 0 if the entry is empty.

upper upper bound of the subtree

lower lower bound of the subtree

move the best move determined

Table 4.1 Fields for the Transposition Table Entry

 // pos : current board position

 // d: search depth

 // alpha: lower bound of expected value of the tree

 // beta: upper bound of expected value of the tree

 // Search game tree to given depth, and return evaluation of root.

 int AlphaBeta(pos, d, alpha, beta) {

retrieve(pos, depth, upper, lower, move);

orgAlpha = alpha;

if (depth >= d) {

 if (upper <= alpha || upper == lower)

return upper;

 if (lower >= beta)

 return lower;

 if (lower > alpha)

 orgAlpha = alpha = lower;

 if (upper < beta)

 beta = upper;

}

if (d=0 || game is over)

 46

 return Eval (pos); // evaluate leaf position from current player’s standpoint

score = - INFINITY; // preset return value

Make(move); // try the previous best move first.

//call other player, and switch sign of returned value

cur = - AlphaBeta(pos, d-1, -beta, -alpha);

// compare returned value and score value, note new best score if necessary

if (cur > score) score = cur;

if (score > alpha) alpha = score; //adjust the search window

Undo(moves[i]); // retract current move

if (alpha >= beta) goto End; // cut off

moves = Generate(pos); // generate successor moves

for i =1 to sizeof(moves) do { // look over all moves

 Make(moves[i]); // execute current move

 //call other player, and switch sign of returned value

 cur = - AlphaBeta(pos, d-1, -beta, -alpha);

 //compare returned value and score value, note new best score if necessary

 if (cur > score) score = cur;

 if (score > alpha) alpha = score; //adjust the search window

 Undo(moves[i]); // retract current move

 if (alpha >= beta) goto End; // cut off

}

End:

 upper = +INFINITY;

 lower = -INFINITY;

 if (max <= orgAlpha)

 upper = max;

 if (max > orgAlpha && max < beta)

 upper = lower = max;

 if (max >= beta)

 47

lower = max;

 store(pos, depth, upper, lower, move);

return score;

 }

Figure 4.1 Alpha-Beta Search with Transposition Tables

The most popular hash key generation function for Transposition Tables is the

well-known Zobrist method [13]. However, this method didn’t consider the increasing

burnt squares in Amazons. In Mulan, we use the method proposed by Terry Van Belle to

represent the board and generate the hash key. We represent the Amazons game board as

two 10*10 bit matrices called “piece” and “type”. The representation is as follows:

 piece type square value

 0 0 empty

 0 1 burnt

 1 0 white

 1 1 black

 For simplicity and speed, we use an unsigned integer array whose size is 10 to

represent each 10*10 bit matrix and use bit operations to access the specific bit. The

index of the position is produced by the following function:

 for (t = piece, p = type; t < piece+10; t++, p++) {

hash <<= 1;

 hash ^= (*p | (*t << 10));

 }

 48

Now that hash key generation function enables rapid access to the Transposition

Table, we need to choose a good replacement scheme to handle another problem -

collisions.

Unlike a normal hash table, saving all visited positions in the Transposition Table

is impossible, so our Transposition Table always replaces the old position in the table

when a collision occurs. This is because most re-visited positions are met locally, the new

positions is more useful than the old one. This simple replacement scheme also simplifies

the table access to a single probe. Many elaborate schemes have been proposed and tested

[14]. Some of them do improve the table usage, but the cost of the increased complexity

undermines the improvement of total performance. So in our experiment, we didn’t

repeat these schemes.

As we mentioned before, trying the best move determined by the previous

iteration first can reduce the game search tree significantly. One interesting question is

that if we try both the best and the second best move first, can we further improve the

efficiency of the algorithm? To answer this question, we tried another type of

Transposition Table which keeps both the best and the second best moves determined by

the previous iteration.

b) Killer Heuristic

We use the moves saved while determining the principal continuation to serve as

a killer list. Here the term principal continuation denotes the best sequence of moves

found by the game tree search procedure. During the development of the principal

continuation, we can gather the PRINC array. A move enters the PRINC array only if it

can improve the provisional score of a node. Hence, the PRINC array maintains moves

 49

that seem to cause the most cutoffs at each depth. The detailed description about how to

generate and update the PRINC array can be found in [17].

Many strategies have been developed to find killer moves in the PRINC array.

The strategy used in Mulan is to compare all the relevant moves in PRINC. For example,

suppose the PRINC array is as follows:

 mv1 mv2 mv3 mv4 mv5 mv6

 mv7 mv8 mv9 mv10 mv11

 mv12 mv13 mv14 mv15

 mv16 mv17 mv18

 mv19 mv20

 mv21

and the search has arrived at a node n in ply 2. Then all moves generated at n will be

compared with elements mv3, mv5, mv8, mv10, mv12, mv14, mv17 and mv19. When

matches are found, the moves will be reordered and the matching moves will be moved to

the top of the move list.

To use the information obtained from iterative deepening, we keep two copies of

the PRINC array: PrincCur and PrincPre. Until the current search iteration is as deep as

the previous one, we use the information gotten from the previous iteration to sort the

moves.

 c) History Heuristic

We illustrated how to implement the history heuristic in the alpha-beta algorithm

in Chapter 2. But two questions remain for the implementation of the history heuristic in

Amzons. The first one is how to map moves to the index in the history table. For

 50

Amazons, we use a method similar to [33]. We divide a move into two separate parts, the

queen move and the arrow move. So all queen moves can be fixed in a 10*10*10*10

array, whose index is generated by locations of from-square and to-square. Similarly, a

10*10 array is used for arrow moves.

The other question is how to weight results obtained from different search depths.

For two reasons, we use d2 , as suggested by Schaeffer [18], as the weight in our

program: first, we should heavily weight a higher score for successful moves on deeper

searches, and second, we should heavily weight a higher score for successful moves near

the root of the tree.

A well-known problem of the history heuristic is that a good move at the current

stage may be overshadowed by its previous bad history. To overcome this problem, we

divide all history scores by 2 before every new search.

d) Minimal Window Search

The “grain” of the evaluation value affects the effect of minimal window search

significantly. This is even more obvious for MTD(f). The coarser the “grain”, the less

passes MTD(f) has to make. Unfortunately we use a very fine-grained of the evaluation

function in Mulan, where the value of a position ranges from –1000 to +1000. With this

evaluation function, MTD(f) has to use hundreds of passes to converge to the minimax

value. This is impractical even with a Transposition Table to reduce the overhead. To

reduce the passes to a reasonable number, we increase the step size of every pass to 50 in

our implementation.

In MTD(f), the first guess of the expected minimal value is related to the size of

the search tree. The better this first guess is, the fewer minimal searches are needed. In

 51

iterative deepening, the new iteration typically uses the result of the previous iteration as

its best guess. But in Amazons, the values found at odd and even search depths vary

considerably. So if the return value of two plies before is available, we use it as the first

guess of the current iteration. Otherwise we use 0 instead.

4.1.2 Experimental design

The popular way to assess various enhancements are trying all possible

combinations of the enhancements on a set of positions and comparing their relative

performance. For example, the standard Bratko-Kopec positions [30], which have an

average branch factor of 34, have been used extensively as test positions for chess

programs. But for Amazons, people still don’t know what the best test positions are yet.

In our experiment, we use Mulan to generate the test positions through self-play.

First, we selected 30 best positions from the opening book. Then for each selected initial

position, we set two copies of Mulan to play with one another. The search depth of each

stage is set to the most “practical” number, i.e. the deepest depth Mulan can search in the

tournament. For each intermediate game position met during self-play, we try all possible

combinations of the enhancements and compare their relative performance.

There are two obvious advantages of our approach. First, the test positions used in

the experiments are practical positions for Amazons that actually arise in play. Second,

we compare the performance of different enhancements at the most useful search depth.

Other researchers tend to use the same set of test positions to test the performance of

different depths of search. In Amazons, a deep search in the early stage is impossible

because of the huge branching factor. On the other hand, comparing the performance of a

 52

shallow search in the middle and endgame stages is of no use because we can search

them in a deeper depth in practical. Our approach avoided these problems by comparing

the performance at the deepest depth the search can finish in the tournament. Table 4.2

lists the corresponding search depth used for different stages of the game (given as the

number of move).

step 1-14 15-44 45-49 50-54 55-64 65-70

depth 2 3 4 5 6 7

Table 4.2 Search depths for different stages

Two measures are used to compare search algorithm performance. One is the

amount of CPU time required for the search. Practically, this seems to be the most useful

measure. However, the execution time of the various enhancements is machine- and

implementation-dependent. The other measure used is the number of leaf nodes (also

called bottom positions) visited (LN). It assumes evaluating these nodes is usually more

expensive than evaluating the interior nodes. In Amazons, this assumption is true since

the relatively expensive evaluation function is applied only to the bottom positions. We

use this measurement to assess various enhancements in theory.

4.1.3 Experiment results

a) Notation

In this chapter, we use one or two capitals to denote each enhancement. Typically

it is the first letter of the name of the enhancement. So MTD(f), NegaScout, AlphaBeta,

 53

Iterative Deepening, Transposition Table, Transposition Table with two best moves,

Killer Heuristic and History Heuristic are denoted as M, N, A, I, T, TT, K and H

respectively. Similarly, the different combinations of enhancements can be denoted as a

series of capitals. For example, MTKH means the MTD(f) algorithm with Transposition

Table, Killer Heuristic and History Heuristic.

b) Results and Interpretations

Our experiments compared the performance of MTD(f), NegaScout, and

AlphaBeta with different combinations of Iterative Deepening, Transposition Table,

Killer heuristic and History Heuristic.

Iterative deepening is a very good time control mechanism for game tree search,

but it wastes some amount of time on previous iterations. Figure 4.2 and Table 4.3

compare the relative time and leaf nodes visited between iterative deepening and direct

search if we don’t use previous iteration to order moves. In fact, we found that even

without using the results of previous searches to order moves, the amount of time/leaf

nodes in previous searches is only a small fraction of the total time/leaf nodes. So we

used Iterative Deepening in all our experiments.

Figure 4.3 and Table 4.4 show that the average width (branching factor) of the

game tree in Amazons decreases quickly as the game proceeds. At step 5, A and AITKH

generate search trees whose nodes have an average width of 386.97 and 322.70

respectively. But at step 70, the average widths drop to 7.95 and 7.41 respectively, since

the number of possible moves decreases when more and more squares are burnt. This

also explains why we can’t use the same set of test positions to test the performance of

different search depths.

 54

Tables 4.5 - 4.10 and Figure 4.4 - 4.9 illustrate the effect of different enhancement

combinations in AlphaBeta, MTD(f) and NegaScout. These graphs show that:

a) The percentage improvements contributed by all enhancement combinations

seem to be highest in the middle game. There are two reasons for this. The

first is that at the beginning of the game, the search depth that can be reached

is too shallow because of the huge branching factor. According to the result in

Chess [11], the improvement of enhancements is typically not very obvious for

a shallow search. A second reason is that the branching factor is too small in

the endgame of Amazons and the enhancements typically work better for a

bushy game tree.

b) The relative performances of CPU time and leaf nodes visited are very similar.

This indicates the practical enhancement’s performance is identical with the

theory one in Amazons.

c) Figure 4.5 and Table 4.6 indicate that the number of leaf nodes visited

decreases slightly when we use a Transposition Table that keeps the two best

moves instead of only the best move. This implies that keeping two best

moves in the Transposition Table can further improve the move order. But the

cost of the increased complexity undermines the improvement of whole

performance. From Figure 4.5 and Table 4.5, we can observe that the original

Transposition Table is superior to the one with two best moves in total CPU

time.

d) The killer moves have a good performance in Amazons. Actually, it seems to

be the best enhancement we tested. The killer heuristic is a popular AlphaBeta

 55

enhancement, but its effectiveness has been questioned. In Chess, Hyatt

observed as much as 80% reductions [32] in search time, whereas Gillogly

claimed no benefits [31]. In our experiment, we observed up to 90%

reductions in the middle game of Amazons.

e) Sometimes using two enhancements can only provide a small improvement

compared with a single enhancement. For example, Figures 4.4 and 4.5 show

that ATK does not significantly improve the performance of AK. There are

two reasons for this. First, different enhancements may improve the move

order in a similar way. For example, part of the improvement of the Killer

heuristic comes from trying the previous iteration’s best moves first, which is

also the major reason to use the Transposition Table. Another reason is that

when applying several enhancements at the same time, the enhancement

applied later may reorder the move sequence suggested by previous

enhancements. For example, the History Heuristic may indicate some moves

we should try first while Killer Heuristic says other moves are more important.

So we have to decide which enhancement should have higher priority. Our

priority sequence is Transposition Table, then the Killer heuristic, and finally

the History heuristic.

f) In all three algorithms, AlphaBeta, MTD(f) and NegaScout, the combination

of TKH provides the biggest overall improvement.

As we discussed in Chapter 2, MTD(f) and NegaScout are actually two kinds of

Alpha-Beta variants derived from minimal window search. Figure 4.10 and 4.11 compare

 56

the performance of these two variants with the standard AlphaBeta algorithm. These two

graphs show:

a) The performance of MTD(f) is unstable. One possible reason is that MTD(f)

is sensitive to the “grain” of the evaluation value. We adjusted the step size of

MTD(f) to reduce this problem. But in Amazons, the range of the evaluation

function can differ dramatically in different positions. Although we adjust the

step size of MTD(f) for best overall performance, it is impossible to find a

step size which works well in all positions, especially when the positions are

from different stages of the game.

b) The performance of NegaScout is very stable and slightly superior to the

performance of the standard AlphaBeta search.

