
The Power of Choice 
in Social Networks

Raissa D’Souza, UC Davis
Paul Krapivsky, Boston

Cristopher Moore, UNM/Santa Fe



A growing organization
NetCorp has a hierarchical organization; 
a tree with the CEO at the root

You have k contacts, randomly chosen 
(where k is a fixed constant)

You go to work for the one closest to 
the root 



A growing organization



A growing organization

What does the tree look like for large n? 
What is the depth distribution of nodes 
or leaves? 



Random trees
When k=1, you become a daughter of a 
random node

The distribution of depths is Poisson, 
with mean ln n

With high probability the greatest depth 
of any leaf is O(ln n)

But for k>1, we expect a shallower tree.  
How much?



A first glance

k=2

k=1



Balls in Bins
Problem in computer science: assign 
tasks to processors

If I throw m balls in n bins randomly, 
the number of balls in a particular bin 
is Poisson-distributed with mean m/n

If m=O(n), the largest number of balls 
in any one bin is O(log n / log log n)



Balls in Bins, with Choice
What if I choose k random bins, and 
throw the new ball into the bin with the 
fewest balls?

Now, for any k≥2, the largest number of 
any one bin becomes O(log log n) — the 
distribution is much closer to uniform!

Does something similar happen here?

[ABKU ‘98, Mitzenmacher ‘01]



The Depth Distribution
Let qj be the fraction of vertices at depth 
j or greater (the cumulative distribution)

The new node only has depth ≥j if all k 
of its contacts had depth ≥j–1, so

Changing variables to              gives t = lnn

dqj

dt
= −qj + qk

j−1

d

dn
nqj = qk

j−1



A Traveling Wave
Let’s try a solution of the form

This gives us a differential equation in a 
single variable, 

The “wave front” (average depth) moves 
at velocity v.  But what is v?

qj(t) = q(j − vt)

v
dq

dx
= q(x) − q(x− 1)k



Tails of the Wave
When                the tail is exponential, 

Plugging this in gives the velocity

The “selection principle” says that v is 
the largest possible.  Maximizing over λ 
(when k=2) gives v=0.373365...

x→ −∞

1− q(x) ∼ eλx

v =
1− ke−λ

λ



A Narrow Wavefront
When k=1, we get a Poisson distribution 
of mean             , and width 

In contrast, here the width of the 
wavefront stays constant as t increases.

And, since                          , the tail 
drops off doubly-exponentially: 

Setting this to 1/n, the max depth is      
O(log log n) greater than the average.

√
lnnt = lnn

q(x) ≤ q(x − 1)k

q(x) ∼ e−Akx



Simulation
x→ −∞

1− q(x) ∼ eλx

v =
1− ke−λ

λ

avg

max

k=2



Highest Degree
We have k random contacts; but now we 
join the one with highest degree.  (Like 
preferential attachment, but not really.)

Let cj be the fraction of vertices with 
degree j or less.  This decreases if the 
highest degree of the k contacts is j, so 
at a steady state we have

cj = 1− (ck
j − ck

j−1)
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o k=16
a(i) ~ i−1.5
a(i) ~ exp(−i/16)

A Pudgy Tail
When k is large 
(but still constant), 
this gives a power 
law up to j~k  
(with an exponent 
tending to –1) 
followed by an 
exponential cutoff. 



And Now, Lowest Degree
We have k random contacts; but now we 
join the one with lowest degree.  

Now let cj be the fraction of vertices with 
degree j or more.  This increases if the 
lowest degree of the k contacts is j–1, so

But then                , so                   is 
doubly-exponential; setting to 1/n gives 
a max degree O(log log n).

cj ≤ ck
j−1 cj ∼ e−Akj

cj = ck
j−1 − ck

j
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A Very Skinny Tail
Degree distribution is nearly uniform.

Useful for peer-to-peer networks?
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