Finally, we find out the combination of NegaScout, Iterative Deepening,

Transposition Table, Killer Heuristic and History Heuristic is the combination of

enhancements with the best overall performance in Amazons.

 57

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

search depth (ply)

%

AI (Leaf Nodes) AI (Time) A

Figure 4.2 Comparison of Iterative Deepening and direct search

A

(Leaf
Nodes)

AI
(Leaf

Nodes)

AI/A
(Leaf

Nodes)

A
(Time)

AI
(Time)

AI/A
(Time)

Step5 (ply 2) 149743 151260 1.01 2.16 2.18 1.01

Step25 (ply 3) 1675468 1693933 1.01 33.90 34.03 1.00

Step45 (ply 4) 1127314 1186022 1.05 25.65 27.02 1.05

Step54 (ply 5) 1076793 1160188 1.08 23.88 25.81 1.08

Step56 (ply 6) 1541367 1886262 1.22 33.24 40.45 1.22

Step70 (ply 7) 2009315 2149421 1.07 33.59 35.33 1.05

Table 4.3 Comparison of Iterative Deepening and direct search

 58

0
100
200
300
400
500

0 20 40 60 80

step

b
ra

n
ch

in
g

 f
ac

to
r

A (branching factor) AITKH (branching factor)

Figure 4.3 branching factor of different stages of Amazons

A

(Leaf Nodes
Visited)

A
(branching factor)

AITKH
(Leaf Nodes

Visited)

AITKH
(branching factor)

Step5 (ply 2) 149743 386.97 104137 322.70

Step25 (ply 3) 1675468 118.77 347858 70.33

Step45 (ply 4) 1127314 32.58 64231 15.92

Step54 (ply 5) 1076793 16.09 155348 10.92

Step56 (ply 6) 1541367 10.75 436634 8.71

Step70 (ply 7) 2009315 7.95 1228785 7.41

Table 4.4 branching factor of different stages of Amazons

 59

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8

search depth (ply)

%

AIT AIK AIH AITT AITH
AIKH AITKH AI AITK

Figure 4.4 Time Comparison of Enhancements in Alpha-Beta

 A AI AIT AIK AIH AITT

Step5 (ply 2) 149743 151260 112117 112074 122657 98638

Step25 (ply 3) 1675468 1693933 1400047 482021 758272 1378788

Step45 (ply 4) 1127314 1186022 476202 107867 146210 402873

Step54 (ply 5) 1076793 1160188 563325 172109 232256 569329

Step56 (ply 6) 1541367 1886262 1127316 613480 910796 1190450

Step70 (ply 7) 2009315 2149421 2086921 1232130 1991488 2142105

Table 4.5 Time Comparison of Enhancements in Alpha-Beta

 60

 AITK AITH AIKH AITKH

Step5 (ply 2) 112074 104351 104137 104137

Step25 (ply 3) 479419 647056 352565 347858

Step45 (ply 4) 99375 116292 67262 64231

Step54 (ply 5) 161854 214561 157291 155348

Step56 (ply 6) 437070 719316 454454 436634

Step70 (ply 7) 1230427 1897285 1247210 1228785

Table 4.5 (cont.)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8

search depth (ply)

%

AIT AIK AIH AITT AITH
AIKH AITKH AI AITK

Figure 4.5 Leaf Nodes Visited Comparison of Enhancements in Alpha-Beta

 61

 A AI AIT AIK AIH AITT

Step5 (ply 2) 2.16 2.18 1.69 1.64 1.80 2.13

Step25 (ply 3) 33.90 34.03 28.83 9.65 15.42 28.40

Step45 (ply 4) 25.65 27.02 11.87 3.25 3.67 10.04

Step54 (ply 5) 23.88 25.81 13.07 3.39 4.85 13.21

Step56 (ply 6) 33.24 40.45 23.03 11.93 17.32 24.69

Step70 (ply 7) 33.59 35.33 35.12 22.63 32.75 36.06

Table 4.6 Leaf Nodes Visited Comparison of Enhancements in Alpha-Beta

 AITK AITH AIKH AITKH

Step5 (ply 2) 1.77 1.70 1.55 1.75

Step25 (ply 3) 9.82 13.84 7.44 7.47

Step45 (ply 4) 2.57 2.99 1.77 1.73

Step54 (ply 5) 3.85 5.64 4.54 3.98

Step56 (ply 6) 8.73 16.92 10.74 10.95

Step70 (ply 7) 30.79 34.18 26.48 23.27

Table 4.1.6 (cont.)

 62

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

search depth (ply)

%

MI MIT MIK MIH MITT

MITK MITH MIKH MITKH

Figure 4.6 Time Comparison of Enhancements in MTD(f)

Table 4.7 Time Comparison of Enhancements in MTD(f)

 AI MI MIT MIK MIH

Step5 (ply 2) 149743 179280 179280 183513 243824

Step25 (ply 3) 1675468 1869969 1246754 558288 772309

Step45 (ply 4) 1127314 1266889 500658 129719 179579

Step54 (ply 5) 1076793 1313729 390552 175417 222649

Step56 (ply 6) 1541367 1627051 852528 578470 854116

Step70 (ply 7) 2009315 1452229 1241227 1242644 1244619

 63

 MITT MITK MITH MIKH

Step5 (ply 2) 174241 179255 171411 175418

Step25 (ply 3) 1245520 516197 581063 397394

Step45 (ply 4) 467254 107886 98395 81700

Step54 (ply 5) 386729 150801 167412 158936

Step56 (ply 6) 891421 394445 531011 587735

Step70 (ply 7) 1241250 1065398 953918 1258596

Table 4.7 (cont.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8

search depth (ply)

%

MI MIT MIK MIH MITT

MITK MITH MIKH MITKH

Figure 4.7 Leaf Nodes Visited Comparison of Enhancements in MTD(f)

 64

 AI MI MIT MIK MIH MITT

Step5 (ply 2) 2.18 3.97 2.82 2.80 3.71 2.77

Step25 (ply 3) 34.03 37.62 26.28 11.22 15.67 25.67

Step45 (ply 4) 27.02 28.79 12.39 3.18 4.53 11.49

Step54 (ply 5) 25.81 31.24 9.41 3.47 4.59 9.34

Step56 (ply 6) 40.45 34.59 18.88 11.62 16.31 19.26

Step70 (ply 7) 35.33 24.47 21.56 20.86 21.75 21.49

Table 4.8 Leaf Nodes Visited Comparison of Enhancements in MTD(f)

 MITK MITH MIKH MITKH

Step5 (ply 2) 2.89 2.85 2.95 2.73

Step25 (ply 3) 11.38 12.51 8.41 8.01

Step45 (ply 4) 2.73 2.61 2.12 1.61

Step54 (ply 5) 3.83 3.53 3.96 3.01

Step56 (ply 6) 9.57 11.26 11.87 8.78

Step70 (ply 7) 26.29 22.39 23.62 16.72

Table 4.8 (cont.)

 65

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8

search depth (ply)

%

NI NIT NIK NIH NITT

NITK NITH NIKH NITKH

Figure 4.8 Time Comparison of Enhancements in NegaScout

 AI NI NIT NIK NIH

Step5 (ply 2) 149743 151260 112117 112074 122657

Step25 (ply 3) 1675468 1035430 893798 412064 503388

Step45 (ply 4) 1127314 1026527 405539 114937 158432

Step54 (ply 5) 1076793 565390 331563 162472 200586

Step56 (ply 6) 1541367 1602767 753652 556758 705649

Step70 (ply 7) 2009315 1419900 1215287 1232113 1261702

Table 4.9 Time Comparison of Enhancements in NegaScout

 66

 NITT NITK NITH NIKH NITKH

Step5 (ply 2) 98638 112074 104351 104137 104137

Step25 (ply 3) 883401 406703 436909 298870 293637

Step45 (ply 4) 329653 94275 94438 67032 54032

Step54 (ply 5) 331422 146135 149789 151816 134591

Step56 (ply 6) 796063 389368 462122 465399 370562

Step70 (ply 7) 1214670 1050597 955325 1242209 947140

Table 4.9 (cont.)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8

search depth (ply)

%

NI NIT NIK NIH NITT

NITK NITH NIKH NITKH

Figure 4.9 Leaf Nodes Visited Comparison of Enhancements in NegaScout

 67

 AI NI NIT NIK NIH

Step5 (ply 2) 2.18 2.18 1.69 1.66 1.81

Step25 (ply 3) 34.03 20.87 19.05 8.90 10.24

Step45 (ply 4) 27.02 23.29 10.11 2.83 3.98

Step54 (ply 5) 25.81 13.78 8.43 3.21 4.15

Step56 (ply 6) 40.45 32.49 15.50 10.78 13.34

Step70 (ply 7) 35.33 23.97 22.32 20.69 21.53

Table 4.10 Leaf Nodes Visited Comparison of Enhancements in NegaScout

 NITT NITK NITH NIKH NITKH

Step5 (ply 2) 1.51 1.78 1.60 1.60 1.64

Step25 (ply 3) 18.25 8.50 9.42 6.55 6.13

Step45 (ply 4) 8.82 2.40 2.52 1.73 1.45

Step54 (ply 5) 9.10 3.71 3.86 3.18 2.88

Step56 (ply 6) 17.32 9.08 9.92 11.04 8.19

Step70 (ply 7) 21.11 18.13 16.58 23.32 19.19

Table 4.10 (cont.)

 68

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8

search depth (ply)

%

MI NI AITKH MITKH NITKH AI

Figure 4.10 Time Comparison of Minimal Window Search

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8

search depth (ply)

%

MI NI AITKH MITKH NITKH AI

Figure 4.11 Leaf Nodes Visited Comparison of Minimal Window Search

 69

4.2 N-Best Selective Search versus Alpha-Beta with Enhancements

As we discuss in Chapter 2, N-Best selective search [16] considers only the N-

Best moves at each node, so it can explore the bushy game tree more deeply. This

heuristic is error prone, since sometimes the best move is excluded because of the

horizon effect. Despite this disadvantage, N-Best is still a popular search technique, since

it can reduce the tree size dramatically, making it even smaller than the minimal Alpha-

Beta game tree.

4.2.1 Implementation

To reduce the possibility of cutting off the best move, we use the board evaluation

values as the criterion to select promising positions. Two kinds of N-best selective search

are implemented. One divides a move into two separated operations: queen-move and

arrow-move. For each node, N promising queen-moves are selected first, and then M

favorable arrow-locations are determined for each queen-move. The other one simply

selects F promising moves (combinations of queen-move and arrow-move). for each

node. In both of them, we sort the selected moves in descending order of evaluation

values.

4.2.2 Experiment design

We use two experiments to find out which kind of N-best selective search is better

and what is the best selective factor.

The first one is based on comparing the performance of different selective

searches on the same test positions. We use a method similar to the one we used in

 70

section 4.1 to generate the test positions; the only difference is that this time we use 150

initial positions from the opening book. Table 4.11 lists the corresponding search depth

used for different stages. For each intermediate game position, we compare different

selective searches with the best combination of enhancements, NITKH. The comparison

statistics include speed-up and how close the value gotten from selective search is to the

correct value. This experiment helps us to understand the performance of different

selective searches in different stage of the game.

step 1-14 15-44 45-49 50-54 55-64 65-70

depth 2 3 4 5 6 7

Table 4.11 Search Depths for Different Stages

Another experiment is playing a tournament to determine the optimal selective

factor. Starting with 75 initial positions from the opening book, 150 games are played

between the non-selective program and each version of the selective program under

normal tournament conditions-30 seconds per move. The optimal selective factor is the

one used in the version with the highest winning score. This experiment can determine

the most practical selective factor.

4.1.3 Experimental results

Table 4.12 lists some statistics about different selective searches on the test

positions. These statistics show that:

 71

a) In Amazons, selective searches have good speed-up on the early stage. But

during the middle and the endgame, the overhead of selective search becomes

worse. After step 55, N-selective search is not practical in Amazons anymore.

b) Dividing a move into two separate operations (queen-move and arrow-move)

is not a good idea for selective search in Amazons. Though this approach can

further reduce the size of the game tree, the chance of cutting off decisive

variations during move selection increases. Comparing statistics of F=20 with

N=10 and M=6, we find that the former gets greater speed-up and accuracy.

c) The selective search F=40 seems to be the optimal selective factor, since it

balances speed-up with accuracy.

Since we proved that N-Best search is not practical during the endgame of

Amazons, all versions of the selective program here will change to use NITKH after

move 55 during a tournament. Table 4.13 shows the tournament results from the point of

view of the selective programs. The best winning percentage is 69%, which proved that

F=40 seems to be the optimal selective factor.

NITKH Selective Search (F=20)
Step (Ply) CPU

Time
Speed-

up
Same
Move

Same
Value

+/- 2 +/- 5 +/- 10

Step5 (Ply 2) 6.93 8.45 75% 81% 81% 83% 88%

Step25 (Ply 3) 25.07 12.78 56% 55% 59% 59% 65%

Step45 (Ply 4) 5.01 3.10 73% 78% 79% 79% 81%

Step50 (Ply 5) 17.26 4.01 66% 89% 89% 90% 91%

Step54 (Ply 5) 9.09 2.13 66% 97% 97% 97% 97%

Step55 (Ply 6) 17.09 0.44 69% 99% 99% 99% 99%

Table 4.12 Comparison of N-best Searches and Brute-Force (NITKH)

 72

NITKH Selective Search (F=30)
Step (Ply) CPU

Time
Speed-

up
Same
Move

Same
Value

+/- 2 +/- 5 +/- 10

Step5 (Ply 2) 6.93 6.83 83% 89% 89% 91% 96%

Step25 (Ply 3) 25.07 8.78 64% 65% 65% 65% 71%

Step45 (Ply 4) 5.01 2.07 80% 88% 89% 89% 89%

Step50 (Ply 5) 17.26 2.02 67% 93% 93% 95% 95%

Step54 (Ply 5) 9.09 1.46 67% 97% 97% 97% 97%

Step55 (Ply 6) 17.09 0.36 69% 99% 99% 99% 99%

Table 4.12 (cont.)

NITKH Selective Search (F=40)
Step (Ply) CPU

Time
Speed-

up
Same
Move

Same
Value +/- 2 +/- 5 +/- 10

Step5 (Ply 2) 6.93 5.84 85% 91% 91% 93% 96%

Step25 (Ply 3) 25.07 6.61 70% 75% 76% 77% 80%

Step45 (Ply 4) 5.01 1.56 81% 91% 91% 91% 92%

Step50 (Ply 5) 17.26 1.38 70% 97% 97% 97% 97%

Step54 (Ply 5) 9.09 1.20 68% 99% 99% 99% 99%

Step55 (Ply 6) 17.09 0.33 70% 100% 100% 100% 100%

Table 4.12 (cont.)

NITKH Selective Search (F=50)
Step (Ply) CPU

Time
Speed-

up
Same
Move

Same
Value

+/- 2 +/- 5 +/- 10

Step5 (Ply 2) 6.93 5.19 90% 96% 96% 97% 100%

Step25 (Ply 3) 25.07 5.40 75% 81% 82% 83% 85%

Step45 (Ply 4) 5.01 1.29 83% 94% 94% 94% 94%

Step50 (Ply 5) 17.26 1.06 69% 98% 98% 98% 98%

Step54 (Ply 5) 9.09 1.03 68% 99% 99% 99% 99%

Step55 (Ply 6) 17.09 0.31 70% 100% 100% 100% 100%

Table 4.12 (cont.)

 73

NITKH Selective Search (N=5, M=4)
Step (Ply) CPU

Time
Speed-

up
Same
Move

Same
Value

+/- 2 +/- 5 +/- 10

Step5 (Ply 2) 6.93 31.00 61% 56% 58% 72% 77%

Step25 (Ply 3) 25.07 28.99 37% 29% 33% 35% 46%

Step45 (Ply 4) 5.01 1.98 43% 45% 48% 49% 51%

Step50 (Ply 5) 17.26 3.97 29% 75% 75% 75% 77%

Step54 (Ply 5) 9.09 2.83 18% 95% 95% 95% 95%

Step55 (Ply 6) 17.09 0.46 18% 98% 98% 98% 98%

Table 4.12 (cont.)

NITKH Selective Search (N=6, M=5)
Step (Ply) CPU

Time
Speed-

up
Same
Move

Same
Value

+/- 2 +/- 5 +/- 10

Step5 (Ply 2) 6.93 19.00 67% 66% 68% 77% 81%

Step25 (Ply 3) 25.07 16.62 43% 33% 35% 41% 51%

Step45 (Ply 4) 5.01 1.01 49% 55% 57% 57% 59%

Step50 (Ply 5) 17.26 1.92 35% 79% 79% 80% 81%

Step54 (Ply 5) 9.09 2.04 22% 96% 96% 96% 96%

Step55 (Ply 6) 17.09 0.40 21% 99% 99% 99% 99%

Table 4.12 (cont.)

NITKH Selective Search (N=8, M=6)
Step (Ply) CPU

Time
Speed-

up
Same
Move

Same
Value

+/- 2 +/- 5 +/- 10

Step5 (Ply 2) 6.93 10.00 76% 80% 83% 88% 93%

Step25 (Ply 3) 25.07 8.39 51% 44% 46% 51% 59%

Step45 (Ply 4) 5.01 0.45 60% 65% 65% 67% 70%

Step50 (Ply 5) 17.26 0.85 42% 89% 89% 89% 91%

Step54 (Ply 5) 9.09 1.31 32% 97% 97% 97% 97%

Step55 (Ply 6) 17.09 0.34 32% 99% 99% 99% 100%

Table 4.12 (cont.)

 74

NITKH Selective Search (N=10, M=6)
Step (Ply) CPU

Time
Speed-

up
Same
Move

Same
Value

+/- 2 +/- 5 +/- 10

Step5 (Ply 2) 6.93 6.88 79% 85% 85% 90% 95%

Step25 (Ply 3) 25.07 5.71 55% 53% 55% 60% 67%

Step45 (Ply 4) 5.01 0.27 71% 76% 76% 77% 79%

Step50 (Ply 5) 17.26 0.53 65% 92% 92% 93% 93%

Step54 (Ply 5) 9.09 1.11 48% 97% 97% 97% 97%

Step55 (Ply 6) 17.09 0.32 43% 99% 99% 99% 100%

Table 4.12 (cont.)

Table 4.13 Tournament Results between N-best search and Brute-Force (NITKH)

4.3 ProbCut and Multi-ProbCut

Both ProbCut and Multi-ProbCut are based on the assumption that evaluations

obtained from searches of different depths are strongly correlated, so the result V_D’ of a

shallow search at height D’ can be used as a predictor for the result V_D of deeper search

at height D. ProbCut uses fixed values of D and D’ in different stages, while Multi-

ProbCut performs several check searches of increasing depth. In Amazons, the search

branches in different stages vary a lot. If we use fixed D and D’, the search strength

would be similar to that of the non-selective search program in most stages. We choose to

implement Multi-ProbCut in Amazons.

Selective Factor F Result
(Win-Loss)

Winning
Percentage

20 65: 45 59%

30 75: 35 68%

40 76: 34 69%

50 73: 37 66%

 75

The parameters a, b and sigma can be estimated by three steps. First, we used a

method similar to the one we used in section 4.2 to generate test positions from 150

games. Thereafter, for each test position, we do the iterative search up to a specific

maximum search depth. Table 4.14 lists the corresponding search depth used for different

stages. In the third step, for each stage and each pair of (D’, D), the parameters a, b and

sigma can estimated by a linear regression. Table 4.14 lists the heights and check depths

that we chose to test in Mulan.

Table 4.15 lists the parameters gotten from the experiments. Figures 4.12 - 4.15

show 150 evaluation pairs in different stages in Amazons. From these figures and the

regression coefficient of determination -- 2r -- listed in Table 4.15, it is obvious that the

linear model is only suitable for the endgame stages of the Amazons. For example, the

linear relationship of evaluation pairs at move 40 is visually obvious, and its 2r is larger

than 0.95 indicating that less than 5% of the variance in the data is caused by the random

error.

h 3 4 5 6 7 8
d 1 2 1 2 3 4

Table 4.14 Check depths for different heights h used in Mulan

step 1-4 5-34 35-45 46-55 56-61 62-65 66-70

depth 2 3 4 5 6 7 8

Table 4.15 Search depths for different stages

 76

Step 5 6 7 8 9 10 11 12 13 14 15

v 1 1 1 1 1 1 1 1 1 1 1

v ’ 3 3 3 3 3 3 3 3 3 3 3

a 0.78 0.64 0.64 0.45 0.61 0.66 0.70 0.80 0.75 0.63 0.75

b 38.70 30.14 28.84 43.19 30.52 16.29 13.93 -6.36 -3.96 25.12 2.14

 21.13 25.43 31.28 33.27 35.18 35.49 36.47 41.01 43.18 44.84 48.52

2r 0.71 0.64 0.52 0.38 0.50 0.54 0.58 0.61 0.56 0.59 0.63

��������	
�������������������� ������������������������������

Step 16 17 18 19 20 21 22 23 24 25 26

v 1 1 1 1 1 1 1 1 1 1 1

v ’ 3 3 3 3 3 3 3 3 3 3 3

a 0.72 0.72 0.74 0.77 0.75 0.76 0.74 0.78 0.82 0.81 0.83

b -2.91 1.04 -3.72 -3.92 -8.43 -13.75 -6.9 -10.4 -24.0 -20.2 -28.5

 54.84 57.14 55.66 48.85 60.96 60.94 65.75 67.58 65.26 65.30 61.29

2r 0.57 0.60 0.61 0.72 0.60 0.67 0.61 0.64 0.69 0.72 0.76

Table 4.16 (cont.)

Step 27 28 29 30 31 32 33 34 35 35 36

v 1 1 1 1 1 1 1 1 1 2 1

v ’ 3 3 3 3 3 3 3 3 3 4 3

a 0.79 0.86 0.79 0.84 0.81 0.90 0.91 0.89 0.88 1.02 0.88

b -28.1 -33.7 -24.5 -30.4 -30.4 -39.4 -55.2 -40.4 -41.3 45.4 -69.9

 72.57 70.05 80.98 75.64 92.52 72.65 90.24 79.14 91.20 52.73 89.60

2r 0.71 0.76 0.68 0.75 0.63 0.81 0.71 0.82 0.74 0.93 0.79

Table 4.16 (cont.)

 77

Step 36 37 37 38 38 39 39 40 40 41 41

v 2 1 2 1 2 1 2 1 2 1 2

v ’ 4 3 4 3 4 3 4 3 4 3 4

a 0.99 0.93 1.00 0.94 1.02 0.99 1.03 1.00 1.02 0.98 1.03

b 0.5 -41.7 11.2 -35.5 -2.7 -19.6 5.7 -26.3 0.2 -21.8 -0.3

 39.04 71.52 36.72 54.29 34.81 50.24 28.76 47.49 32.13 43.11 27.63

2r 0.96 0.86 0.97 0.92 0.97 0.94 0.98 0.95 0.98 0.96 0.98

Table 4.16 (cont.)

Step 42 42 43 43 44 44 45 45 46 46 46

v 1 2 1 2 1 2 1 2 1 2 1

v ’ 3 4 3 4 3 4 3 4 3 4 5

a 0.98 1.04 1.01 1.03 1.03 1.04 1.01 1.03 0.97 1.03 1.01

b -22.5 5.7 -19.4 1.1 -14.4 2.4 -16.2 5.3 -20.7 2.62 -20.7

 48.42 29.54 40.04 23.56 37.18 20.50 35.87 23.20 57.85 20.12 63.90

2r 0.95 0.98 0.97 0.99 0.97 0.99 0.97 0.99 0.94 0.99 0.93

Table 4.16 (cont.)

Step 47 47 47 48 48 48 49 49 49 50 50

v 1 2 1 1 2 1 1 2 1 1 2

v ’ 3 4 5 3 4 5 3 4 5 3 4

a 1.01 1.04 1.03 1.01 1.03 1.05 1.01 1.04 1.06 1.01 1.05

b -20.7 -1.53 -20.7 -20.7 1.30 -20.7 -6.83 1.39 -20.7 -20.7 4.28

 30.67 19.52 44.40 34.90 20.19 47.67 29.09 21.38 42.20 36.19 17.37

2r 0.98 0.99 0.97 0.98 0.99 0.96 0.99 0.99 0.97 0.98 1.00

Table 4.16 (cont.)

 78

Step 50 51 51 51 52 52 52 53 53 53 54

v 1 1 2 1 1 2 1 1 2 1 1

v ’ 5 3 4 5 3 4 5 3 4 5 3

a 1.05 1.04 1.05 1.09 1.03 1.05 1.08 1.05 1.06 1.11 1.06

b -20.7 -8.73 2.77 -20.7 -6.83 2.31 -11.0 -6.01 1.73 -9.00 -2.25

 43.96 25.31 18.01 32.50 24.11 14.95 34.62 20.15 11.44 25.31 16.46

2r 0.97 0.99 1.00 0.99 0.99 1.00 0.98 0.99 1.00 0.99 1.00

Table 4.16 (cont.)

Step 54 54 55 55 55 56 56 56 56 57 57

v 2 1 1 2 1 1 2 1 2 1 2

v ’ 4 5 3 4 5 3 4 5 6 3 4

a 1.06 1.12 1.06 1.06 1.14 1.06 1.07 1.13 1.14 1.07 1.07

b 1.36 -3.09 -2.01 0.02 -6.50 -1.64 2.74 -2.42 5.09 -4.16 0.11

 11.64 21.82 11.05 11.62 21.36 14.99 16.39 22.01 26.01 22.48 8.08

2r 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00

Table 4.16 (cont.)

Step 57 57 58 58 58 58 59 59 59 59 60

v 1 2 1 2 1 2 1 2 1 2 1

v ’ 5 6 3 4 5 6 3 4 5 6 3

a 1.14 1.15 1.06 1.07 1.14 1.16 1.07 1.07 1.16 1.16 1.07

b -6.65 1.25 -1.99 1.87 -3.73 2.97 -2.14 1.13 -4.21 -0.75 -2.48

 30.92 19.98 14.23 14.04 26.78 29.52 14.08 15.39 29.02 32.43 14.80

2r 0.99 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00

Table 4.16 (cont.)

 79

Step 60 60 60 61 61 61 61 62 62 62 62

v 2 1 2 1 2 1 2 1 2 1 2

v ’ 4 5 6 3 4 5 6 3 4 5 6

a 1.08 1.15 1.17 1.08 1.08 1.17 1.17 1.07 1.08 1.17 1.18

b 0.71 -2.95 1.74 -0.49 0.25 -1.78 -0.21 -1.04 1.26 -0.64 2.69

 10.60 28.45 17.79 10.27 16.01 17.77 26.12 17.49 10.43 27.20 19.03

2r 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

Table 4.16 (cont.)

Step 62 63 63 63 63 63 64 64 64 64 64

v 3 1 2 1 2 3 1 2 1 2 3

v ’ 7 3 4 5 6 7 3 4 5 6 7

a 1.75 1.07 1.08 1.17 1.18 1.19 1.08 1.09 1.18 1.21 1.21

b 1.19 -1.04 1.26 -0.64 2.69 1.75 -0.56 1.30 0.32 4.07 3.82

 21.29 17.49 10.43 27.20 19.03 21.29 12.88 10.75 20.61 36.84 40.95

2r 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99

Table 4.16 (cont.)

Step 65 65 65 65 65 66 66 66 66 66 66

v 1 2 1 2 3 1 2 1 2 3 4

v ’ 3 4 5 6 7 3 4 5 6 7 8

a 1.09 1.09 1.20 1.21 1.22 1.09 1.10 1.20 1.22 1.23 1.25

b -0.86 -0.70 -1.94 -1.12 -2.10 -0.96 0.08 -1.78 -0.63 -1.85 -0.83

 10.01 11.73 21.74 25.05 34.57 13.42 11.28 23.07 24.32 29.77 37.68

2r 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99

Table 4.16 (cont.)

 80

Step 67 67 67 67 67 67 68 68 68 68 68 68

v 1 2 1 2 3 4 1 2 1 2 3 4

v ’ 3 4 5 6 7 8 3 4 5 6 7 8

a 1.10 1.10 1.22 1.23 1.25 1.27 1.10 1.11 1.22 1.24 1.26 1.29

b 0.19 0.68 0.57 1.22 -0.34 -0.07 -2.15 -0.71 -3.38 -0.72 -1.29 -0.56

 10.68 13.48 24.12 27.14 35.72 41.50 15.28 14.76 26.75 32.30 37.73 50.59

2r 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99

Table 4.16 (cont.)

Step 69 69 69 69 69 69 70 70 70 70 70 70

v 1 2 1 2 3 4 1 2 1 2 3 4

v ’ 3 4 5 6 7 8 3 4 5 6 7 8

a 1.10 1.11 1.23 1.24 1.27 1.29 1.10 1.11 1.23 1.25 1.27 1.31

b -0.69 -0.44 -3.08 -3.03 -5.76 -3.11 -1.81 0.80 -1.27 0.94 -3.09 2.92

 8.32 9.89 24.53 26.20 41.49 57.22 10.71 14.13 20.08 21.82 42.16 53.82

2r 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99

Table 4.16 (cont.)

50 100 150 200

50

100

150

200

Figure 4.12 Relation between v=1 and v’=3 at move 5

 81

-100 100 200 300 400 500 600

-200

-100

100

200

300

400

500

Figure 4.13 Relation between v=1 and v’=3 at move 25

-400 -200 200 400

-400

-200

200

400

Figure 4.14 Relation between v=1 and v’=3 at move 40

 82

-400 -200 200 400

-400

-200

200

400

Figure 4.15 Relation between v=2 and v’=4 at move 40

As we discuss in section 2.4.2, we can predict the probability that V_D>=beta

from V,&'-#����� ��)) � + beta –�������.��
�#��� �����	
	����	��
�	���
�**�
��	�������*�

the search. Choosing a correct t is essential for the performance of Multi-ProbCut.

Choosing a larger t can cause more cuts, but also increases the probability of cutting off

the best move. We use two methods, which are identical to those used in the last section,

to compare the effect of different values of t. The first one is collecting statistics include

speed-up and accuracy; the other one is using tournaments.

Table 4.17 shows statistics including speed-up and accuracy about Multi-ProbCut

with different thresholds on the set of test positions. These statistics show that:

a) In Amazons, Multi-ProbCut is not practical at the beginning of the game. For

example, in the first 25 moves, typically the computer can only search to ply

2-3 in 10 seconds. Since ply 4 is the minimum depth at which we can use

 83

Multi-ProbCut, we cannot take any advantage by applying Multi-ProbCut at

this stage.

b) In our experiment, the performance of Multi-ProbCut is bad during the

midgame of Amazons. Typically Multi-ProbCut can only get at speed-up of a

factor of 2-4 compared to non-selective search in this stage, and 40-60% of

the best moves are cut off. For Multi-ProbCut, a stable evaluation function is

necessary, but unfortunately building a stable evaluation function for

Amazons is very difficult. Figures 4.12 - 4.15 shows that the evaluation

function we use in Mulan cannot fit the linear prediction model used by Multi-

ProbCut during the beginning and midgame. So the large difference between

the true and the predicted value makes Multi-ProbCut error-prone.

c) The performance of Multi-ProbCut becomes better and better as we approach

the endgame. This is because almost all territories on the board have been

determined by this time, so evaluations obtained from searches of different

depths are strongly correlated.

To further investigate the performance of Multi-ProbCut in Amazons, we played a

tournament to compare Multi-ProbCut with a non-selective search algorithm. Table 4.18

shows the results. They show that t=1.5 is the optimal cutting cutoff for our

implementation. The tournament results also suggest that Multi-ProbCut cannot improve

the playing strength of Mulan.

 84

NITKH
Step25

(Ply 3)

Step35

(Ply 4)

Step40

(Ply 4)

Step50

(Ply5)

Step55

(Ply5)

Step60

(Ply6)

Step63

(Ply7)

Step68

(Ply8)

CPU Time 6.80 11.53 3.62 4.48 1.69 3.16 16.24 22.68

Leaf Nodes 320596 452930 129924 208787 79682 160714 902219 1291226

Selective Search (t=1.0)
Step (Ply) Speed-up

(time)
Speed-up

(LN)
Same
Move

Same
Value +/- 2 +/- 5 +/- 10

Step25 (Ply 3) 1.74 1.00 100% 100% 100% 100% 100%

Step35 (Ply 4) 3.37 3.45 34% 34% 37% 42% 44%

Step40 (Ply 4) 2.99 3.02 56% 59% 60% 63% 64%

Step50 (Ply5) 9.89 10.44 83% 87% 88% 88% 88%

Step55 (Ply5) 8.16 8.12 93% 93% 93% 94% 94%

Step60 (Ply6) 18.11 18.37 92% 97% 97% 97% 97%

Step63 (Ply7) 80.39 87.31 96% 98% 98% 98% 98%

Step68 (Ply8) 76.98 76.46 90% 97% 97% 97% 97%

Table 4.17 Comparison of Multi-ProbCut and Brute-Force (NITKH)

Selective Search (t=1.2)
Step (Ply) Speed-up

(time)
Speed-up

(LN)
Same
Move

Same
Value

+/- 2 +/- 5 +/- 10

Step25 (Ply 3) 1.01 1.00 100% 100% 100% 100% 100%

Step35 (Ply 4) 3.00 3.05 42% 43% 44% 45% 47%

Step40 (Ply 4) 2.59 2.58 63% 65% 66% 68% 70%

Step50 (Ply5) 8.10 8.13 88% 90% 89% 92% 93%

Step55 (Ply5) 8.02 8.00 95% 95% 97% 97% 98%

Step60 (Ply6) 15.90 16.31 93% 96% 96% 96% 96%

Step63 (Ply7) 70.45 70.27 95% 98% 98% 98% 98%

Step68 (Ply8) 70.16 70.49 93% 98% 98% 98% 98%

Table 4.17 (cont.)

 85

Selective Search (t=1.5)
Step (Ply) Speed-up

(time)
Speed-up

(LN)
Same
Move

Same
Value

+/- 2 +/- 5 +/- 10

Step25 (Ply 3) 1.01 1.00 100% 100% 100% 100% 100%

Step35 (Ply 4) 2.67 2.75 48% 48% 49% 51% 54%

Step40 (Ply 4) 2.39 2.27 68% 69% 69% 70% 72%

Step50 (Ply5) 7.59 7.75 92% 93% 93% 93% 94%

Step55 (Ply5) 7.36 7.31 93% 93% 93% 94% 94%

Step60 (Ply6) 13.11 13.31 96% 97% 97% 97% 97%

Step63 (Ply7) 70.39 77.03 95% 97% 97% 98% 98%

Step68 (Ply8) 76.98 75.01 96% 97% 98% 98% 98%

Table 4.17 (cont.)

Selective Search (t=2.0)
Step (Ply) Speed-up

(time)
Speed-up

(LN)
Same
Move

Same
Value

+/- 2 +/- 5 +/- 10

Step25 (Ply 3) 1.01 1.00 100% 100% 100% 100% 100%

Step35 (Ply 4) 2.24 2.09 54% 54% 55% 57% 59%

Step40 (Ply 4) 2.01 2.07 70% 72% 73% 73% 74%

Step50 (Ply5) 6.44 6.14 90% 93% 93% 94% 95%

Step55 (Ply5) 6.16 6.10 94% 95% 95% 95% 96%

Step60 (Ply6) 10.13 10.18 91% 94% 95% 96% 99%

Step63 (Ply7) 69.88 66.71 96% 98% 98% 98% 98%

Step68 (Ply8) 65.31 63.39 96% 98% 98% 99% 99%

Table 4.17 (cont.)

Threshold
t

Result
(Win-Loss)

Winning
Percentage

1.0 52-98 34.7%
1.2 58-92 38.7%
1.5 63-87 42%
2.0 60-90 40%

Table 4.18 Tournament results between Multi-ProbCut and Brute-Force (NITKH)

 86

4.4 The Construction of the Evaluation Function

Being able to search game-tree deeper and faster is important for creating a high

quality game-playing program. But for almost all interesting games, the corresponding

game tree is bushy. Since it is impossible to exhaustively search the whole tree, we need

an evaluation function to assess leaf positions. Typically constructing evaluation

functions includes two phases: selecting good features and combining selected features.

In this section, we tested some existing features used for Amazons and some new features

we developed. After that, we tried two methods to combine them into an evaluation

function: 1) linear combination using tournament; 2) a pattern classification approach

based on Bayesian learning.

4.4.1 New Features

In Chapter 3, we explained three published features for Amazons: Mobility,

Territory and Territory-and-Mobility. Based on the ideas of enlarging legal moves and

controlling more squares, we developed several new features: Min-Mobility, Regions, Ax

and Bx series, and Relative Distance Territory. In this section, we introduce the ideas and

implementations of these new features.

4.4.1.1 Min-Mobility

As we played Amazons, we found that keeping all our pieces mobile at the early

stage is very important. Neither the Mobility nor the Territory feature can notice that a

particular piece is in danger of being trapped at the early stage. We developed a new

feature called Min-Mobility to solve this problem. The Min-Mobility of a player is the

minimum over the player’s four pieces of how many squares it can reach in one step. The

 87

Min-Mobility feature is evaluated by subtracting the opponent’s Min-Mobility from the

player’s.

The Min-Mobility feature can efficiently avoid one or two of a player’s pieces

being blocked. This is very useful when the territory classification is not clear enough.

But in the mid-game and endgame, “sacrificing” a piece and letting it be trapped might

allow you to do well elsewhere on the board.

4.4.1.2 Regions

During the play of Amazons, the board will typically be divided into different

regions in the middle game. We want to place all four amazons in coordinated way: the

number of queens in a specific region should be proportional to the empty squares in the

region, and we do not want to be outnumbered by our opponent in an important region.

However, neither Mobility nor Dominance can detect this. The territory feature assumes

queens can go in all directions at once, and defend against attackers approaching from

different sides at the same time. Therefore, it optimistically evaluates unbalanced

situations. Mobility can make sure amazons don’t get trapped in very small regions, but it

tends to move all pieces into the biggest regions of the board.

The Regions feature is designed to place all four amazons in different regions in

coordinated way. The idea of this feature is illustrated by the following.

int Regions(pos) {

 Find out all regions in the current position pos.

 double whiteScore = 0.0;

 double blackScore = 0.0;

 // A “Shared region” means both sides have at least one place inside.

 88

 // The Totally dominant region is more important then the shared region.

 For each white piece i

whitePieceValue[i] = 2*(the number totally dominant regions) + (the number of

“shared” regions);

 For each black piece i

blackPieceValue[i] = 2*(the number totally dominant regions) + (the number of

“shared” regions);

 For each region {

 score = the number of empty squares in the region.

 blackNum = 0.0;

 whiteNum = 0.0;

 For each white piece i which can reach the region

 whiteNum = whiteNum + 1.0 / whitePieceValue[i];

 For each black piece i which can reach the region

 blackNum = blackNum + 1.0 / blackPieceValue[i];

 whiteScore += score * whiteNum/(whiteNum+blackNum);

 blackScore += score * blackNum/(whiteNum+blackNum);

 }

 value = (int)((1000*(whiteScore - blackScore))/(whiteScore + blackScore));

 if (white’s turn to play)

return value;

 else

 return –value;

}

Figure 4.16 The procedure of the Regions feature

There are two obvious shortcomings in the Regions feature. First, the Regions

feature does not consider how quickly the amazons can get to an empty square. Thus it is

quite easy to enter some bad positions. By combining Regions with the MSP feature, this

problem can be solved. Second, the horizon effect can also affect the value of Region

 89

feature, since Regions cannot detect when a region is almost, but not quite enclosed; that

is, if a wall between regions still has holes in it at the horizon. Because of this, the effect

of the Region feature strongly depends on the search depth.

4.4.1.3 Ax & Bx

Ax represents a series of features we derived from the Mobility feature. The score

of Ax is based on how many squares each side can reach in x steps. The basic idea behind

Ax is that the squares which can be reached in different numbers of steps should be

weighted differently. So combining A1, A2, etc with appropriate weights may give a

more precise evaluation of the board.

Similarly, Bx is a series of features which are essentially the same as the territory

feature. It represents how many squares the player can reach in x steps that the opponent

cannot. Using B1, B2, etc, we can evaluate not only whether a square belongs to the

player’s territory, but also how fast the player can reach it.

4.4.1.4 Relative Distance Territory (RDT)

As we mentioned above, the Territory feature does not work well in unbalanced

situations, such as when 1 queen is outnumbered by two or more. To solve this problem,

we developed a new feature called the Relative Distance Territory (RDT). The

implementation of the RDT feature is described as the following.

 // pos : current board position

 // evaluate the RDT feature for the board position “pos” and return the result.

 double RDT(pos)

 {

blackPoints = 0;

 90

whitePoints = 0;

for all empty squares x do

{

 blackFraction = 0;

 whiteFraction = 0;

 minStonePly = the minimum number of moves that a piece needs to arrive at x;

 for (i=0; i<4; i++) {

b = the number of moves that i th black piece needs to arrive at x;

 w = the number of moves that i th white piece needs to arrive at x;

 b = b – minStonePly;

 w = w – minStonePly;

 blackFraction = blackFraction + bweight)/1(;

 whiteFraction = whiteFraction + wweight)/1(;

 }

 whitePoints = whitePoints +
ionwhiteFractionblackFract

ionwhiteFract

+
 ;

 blackPoints = blackPoints +
ionwhiteFractionblackFract

ionblackFract

+
;

}

if (white’s turn to play)

 return (whitePoints – blackPoints);

else

 return (blackPoints – whitePoints);

 }

Figure 4.17 The procedure of the RDT feature

As we mentioned before, the Territory feature optimistically assumes queens can

go all directions at once. But in reality, a queen can’t defend against multiple attackers

approaching from different sides at the same time. In the Relative Distance Territory, for

each square each player gets a fractional score. The fractional score that each player gets

 91

depends on two factors: how many of his/her pieces can reach that square, and their

relative speeds, i.e., how quickly they can get there. So the RDT feature can evaluate the

position more precisely in unbalanced situations. By considering relative speed, the RDT

feature may also be able to use “barricade” positions intelligently to maximize the moves

necessary for the opponent to reach empty squares.

The main shortcoming of the RDT feature is its evaluation speed. There are two

reasons why evaluating the RDT feature is more time-consuming than the Territory

feature. First, RDT needs to evaluate how quickly each piece can reach a square, while

the Territory feature only needs to know which player’s pieces can reach a square first.

Furthermore, dividing the square score into two fractions introduces expensive floating-

point or integer operations, while the Territory feature can be implemented efficiently

using bitmap operations.

4.4.2 Choosing good features

We described several new features for the game of Amazons in the previous

section. Now we need to determine which features are the most valuable ones. Selecting

good features is important and difficult. First, we need to avoid too few features as well

as redundant ones. Furthermore, there is the well-known tradeoff between speed and

accuracy of evaluation. We used Mulan as a test bed for this investigation.

Ideally, every feature should measure characteristic of the board position. To

avoid redundant features, we divided all features into three groups based on the

characteristic they represented: mobility (including Mobility, Ax series and Min-

Mobility), coordination (including TM and Regions) and territory (including MSP, Bx

 92

series and Relative Distance Territory). First, we need to find out the best feature in each

group, i.e. the best measure of that characteristic of the board position. Then we can

combine them according to the characteristics of different stages of the game.

We used two methods to examine the performance of the different features:

computer tournaments and human-computer playing experience. We modified Mulan to

produce different versions, each applying different features in its evaluation function. We

set two of them to play at a time on a set of random initial board positions. Each version

played both white and black on each board position. The other method we used was our

experience of playing Amazons against different versions of Mulan. This method of

feature selection is a very intuitive process; Humans are good at trying different strategies

during the game. So Human vs. computer playing experience can help us to further

improve the program to handle different situations.

First, we tested territory features. For Bx and MSP, we found that the result of

combining Bx series was very similar to MSP. To keep the evaluation function simple

and reduce the effort of combining features, we eliminated the Bx feature first. Then we

had two choices left: MSP and RDT. As we mentioned before, the RDT evaluator is

inherently slower than MSP. To remove the speed difference, we limited each search in

the tournament to 100,000 leaf positions. The results listed in Table 4.19 shows that MSP

beat RDT in the computer tournament even without considering the speed factor. To

further investigate RDT’s effect in the stage of the early game, we did an additional

tournament where we used RDT only in the first 15 moves. The results are given in Table

4.20. They show that RDT is superior to MSP when we set the RDT weight to 2.8. This

result seems also to imply that we should set different RDT weights in different game

 93

stages. Our playing experience also shows that the RDT feature is able to use barricade

positions in a smarter way than MSP by considering relative speed. However, the

evaluation speed of the RDT feature is extremely slow compared with MSP. When we

include time (not just number of leaf positions) in our criteria, the MSP is much superior

to RDT. Because of this reason, we decided to select MSP as territory feature.

RDT

Weight
1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Win-
Loss

12:88 25:75 38:62 34:66 39:61 41:59 31:69 38:62 38:62 44:56 42:58

Table 4.19 RDT VS Dominance with 100000 Leaf Positions per Move

RDT
Weight

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Win-Loss 42:58 42:58 47:53 45:55 41:59 49:51 56:44 50:50 42:58 41:59

Table 4.20 Using RDT in First 15 moves against Dominance with 100000 Leaf
Positions per Move

We next chose a feature from the mobility-related group. We eliminated Ax first

since the result of combining the Ax series is very similar to Mobility. Then we compared

Mobility and Min-Mobility. We found that neither of them can form a strong evaluation

function alone. According to our playing experience, mobility-related features are only

valid in the early stage, typically during the first 20 moves. So we used a linear

combination of a mobility-related feature and MSP in the first 20 moves, and pure MSP

after that. Our experimental results show that Min-Mobility is superior to Mobility. We

didn’t find any obvious improvement from the combination of Mobility and MSP,

whereas we got an unequivocal improvement from using Min-Mobility and MSP. Table

4.21 illustrates the effect of Min-Mobility, which is combined with MSP using the

 94

equation (weight*mobility_feature + (1 – weight)*MSP). The best result is 194 -111

when the weight is set to 0.5.

Weight 0.1 0.2 0.3 0.4 0.5

Win-Loss 143:157 176:124 170:130 189:111 194:106

Weight 0.6 0.7 0.8 0.9 1.0
Win-Loss 189:111 174:126 175:125 129:171 92:208

Table 4.21 Min-Mobility+Dominance VS Dominance

To test the effect of Min-Mobility, we compared Mulan with several existing

programs for Amazons. Using an evaluation function consisting of Min-Mobility and

Dominance, Mulan can compete with many world championship level Amazons

programs, including Yamazon and Arrow. Appendix A lists the playing record of Mulan

vs Yamazon and Mulan vs Arrow. From Figure 4.18 – Figure 4.21, we can see that

Mulan can effectively block one of its opponent’s pieces during the opening stage. But

the new evaluation function still has a weakness: it cannot place all four of its amazons in

a coordinated way. Figure 4.21 is an example, in which the opponent occupied a big

region while Mulan was attacking one of their pieces. The situation becomes worse

when playing with a human. For example, my adviser, Prof. Moore, developed a strategy

against this version of Mulan. He used one of his pieces as the bait, then blocked all of

Mulan’s pieces in a big region while they attacked this bait. He finally successfully beat

this version of Mulan by more than ten squares.

To solve this problem, we need a feature to coordinate all four pieces’ moves. We

tested two features related to coordination: TM and Regions. Though Hashimoto et al.

[26] believes that the TM feature allows the program to place all four amazons in a

coordinated way, our experiments show that it cannot improve the playing strength of

 95

Mulan at all. Our results on TM appear in Tables 4.22 and 4.23. The test results of our

newly developed feature, Regions, are far more promising. After Regions is applied,

Mulan’s coordination ability was improved significantly. When we tuned the

combination coefficients of the evaluation function to 0.2*Regions+0.5*Dominance

+0.3*Min-Mobility, Mulan’s playing strength become so strong that we have never

beaten her.

The Computer’s self-play tournaments also show that the evaluation function with

Regions is superior to the original one. To further examine the performance of the

Regions feature, we used the new version of Mulan to play against Yamazon and Arrow

again. The result is surprising: Mulan won all the games! The tournament records are

shown in Appendix B. From Figure 4.22—4.25, we can see that Mulan not only blocked

one of her opponent’s pieces successfully but also placed all four amazons in different

regions in a coordinated way in the early stage.

Now we have found three effective features: MSP, Min-Mobility and Regions. By

combining these features linearly, we got a very effective evaluation function. In our

experiment, we determined the coefficients of the linear combination from our experience

and from tournament results. Though the outcome is promising, there are still three

problems left. First, it is very difficult for humans to estimate these coefficients precisely

since we don’t use game tree search and evaluation functions. Furthermore, though we

try to reduce redundancies between features, it is difficult to totally avoid correlations

among them. Finally, we divide the whole Amazons game into only two stages. This is

obviously not enough. To solve these problems, we will test a pattern classification

approach and Automatic Evaluation Function Construction in next section.

 96

Weight 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Win-Loss 40:60 30:70 31:69 30:70 16:84 23:77 22:78 12:88 6:94 13:87

Table 4.22 TM+Dominance vs Dominance (100000 leaf pos. per move)

Weight 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Win-
Loss

106:94 77:123 62:138 32:168 30:170 18:182 12:188 7:193 1:199 1:199

Table 4.23 TM+Dominance vs Dominance (10 Sec. per Move)

Tournament criterion 100000 leaf pos. per move 10 sec. per move
Win-Loss 106:94 108:92

Table 4.24 Regions+Min-Mobility+Dominance vs Min-Mobility+Dominance

Figure 4.18 Yamazon vs Mulan (without Regions feature): Yamazon plays red

 97

Figure 4.19 Yamazon vs Mulan (without Regions feature): Mulan plays red

Figure 4.20 Invader vs Mulan (without Regions feature): Invader plays red

 98

Figure 4.21 Invader vs Mulan (without Regions feature): Mulan plays red

Figure 4.22 Yamazon vs Mulan (with Regions feature): Yamazon plays red

 99

Figure 4.23 Yamazon vs Mulan (with Regions feature): Mulan plays red

Figure 4.24 Invader vs Mulan (with Regions feature): Invader plays red

 100

Figure 4.25 Invader vs Mulan (with Regions feature): Mulan plays red

4.4.3 Using Pattern Classification and Bayesian Learning to combine features

In this chapter, we will apply Bayesian learning to our Amazons program—

Mulan. Similar to Lee et al’s Bayesian learning approach to the game of Othello, our

approach also includes two stages: training and recognition.

In the training stage, a database of labeled training positions is required. We

obtained these positions from the actual games generated from Mulan’s self-play. We

generated 2 random initial moves for each game, after which, two copies of Mulan played

against each other. During the game, each side is given 30 seconds for each move.

Usually, one player will get quite a big advantage in the beginning and go on to win the

game. After the game is terminated, all positions are recorded as training data. All

positions of the winning player are labeled as winning positions, and all positions of the

losing player are labeled as losing positions. A total of 2000 games were played and

recorded as the training data.

 101

It is well known that different strategies should be used for different stages of

Amazons. We used the number of burnt squares to classify stages. For a stage with N

burnt squares, we used training positions with N burnt squares to estimate the parameters.

For each training position, the three features were calculated and represented as a feature

vector. Then, the mean vectors and covariance matrices for both categories, winning and

losing, were estimated. After that, the corresponding evaluation function was calculated

via the following equation:

||log
2

1
)()(

2

1
||log

2

1
)()(

2

1
)(11

losslossloss
T

losswinwinwin
T

win VxVxVxVxxg +−−+−−−−= −− µµµµ

Using this method, a series of slowly varying discriminant functions, which can

provide a fine measure of game positions for different stages, were generated. The

functions for different stages are listed as the following, where x, y and z represent

evaluation values of Dominance, Min-Mobility and Regions respectively.

Move 5:

�0.997422�0.0015418x�5.42157�10�7x2�0.00140515y�5.20371�10�6xy�

8.21226�10�7y2�0.00604553z�3.71359�10�7xz�5.61574�10�6yz�0.00202669z2

Move 6:

�0.275975�0.000544858x�3.43234�10�6x2�0.00139084y�1.60483�10�6xy�

7.66591�10�7y2�0.00411963z�0.0000605542xz�2.46082�10�7yz�0.00184263z2

Move 7:

�2.15991�0.000231133x�4.25596�10�7x2�0.00404007y�1.40761�10�6xy�

2.21537�10�6y2�0.0047651z�0.0000160546xz�0.0000313477yz�0.00132382z2

Move 8:

 102

0.571769�0.00177234x�5.98155�10�7x2�0.00148389y�2.65102�10�6xy�

1.55761�10�6y2�0.0037633z�0.000042359xz�0.0000105338yz�0.00116309z2

Move 9:

�1.88075�0.00163066x�2.2281�10�7x2�0.0026073y�2.27333�10�7xy�

7.82549�10�7y2�0.00779871z�0.0000109059xz�0.0000233588yz�0.000603111z2

Move 10:

0.675081�0.00196876x�2.93109�10�6x2�0.00168869y�2.12433�10�6xy�

1.7376�10�6y2�0.00444221z�9.34201�10�6xz�0.0000187061yz�0.000425721z2

Move 11:

�1.87805�0.00385968x�1.4842�10�7x2�0.00285252y�3.64952�10�6xy�

5.38946�10�7y2�0.00505107z�0.0000142436xz�0.0000149833yz�0.000277929z2

Move 12:

0.457485�0.0027442x�2.54617�10�6x2�0.00149188y�2.02435�10�6xy�

1.0778�10�6y2�0.0098241z�0.0000242371xz�1.80991�10�6yz�0.000164668z2

Move 13:

�1.82138�0.00404531x�4.19231�10�7x2�0.00179823y�3.43449�10�6xy�

1.20298�10�7y2�0.0103534z�0.0000208647xz�0.0000203898yz�0.000308181z2

Move 14:

0.669872�0.00380293x�5.31363�10�6x2�0.00122248y�7.01452�10�7xy�

1.58175�10�6y2�0.0128523z�9.28096�10�6xz�7.47522�10�6yz�0.000148753z2

Move 15:

�1.77574�0.00351681x�5.29749�10�6x2�0.00081019y�2.15915�10�7xy�

8.44543�10�7y2�0.0146666z�0.0000127563xz�0.0000157202yz�0.000202421z2

 103

Move 16:

0.341292�0.00494561x�3.93172�10�6x2�0.000858505y�2.15312�10�6xy�

8.49635�10�7y2�0.0174589z�0.0000154577xz�6.86939�10�6yz�0.0000201464z2

Move 17:

�1.27815�0.00538262x�2.53047�10�6x2�0.000623036y�1.55175�10�6xy�

8.55594�10�7y2�0.0142406z�0.0000247121xz�9.99416�10�6yz�0.0000797396z2

Move 18:

0.199416�0.00529466x�8.19045�10�7x2�0.000320933y�3.09733�10�6xy�

3.14474�10�7y2�0.0198604z�0.0000308927xz�5.67722�10�6yz�0.0000300763z2

Move 19:

�1.41592�0.00733786x�3.6445�10�6x2�0.000555011y�1.45849�10�6xy�

1.08294�10�6y2�0.0157919z�0.0000247817xz�0.0000142676yz�0.0000977267z2

Move 20:

0.261509�0.00544465x�1.28232�10�6x2�0.000523453y�1.08382�10�6xy�

7.71907�10�7y2�0.019619z�0.000023834xz�6.02909�10�6yz�0.000061187z2

Move 21:

�1.2491�0.00632449x�2.63308�10�6x2�0.000384885y�7.10138�10�7xy�

8.4948�10�7y2�0.0200342z�0.0000102646xz�0.0000163035yz�0.0000953523z2

Move 22:

0.197349�0.00669165x�3.31637�10�6x2�0.000741352y�1.72331�10�6xy�

8.79389�10�7y2�0.0197532z�0.0000218525xz�0.0000180918yz�0.0000935729z2

Move 23:

�1.4514�0.00840189x�4.09187�10�6x2�0.000493894y�6.61764�10�7xy�

9.46314�10�7y2�0.0173127z�0.0000176894xz�0.0000169801yz�0.000105015z2

 104

Move 24:

0.148123�0.00759464x�2.14168�10�6x2�0.000507131y�4.01306�10�7xy�

9.19167�10�7y2�0.0193556z�0.0000275413xz�0.0000150671yz�0.0000722716z2

Move 25:

�1.47002�0.00890548x�3.89289�10�6x2�0.000531111y�3.9986�10�7xy�

8.84134�10�7y2�0.0148957z�0.0000223929xz�0.0000158818yz�0.0000776215z2

Move 26:

0.159465�0.008858x�3.54746�10�6x2�0.000625495y�1.33753�10�6xy�

7.06728�10�7y2�0.0174154z�0.0000189698xz�0.000014148yz�0.0000622167z2

Move 27:

�1.48221�0.00992909x�4.87572�10�6x2�0.000303827y�7.04131�10�7xy�

8.29595�10�7y2�0.0136949z�0.0000243875xz�0.0000161583yz�0.0000629963z2

Move 28:

0.0234448�0.0116827x�9.22348�10�6x2�0.000572712y�1.79459�10�7xy�

4.54154�10�7y2�0.0128658z�2.52242�10�6xz�7.25174�10�6yz�0.0000400919z2

Move 29:

�1.52986�0.010753x�2.09874�10�6x2�0.000376512y�6.18421�10�7xy�

6.92063�10�7y2�0.0136772z�7.87649�10�6xz�0.0000120484yz�0.0000460114z2

Move 30:

�0.117816�0.0117813x�6.94781�10�6x2�0.000813082y�2.0933�10�6xy�

4.62371�10�7y2�0.0118742z�3.95867�10�6xz�7.50346�10�6yz�0.0000168311z2

Move 31:

�1.40136�0.0105505x�1.25999�10�6x2�0.000719051y�1.69102�10�6xy�

3.31923�10�7y2�0.0107472z�7.10553�10�6xz�8.24051�10�6yz�0.0000275633z2

 105

Move 32:

�0.181637�0.0132378x�5.57432�10�6x2�0.000997469y�3.09664�10�6xy�

1.70471�10�7y2�0.00914412z�2.50853�10�6xz�5.82315�10�6yz�0.0000178108z2

Move 33:

�1.35425�0.0120342x�1.36855�10�6x2�0.000710516y�1.55918�10�6xy�

2.37216�10�7y2�0.0103306z�5.01664�10�6xz�8.22007�10�6yz�0.0000115233z2

Move 34:

�0.221935�0.0143446x�6.53812�10�6x2�0.000958794y�1.0975�10�6xy�

2.96128�10�7y2�0.00895052z�5.55709�10�6xz�3.30902�10�6yz�9.75586�10�7z2

Move 35:

�1.34031�0.0128117x�2.8601�10�6x2�0.000666913y�2.8446�10�7xy�

2.68348�10�7y2�0.00981992z�5.02738�10�6xz�3.89887�10�6yz�1.49128�10�6z2

Move 36:

�0.255715�0.0145341x�5.31408�10�6x2�0.000641949y�1.22053�10�6xy�

7.35374�10�8y2�0.00903889z�0.0000167525xz�6.8738�10�7yz�0.0000126681z2

Move 37:

�1.17315�0.0136987x�1.66189�10�6x2�0.000662974y�5.23591�10�7xy�

3.183�10�7y2�0.00799443z�0.0000150853xz�3.006�10�6yz�5.52443�10�6z2

Move 38:

�0.108538�0.0145749x�1.88254�10�6x2�0.000699398y�4.22236�10�7xy�

2.41759�10�7y2�0.00727268z�0.0000147027xz�1.50719�10�6yz�9.72286�10�7z2

Move 39:

�1.281�0.0150188x�1.28283�10�6x2�0.000544859y�1.45805�10�6xy�

1.55606�10�7y2�0.00656979z�9.40797�10�7xz�4.21504�10�6yz�9.3528�10�6z2

 106

Move 40:

0.00821834�0.0163908x�6.71716�10�6x2�0.000534039y�1.36918�10�7xy�

8.74644�10�8y2�0.00699702z�3.21866�10�6xz�9.74231�10�7yz�9.09629�10�6z2

Move 50:

0.478788�0.0238406x�0.0000104875x2�0.000705451y�9.36295�10�7xy�

8.79864�10�8y2�0.00503608z�5.84642�10�7xz�6.46336�10�7yz�4.99071�10�6z2

Figure 4.26 Evaluation Functions Generated by Bayesian Learning

Using Evaluation Functions Generated by Bayesian Learning and the same three

features as the original version of Mulan, a new version, Mulan--Bayesian, was created.

The original version, Mulan-Original, used a linear combination of three features,

0.2*Regions+0.5*Dominance+0.3*Min-Mobility, which was tuned using tournaments as

described in the previous section. We set Mulan-Bayesian and Mulan-Original to play

against each other based on two criteria: time and number of boards evaluated per move.

For each tournament, we selected 100 initial positions from the opening book. For each

selected initial position, two games between the two versions of Mulan were played.

Each version played once as white and once as black. The results are listed in Table 4.25.

Criterion Result
(Win-Loss)

Winning
Percentage

30 Seconds per
Move

55: 145 27.5%

100000 leaf nodes
per Move

68: 132 34%

Table 4.25 Tournament Results between Mulan-Bayesian and Mulan-Origianl

Although Lee et al got a very good improvement by applying Bayesian learning

to the game of Othello, the results of applying it to Amazons are not very promising. By

 107

comparing the characteristics of two games, we think there are three possible reasons for

this.

First of all, we observed that the Mulan-Bayesian’s performance is better when

using board evaluations instead of time as criterion. This is a major problem with

Bayesion learning, efficiency. Using the functions obtained from Bayesion learning, the

number of floating point multiplications needed to combine N features is 2N(N+1). This

substantially affects the speed of evaluation.

Secondly, mislabeled positions may decrease the accuracy of the evaluation

function’s coefficients. This problem is more harmful for Amazons than the game of

Othello. In Amazons, we know less about how to play Amazons, so we don’t have good

experts to provide training data. So a poor subsequent move may cause a losing result for

a winning position. In Lee et al’s experiments on the game of Othello, this less likely

happens since typically Logistello plays better than any expert.

Finally, the underlying distributions of the features we used in Mulan do not obay

the Multivariate normal distribution assumption on which Bayesian learning largely

depends. To investigate whether this assumption is true in our domain, the distribution of

the three features from all 2000 training games were plotted in Figure 4.27-4.38. From

these figures, we can see this assumption is not quite reasonable for our selected features.

 108

Figure 4.27 Normalized Dominance Feature at Move 10

Figure 4.28 Normalized Dominance Feature at Move 20

 109

Figure 4.29 Normalized Dominance Feature at Move 30

Figure 4.30 Normalized Dominance Feature at Move 40

 110

Figure 4.31 Normalized Min-Mobility Feature at Move 10

Figure 4.32 Normalized Min-Mobility Feature at Move 20

 111

Figure 4.33 Normalized Min-Mobility Feature at Move 30

Figure 4.34 Normalized Min-Mobility Feature at Move 40

 112

Figure 4.35 Normalized Regions Feature at Move 10

Figure 4.36 Normalized Regions Feature at Move 20

 113

Figure 4.37 Normalized Regions Feature at Move 30

Figure 4.38 Normalized Regions Feature at Move 40

 114

CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Throughout this thesis, we implemented and tested some major algorithms for

selective and non-selective search. All these algorithms have been proved valuable in

many domains, but their performance may vary for different games. Currently there are

no published results about how well they perform in Amazon. Our experiments

investigated this question experimentally. We found that for non-selective search, a

combination of NegaScout, Iterative Deepening, Transposition Table, Killer Heuristic

and History Heuristic can achieve the best result. We also tested two kinds of forward

pruning enhancements, N-best search and Multi-ProbCut. Our results show that N-best

search is superior to Multi-ProCut in Amazons. Two kinds of N-best selective search

were implemented and tested in our experiment. One divides a move into two separated

operations: queen-move and barricade-move. For each node, N promising queen-moves

are selected first, and then M favorable barricade-moves are determined for each queen-

move. The other kind of N-best selective search simply selects F promising moves for

each node. We found that this second approach gets better results; when we chose F=40,

we got a 69% winning percentage comparing with the best non-selective search.

Most successful game-playing programs apply heuristic evaluation functions at

terminal nodes to estimate the probability that the current player will win. Typically,

constructing a good evaluation function includes two working phrases:

1) Selecting good features.

2) Combining them appropriately to obtain a single numerical value.

 115

Selecting features is important and difficult. We have to avoid too few features as

well as redundant ones. We implemented the three most important published features of

Amazons. Based on our practical playing experience on Amazons, we also designed four

new features. To avoid redundant features, we divided all these features into three groups

based on the board characteristics they evaluated. For each group, we used tournaments

to select the most effective feature. The features we finally selected are Dominance, Min-

Mobility and Regions.

Furthermore, we used tournaments to combine these features linearly. We divided

the whole game to two phases: Before and after 30 moves. We found the best

combination of features is 0.2*Regions+0.5*Dominance+0.3*Min-Mobility for the first

30 moves, and a pure Dominance feature after that.

The last question is whether we can apply Bayesian learning to Amazons

effectively. To answer this question, we used our linear combination of features to create

a version of Mulan called Mulan-Original. Using Mulan-Original as an expert, we

collected training data and applied the Bayesian learning method to get a new version

called Mulan-Bayesian. We used tournaments to compare these two versions of Mulan.

The result shows that Bayesian learning doesn’t work out in Mulan. There may be three

possible reasons: 1) The efficiency problem of floating point multiplications needed for

evaluations generated by Bayesian learning; 2) Mislabeling of positions in Bayesian

learning; 3) The underlying distributions of the features we selected don’t meet the

Multivariate normal distribution assumption required by Bayesian learning.

 116

5.2 Future Work

In this section, some techniques and ideas related with future studies are

discussed.

5.2.1 Finding more useful features

Finding more useful features is critical for creating a strong game playing

program. It also requires both expert game knowledge and programming skill because of

the well-known tradeoff between the complexity of the evaluation function and the

number of positions we can evaluate in a given time. Thought Mulan has combined three

important features and evolved to a strong Amazons playing program, there is still

considerable room for improvement.

5.2.2 Designing new automatic features combination method

Though our experimental results on Bayesian Learning are not very impressive,

we still believe automatic evaluation function construction has a brilliant future in

Amazons. Many other new methods of automatic evaluation function have been proposed

and achieved promising results on some complicated games [34], and we believe that it

is also possible to find out a good approach to suit Amazons.

5.2.3 Quiescence Search

Although we don’t have experiments to show this, we believe that Quiescence

Search is beneficial for improving the play strength of Mulan. In Amazons, some

“quiescent” positions such as “dead piece”, “region invasion” should be assessed

 117

accurately, but they cannot be evaluated correctly without further search. Quiescence

Search can increase the search depth for positions that have potential and should be

explored further. Currently, applying Quiescence Search in Amazons is difficult since

humans are still in the learning stage and haven’t accumulated enough information about

“quiescent” positions. So further research is necessary to investigate how to implement

Quiescence Search in Amazons and how useful Quiescence Search is in Amazon.

5.2.4 Opening books and Endgame improvement

Creating large endgame databases can extend the search horizon in the endgame

phase. This is the approach taken by Arrow using combinatorial game theory. However,

we find that combinatorially complicated positions rarely occur in play and the large-

scale dynamics of the early and mid-game seems to be more important.

At the beginning of the game, a large opening book would be helpful. But one of

the charms of Amazons is that we still don’t know enough about the game to be sure

what the good opening moves are! This is another area for future research.

 118

APPENDICES

Appendix A. Tournament results of Mulan (Min-Mobility + Dominance version)

Game1: Yamazon vs Mulan (10 Sec. per Move and Yamazon plays first)

Mulan wins 5 squares.

D1-D7 (G7) D10-F8 (B4)

J4-J6 (F10) G10-E8 (J3)

J6-I6 (F6) E8-E2 (F1)

G1-F2 (B6) J7-H9 (B3)

I6-H7 (C2) E2-H5 (B5)

A4-A1 (A6) A7-C9 (C3)

A1-D1 (D2) H9-E6 (E2)

H7-I8 (H9) H5-I5 (G3)

F2-F5 (E5) F8-H8 (H2)

F5-F4 (I4) I5-H5 (H7)

F4-G4 (H4) E6-D5 (F7)

G4-E4 (G4) H5-J7 (I7)

I8-I9 (J8) H8-C8 (H8)

D1-E1 (F2) D5-D3 (F3)

I9-H10 (C5) J7-J5 (F5)

D7-D9 (E8) D3-D6 (G9)

E4-D5 (E6) C9-D10 (C9)

D9-C10 (A8) C8-B9 (B7)

C10-D9 (D7) D10-E9 (D10)

 119

D9-D8 (B8) J5-G5 (E3)

D5-E4 (D5) E9-F9 (G10)

D8-E9 (F8) B9-C8 (D9)

E9-D8 (E7) F9-E10 (E9)

D8-C7 (C6) G5-H6 (F4)

H10-I10 (H10) H6-H5 (J7)

C7-D8 (C7) C8-B9 (C8)

E1-A1 (E1) B9-B10 (B9)

A1-A4 (A5) B10-A9 (A10)

A4-A3 (A4) A9-B10 (A9)

A3-C1 (D1) B10-C10 (B10)

E4-D4 (E4) H5-H6 (H5)

D4-D3 (D4) H6-I5 (I6)

D3-C4 (D3) I5-J6 (J5)

C1-A3 (C1) J6-I5 (J6)

I10-J10 (I10) I5-H6 (G5)

J10-J9 (J10) E10-F9 (E10)

J9-I9 (J9) H6-I5 (H6)

I9-I8 (I9) I5-J4 (I5)

A3-A2 (A3) J4-I3 (J4)

A2-B2 (B1) I3-I2 (I3)

B2-A2 (B2) I2-H3 (I2)

A2-A1 (A2) H3-G2 (H3)

 120

Game2: Mulan vs Yamazon (10 Sec. per Move and Mulan plays first)

Mulan wins 9 squares.

D1-D8 (E9) A7-E3 (A7)

J4-J5 (E10) D10-B8 (I1)

G1-G8 (F9) J7-G4 (C4)

G8-H9 (G9) G10-J10 (J7)

A4-A1 (I9) G4-E6 (D5)

J5-F5 (J9) E6-H6 (G5)

H9-E6 (I10) H6-G6 (G8)

D8-C7 (B7) B8-C8 (B8)

C7-H7 (I7) C8-D7 (D6)

E6-E8 (C8) E3-C3 (A3)

E8-D8 (E8) C3-B2 (B1)

F5-G4 (E2) G6-I4 (G6)

G4-H3 (C3) B2-B6 (B2)

H3-E3 (C5) I4-G4 (F3)

E3-F4 (F7) D7-F5 (D7)

H7-H6 (H3) F5-E5 (E3)

F4-G3 (H4) E5-G7 (H7)

H6-H5 (H6) G7-E5 (E7)

G3-E1 (G3) E5-D4 (D2)

E1-D1 (A4) D4-D3 (C2)

D8-C7 (C6) B6-B3 (B6)

 121

A1-A2 (A1) D3-D4 (D3)

D1-E1 (F2) D4-H8 (J8)

E1-F1 (G2) H8-H10 (F10)

F1-G1 (H2) H10-G10 (H10)

G1-H1 (I2) G10-H9 (G10)

H1-G1 (H1) H9-I8 (H9)

G1-F1 (G1) I8-H8 (I8)

F1-E1 (F1) H8-G7 (F8)

E1-D1 (E1) G7-H8 (G7)

D1-C1 (D1) B3-B4 (B3)

H5-I6 (H5) B4-B5 (B4)

I6-I5 (I6) B5-A5 (B5)

I5-J6 (J5) A5-A6 (A5)

J6-I5 (J6) G4-D4 (G4)

I5-I4 (I5) D4-E4 (D4)

I4-I3 (I4) E4-F4 (E4)

I3-J4 (J3) F4-F5 (F4)

J4-I3 (J4) F5-E5 (F5)

I3-J2 (I3) E5-E6 (F6)

J2-J1 (J2) E6-E5 (E6)

C7-D8 (C7)

 122

Game3: Invader vs Mulan (10 Sec. per Move and Invader plays first)

Mulan wins 11 squares.

 1. G1 - G7 (D7) 2. G10 - E8 (I4)

 3. A4 - A6 (E10) 4. D10 - F8 (A3)

 5. A6 - B6 (E6) 6. F8 - F2 (E1)

 7. J4 - H2 (J4) 8. A7 - C9 (H4)

 9. D1 - C2 (C8) 10. E8 - G6 (G3)

 11. C2 - F5 (F9) 12. G6 - G4 (I2)

 13. F5 - F4 (J8) 14. G4 - F5 (H3)

 15. F4 - F3 (D5) 16. J7 - I7 (I6)

 17. F3 - D3 (C2) 18. I7 - H8 (G8)

 19. H2 - G1 (G2) 20. F2 - C5 (F2)

 21. D3 - E2 (C4) 22. C5 - B4 (C3)

 23. E2 - H5 (D9) 24. F5 - F4 (C7)

 25. G1 - F1 (D3) 26. F4 - E3 (E2)

 27. G7 - F8 (F4) 28. C9 - A7 (B7)

 29. H5 - H7 (E4) 30. B4 - E7 (B4)

 31. B6 - A6 (D6) 32. E7 - G7 (E7)

 33. H7 - I8 (I7) 34. H8 - H9 (H7)

 35. A6 - A5 (C5) 36. E3 - C1 (D1)

 37. A5 - A4 (A6) 38. C1 - B2 (B3)

 39. A4 - A5 (B6) 40. G7 - F7 (G7)

 41. F8 - D10 (B8) 42. A7 - A9 (B10)

 123

 43. D10 - C9 (B9) 44. F7 - F8 (D8)

 45. C9 - D10 (C10) 46. F8 - E8 (E9)

 47. I8 - I9 (J9) 48. E8 - F8 (H10)

 49. I9 - I8 (I10) 50. H9 - H8 (H9)

 51. I8 - J7 (I8) 52. F8 - F5 (J5)

 53. J7 - J6 (I5) 54. F5 - F6 (F7)

 55. D10 - C9 (D10) 56. F6 - F5 (F6)

 57. J6 - J7 (J6) 58. F5 - G6 (G5)

 59. A5 - A4 (A5) 60. G6 - H5 (H6)

 61. A4 - C6 (A4) 62. H5 - G6 (H5)

 63. C6 - B5 (C6) 64. G6 - F5 (G6)

 65. F1 - H1 (F1) 66. F5 - G4 (F5)

 67. H1 - H2 (H1) 68. G4 - F3 (G4)

 69. H2 - I1 (J2) 70. F3 - E3 (C1)

 71. I1 - H2 (G1) 72. E3 - D4 (E5)

 73. H2 - I3 (J3) 74. D4 - E3 (D4)

 75. I3 - H2 (I3) 76. B2 - B1 (B2)

 77. H2 - I1 (H2) 78. E3 - D2 (E3)

 79. I1 - J1 (I1) 80. B1 - A2 (A1)

 124

Game4: Mulan vs Invader (10 Sec. per Move and Mulan plays first)

 Invader wins 13 squares.

 1. D1 - D8 (E9) 2. G10 - G3 (G8)

 3. J4 - F4 (F10) 4. D10 - C10 (C1)

 5. D8 - C8 (D9) 6. A7 - D4 (D7)

 7. C8 - C9 (B9) 8. D4 - F6 (G5)

 9. G1 - H2 (J4) 10. G3 - F2 (H4)

 11. F4 - E4 (D4) 12. J7 - I6 (H7)

 13. A4 - A3 (A10) 14. F6 - D6 (E7)

 15. E4 - F5 (G6) 16. D6 - B6 (F6)

 17. C9 - B8 (C9) 18. F2 - C2 (C8)

 19. H2 - I2 (E2) 20. I6 - I4 (H5)

 21. F5 - E6 (C6) 22. C2 - B3 (D5)

 23. E6 - F7 (F8) 24. I4 - I5 (G7)

 25. B8 - G3 (D3) 26. I5 - I4 (I3)

 27. I2 - J1 (H3) 28. C10 - E10 (F9)

 29. G3 - C7 (B7) 30. I4 - J3 (H1)

 31. J1 - I1 (I2) 32. B6 - B4 (B6)

 33. I1 - F4 (D2) 34. J3 - J2 (J1)

 35. A3 - A5 (C5) 36. J2 - I1 (G3)

 37. F4 - F2 (H2) 38. B3 - D1 (A4)

 39. A5 - B5 (A5) 40. D1 - G1 (E1)

 41. B5 - C4 (C2) 42. E10 - B10 (E10)

 125

 43. C7 - E5 (A9) 44. G1 - G2 (E4)

 45. C4 - B3 (C3) 46. G2 - F3 (F5)

 47. E5 - F4 (E3) 48. F3 - G2 (F1)

 49. B3 - A3 (B3) 50. B4 - B5 (B4)

 51. F2 - F3 (F2) 52. B5 - A6 (A8)

 53. F4 - B8 (A7) 54. B10 - D10 (B10)

 55. A3 - A2 (A3) 56. D10 - C10 (D10)

 57. A2 - A1 (A2) 58. A6 - C4 (A6)

 59. A1 - B2 (B1) 60. C4 - B5 (C4)

 61. B2 - A1 (B2) 62. I1 - J2 (I1)

 63. F7 - E8 (F7) 64. J2 - J3 (J2)

 65. E8 - D8 (C7) 66. J3 - I4 (I10)

 67. D8 - E8 (D8) 68. I4 - I8 (I9)

 69. F3 - F4 (F3) 70. G2 - G1 (G2)

 71. F4 - E5 (E6) 72. I8 - J7 (J10)

 73. E5 - F4 (G4) 74. J7 - I8 (J9)

 75. F4 - E5 (D6) 76. I8 - J7 (I7)

 77. E5 - F4 (E5) 78. J7 - H9 (H8)

 126

Appendix B. Tournament results of Mulan (0.3*Min-Mobility + 0.5*Dominance +

0.2*Regions version)

Game1: Yamazon vs Mulan (10 Sec. per Move and Yamazon plays first)

Mulan wins 11 squares.

D1-D7 (G7) D10-F8 (B4)

J4-J6 (F10) G10-E8 (J3)

J6-I6 (F6) F8-C5 (F2)

G1-G4 (G6) C5-D5 (B5)

D7-C7 (E5) D5-B3 (A3)

A4-A6 (B6) A7-B7 (A7)

I6-G8 (D5) B3-D1 (A4)

C7-C4 (F1) D1-F3 (F5)

C4-C5 (E3) B7-C6 (B7)

C5-C4 (E2) C6-C5 (C9)

G4-H4 (D4) F3-I3 (H3)

G8-F9 (F8) J7-H9 (H5)

F9-D9 (C8) C5-D6 (C5)

D9-E9 (D9) D6-A9 (C7)

E9-F9 (E9) H9-G9 (G8)

H4-I5 (I4) G9-I7 (G9)

F9-G10 (I8) I7-J8 (H10)

I5-G3 (F4) J8-H6 (H9)

 127

G3-J6 (I7) I3-J4 (I5)

J6-J8 (J5) E8-F9 (E10)

C4-D3 (C4) J4-H2 (G2)

J8-J10 (J6) H6-H8 (I9)

D3-E4 (F3) H8-H7 (I6)

A6-A5 (A6) H2-I3 (J4)

J10-J8 (J7) I3-H4 (G5)

J8-J9 (J8) H4-I3 (H4)

J9-J10 (J9) I3-I2 (I3)

J10-I10 (J10) I2-I1 (I2)

E4-D3 (E4) I1-J2 (J1)

D3-D1 (E1) J2-I1 (J2)

D1-A1 (D1) I1-H1 (I1)

A1-A2 (A1) H1-G1 (H1)

A2-D2 (D3) G1-H2 (G1)

D2-A2 (D2) H2-G3 (H2)

A2-B1 (C1) G3-G4 (G3)

B1-A2 (B1) H7-H8 (H6)

A2-B2 (A2) H8-H7 (H8)

B2-C2 (B2) F9-E8 (F9)

C2-C3 (C2) E8-D8 (E8)

C3-B3 (C3) D8-D7 (D8)

 128

Game2: Yamazon vs Mulan (10 Sec. per Move and Mulan plays first)

Mulan wins 20 squares.

D1-D8 (E9) A7-E3 (A7)

J4-J5 (E10) D10-B8 (I1)

G1-G7 (B7) J7-H5 (H8)

A4-C4 (C7) H5-F5 (D5)

C4-C2 (D3) F5-F6 (G6)

D8-C8 (B9) G10-J7 (H7)

G7-E7 (C9) E3-G5 (G2)

C8-E6 (C8) G5-E5 (I5)

J5-I6 (J6) J7-G10 (G8)

C2-C1 (G5) F6-F4 (F8)

E6-G4 (G3) E5-E1 (E6)

I6-I9 (F9) E1-H1 (D1)

C1-E3 (E4) H1-H3 (I4)

E7-F6 (E5) F4-F2 (B2)

E3-D2 (E3) G10-I8 (J9)

D2-E1 (E2) B8-A9 (B8)

F6-F7 (F3) A9-B10 (D10)

F7-E8 (C10) F2-F1 (F2)

G4-H4 (G4) H3-I3 (H3)

H4-H5 (H4) I8-H9 (J7)

H5-I6 (I8) I3-J4 (J5)

 129

I9-H10 (I10) H9-I9 (J10)

H10-H9 (H10) I9-J8 (H6)

H9-I9 (G9) J8-I7 (J8)

I6-H5 (I6) B10-A10 (B10)

I9-H9 (I9) A10-A9 (A8)

H9-G10 (F10) A9-A10 (A9)

G10-H9 (G10) J4-J1 (J4)

E1-D2 (E1) F1-G1 (F1)

D2-C2 (D2) G1-H1 (G1)

C2-C1 (C2) H1-H2 (H1)

C1-B1 (C1) J1-J2 (J1)

B1-A1 (B1) J2-I2 (J2)

A1-A2 (A1) I2-I3 (J3)

A2-A4 (A2) I3-I2 (I3)

A4-B4 (A3)

 130

Game3: Invader vs Mulan (10 Sec. per Move and Invader plays first)

Mulan wins 2 squares.

 1. G1 - G7 (D7) 2. G10 - E8 (I4)

 3. A4 - A6 (E10) 4. D10 - F8 (A3)

 5. A6 - B6 (E6) 6. F8 - F2 (E1)

 7. J4 - H2 (J4) 8. J7 - F3 (D3)

 9. D1 - C2 (D1) 10. A7 - C9 (C3)

 11. G7 - G8 (F9) 12. E8 - H5 (A5)

 13. C2 - D2 (H6) 14. F3 - E4 (E3)

 15. D2 - E2 (F3) 16. F2 - G3 (F2)

 17. B6 - B8 (B3) 18. G3 - G7 (G1)

 19. H2 - H4 (H3) 20. E4 - F4 (G4)

 21. G8 - H8 (C8) 22. G7 - G9 (G8)

 23. H8 - I9 (E5) 24. G9 - H8 (F6)

 25. H4 - G3 (H4) 26. F4 - C4 (F4)

 27. I9 - I8 (I5) 28. C4 - C7 (B7)

 29. B8 - A7 (D4) 30. C7 - B6 (C7)

 31. A7 - A10 (D10) 32. H5 - J7 (H7)

 33. I8 - I9 (J8) 34. C9 - B9 (B10)

 35. A10 - A7 (A10) 36. B9 - B8 (A8)

 37. I9 - G9 (H9) 38. B8 - C9 (E7)

 39. G9 - F8 (D8) 40. J7 - H5 (E8)

 41. F8 - H10 (J10) 42. H5 - I6 (I10)

 131

 43. H10 - G9 (F10) 44. I6 - H5 (J7)

 45. G9 - H10 (G10) 46. H8 - I7 (I9)

 47. H10 - F8 (E9) 48. I7 - H8 (G7)

 49. A7 - A6 (C4) 50. B6 - B5 (B6)

 51. A6 - A7 (B8) 52. H8 - G9 (H10)

 53. F8 - F7 (G6) 54. G9 - F8 (G9)

 55. A7 - A6 (A7) 56. H5 - I6 (J5)

 57. E2 - C2 (B1) 58. I6 - I7 (H8)

 59. G3 - I1 (I3) 60. I7 - I8 (J9)

 61. C2 - B2 (A1) 62. I8 - I7 (I8)

 63. I1 - H2 (H1) 64. I7 - I6 (I7)

 65. B2 - C2 (A2) 66. I6 - H5 (G5)

 67. C2 - B2 (C1) 68. H5 - I6 (H5)

 69. B2 - C2 (B2) 70. I6 - J6 (I6)

 71. C2 - D2 (C2) 72. B5 - A4 (B5)

 73. D2 - E2 (D2) 74. A4 - B4 (A4)

 75. E2 - F1 (E2) 76. B4 - C5 (B4)

 77. F1 - G2 (G3) 78. C5 - C6 (C5)

 79. G2 - F1 (G2) 80. C6 - D6 (C6)

 81. H2 - I2 (H2) 82. D6 - D5 (D6)

 83. I2 - I1 (J1) 84. D5 - E4 (D5)

 85. I1 - I2 (I1) 86. E4 - F5 (E4)

 87. I2 - J2 (I2) 88. C9 - C10 (D9)

 132

Game4: Mulan vs Invader (10 Sec. per Move and Mulan plays first)

Mulan wins 13 squares.

 1. D1 - D8 (E9) 2. G10 - G3 (G8)

 3. J4 - F4 (F10) 4. D10 - C10 (C1)

 5. D8 - C8 (D9) 6. A7 - D4 (D7)

 7. C8 - C9 (B9) 8. D4 - F6 (G5)

 9. G1 - H2 (J4) 10. G3 - F2 (H4)

 11. A4 - A6 (A10) 12. F2 - C2 (A4)

 13. C9 - C3 (C9) 14. F6 - D6 (F6)

 15. F4 - E4 (J9) 16. J7 - I6 (H7)

 17. E4 - E8 (E2) 18. C2 - E4 (E3)

 19. E8 - F8 (I5) 20. I6 - I9 (G7)

 21. H2 - H3 (F3) 22. I9 - G9 (F9)

 23. H3 - G4 (F4) 24. E4 - G6 (I6)

 25. G4 - H3 (I2) 26. G6 - I4 (E8)

 27. F8 - F7 (D5) 28. D6 - B4 (C5)

 29. A6 - B6 (B5) 30. I4 - I3 (I4)

 31. H3 - H2 (H3) 32. I3 - J2 (J1)

 33. F7 - G6 (B1) 34. G9 - I7 (G9)

 35. H2 - G1 (I1) 36. J2 - I3 (J3)

 37. G1 - H1 (H2) 38. B4 - B3 (B2)

 39. C3 - B4 (D4) 40. B3 - D3 (A3)

 41. B4 - C3 (C2) 42. I7 - H6 (J8)

 133

 43. B6 - D6 (E5) 44. C10 - B10 (E10)

 45. D6 - C7 (A9) 46. B10 - C10 (D10)

 47. H1 - G1 (G4) 48. I3 - J2 (I3)

 49. C3 - C4 (C3) 50. D3 - D1 (F1)

 51. C4 - D3 (D2) 52. D1 - E1 (G3)

 53. G1 - G2 (F2) 54. E1 - D1 (E1)

 55. G6 - H5 (G6) 56. C10 - B10 (C10)

 57. C7 - C8 (C7) 58. H6 - I7 (H6)

 59. C8 - B7 (B8) 60. I7 - I9 (H8)

 61. B7 - C8 (B7) 62. I9 - H9 (I10)

 63. C8 - D8 (C8) 64. H9 - I9 (I7)

 65. D8 - E7 (F8) 66. I9 - H9 (G10)

 67. E7 - E6 (F7) 68. H9 - I9 (H10)

 69. E6 - E7 (D8) 70. I9 - I8 (H9)

 71. E7 - E6 (E7) 72. I8 - I9 (J10)

 73. E6 - F5 (E6) 74. I9 - I8 (I9)

 75. F5 - E4 (F5) 76. I8 - J7 (I8)

 77. D3 - C4 (D3) 78. J7 - J5 (J7)

 79. C4 - B3 (C4) 80. J5 - J6 (J5)

 81. B3 - A2 (A1)

 134

REFERENCES

[1] M. Buro. The Othello Match of the Year: Takeshi Murakami vs. Logistello.
International Computer Chess Association Journal, 20(3):189-193, 1997.

 [2] J. Schaefer. One Jump Ahead: Challenging Human Supremacy in Checkers.
Springer-Verlag, 1997.

[3] M. S. Campbell, A. J. Hoane Jr., and F.-h. Hsu. Deep Blue. Artificial Intelligence, to
appear in 2002

[4] J. Schaeffer and A. Plaat. Kasparov versus Deep Blue: The Re-match. International
Computer Chess Association Journal, 20(2):95-101, 1997.

[5] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3):210-229, 1959.

[6] A.D. de Groot, Thought and Choice in Chess, Mouton, The Hague, 1965. Also 2nd
Edition 1978.

[7] A. Newell, J.C. Shaw and H.A. Simon, “Chess playing programs and the problem of
complexity”, IBM J. Res. and Devel., 3, 1959, pp. 211 – 229.

[8] D.E. Knuth and R.W. Moore, An Analysis of Alpha-beta Pruning. Artificial
Intelligence 6, 4 (1975), 293-326.

[9] A.L. Brudno, Bounds and Valuations for Abridging the Search of Estimates,
Problems of Cybernetics 10, (1963), 225-241. Translation of Russian original in
Problemy Kibernetiki 10, 141-150 (May 1963).

[10] D.E. Knuth and R.W. Moore, An Analysis of Alpha-beta Pruning, Artificial
Intelligence 6, 4 (1975), 293-326.

[11] Marsland, T. A. (1986). A Review of Game-Tree Pruning. ICCA Journal. Vol. 9,
No. 1, pp. 3-19.

[12] D. J. Slate and L. R. Atkin. CHESS 4.5 – The Northwestern University Chess
Program. In P. Frey, editor, Chess Skill in Man and Machine, Pages 82-118. Springer-
Verlag, 1977.

[13] Zobrist, A.L. (1970). A New Hashing Method with Application for Game Playing.
Technical Report 88, Computer Science Department, The University of Wisconsin,
Madison, WI, USA.

[14] Breuker, D.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (1994). Replacement
Schemes for Transposition Tables. ICCA Journal, Vol. 17, No. 4, pp. 183-193.

 135

[15] T.A. Marsland and M. Campbell, Parallel Search of Strongly Ordered Game Trees,
Computing Surveys 14, 4 (1982), 533-551.

[16] R.D. Greenblatt, D.E. Eastlake and S.D. Crocker, The Greenblatt Chess Program,
Fall Joint Computing Conf. Procs. vol. 31, (San Francisco, 1967), 801-810. Also in D.
Levy (ed.), Computer Chess Compendium, Springer-Verlag, 1988, 56-66.

[17] Akl, S.G. and Newborn, M.M. (1977). The principal Continuation and the Killer
Heuristic. 1977 (ACM Annual Conference Proceedings, pp. 466-473. ACM, Seattle.

[18] Schaeffer, J. (1983). The History Heuristic. ICCA Journal, Vol. 6, No. 3, pp. 16-19.

[19] A. Reinefeld, An Improvement of the Scout Tree-Search Algorithm, Int. Computer
Chess Assoc. J. 6, 4 (1983), 4-14.

[20] T.A. Marsland. Relative Performance of Alpha-Beta Implementations. In
Proceedings of International Joint Conferences on Artificial Intelligence (IJCAI’83),
pages 763-766, Karlsruhe, Germany, 1983.

[21] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. Best-First Fixed-Depth Minimax
Algorithms. Artificial Intelligence, 87:55-293, 1996.

[22] M. Buro. ProbCut: An Effective Selective Extension of the Alpha-Beta Algorithm,
ICCA Journal 18(2), 71-76.

[23] M. Buro. Experiments with Multi-ProbCut and a new high-quality evaluation
function for Othello. Technical Report No. 96, NEC Research Institute, 1997.

[24] Hashimoto, T., Kajihara, Y., Sasaki, N., Iida, H. and Jin, Y. (1999). An Evaluation
Function for AMAZON, Shizuoka University, Japan.

[25] Kotani, Y. (1999). An Evaluation Function for Amazons. Proceedings of the 40th
Programming Symposium, Information Processing Society of Japan, Tokyo, Japan.

[26] T. Hashimoto, Y. Kajihara, N. Sasaki, H. lida, J. Yoshimura. An evaluation function
for amazons, in: H.J. van den Herds, B. Monien (Eds.), Advances in Computer Games,
Vol. 9. Universiteii Maastricht, Maastricht, 2001,pp. 191-203.

[27] Kai-Fu Lee and Sanjoy Mahajan. A pattern classification approach to evaluation
function learning. Artificial Intelligence Journal, 36:1--25, 1988.

[28] A. L. Samuel. Some studies in machine learning using the game of checkers, II. IBM
J. 11 (1967) 601-617.

 136

[29] D. Heckerman. A Bayesian approach for learning causal networks. In Proceedings of
Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, pages 285-
295. Morgan Kaufmann.

[30] D. Kopec and I. Bratko, The Bratko-Kopec Experiment: A Comparison of Human
and Computer Performance in Chess, in Advances in Computer Chess 3, M. Clarke (ed.),
Pergamon Press, Oxford, 1982, 57-72.

[31] J. Gillogly, Performance Analysis of the Technology Chess Program, Ph.D. thesis,
Department of Computer Science, Carnegie-Mellon University, 1978.

[32] R.M. Hyatt, Cray Blitz – A Computer Chess Playing Program, M.Sc. thesis,
University of Southern Mississippi, 1983.

[33] P.P.L.M. Hensgens, A knowledge-based Approach of the Game of Amazons, MS
thesis, Department of Computer Science, Universiteit Maastricht, 2001.

[34] M. Buro. From simple features to sophisticated evaluation functions. In H.J. van den
Herik and H. Iida, editors, Computers and Games, Proceedings of CG98, LNCS 1558,
pages 126--145. Springer Verlag, 1999 .

