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Planted problems: good solution + noise

Constraint satisfaction, optimization

Generative models, Bayesian inference
Satisfying assignments, cliques, communities. . .

Information-theoretic (a.k.a. statistical) and computational barriers
Statistical physics ⇒ conjectures, proofs, and algorithms
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Planted matchings: particle tracking

Tracking particles advected by turbulent fluid flow

[Chertkov-Kroc-Krzakala-Vergassola-Zdeborová PNAS’10]

Goal: recover the underlying true one-to-one mapping of the particles
Flocks of birds, swimming microbes, . . .
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The planted assignment model

• A complete bipartite graph

• A hidden perfect matching M

• Edge weight

Wij
ind.∼

{
P e ∈ M

Q e /∈ M

• Goal: recover M from W

• Our work: P = Exp(λ),Q = Exp(1/n) (mean 1/λ vs. n)

• Minimum-weight matching M̂ is the Maximum Likelihood Estimator

• How much does M̂ have in common with M?

• A phase transition in λ, and exact results
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Main result: phase transition at λ = 4

Theorem (Moharrami-M.-Xu ’19)

overlap: lim
n→∞

1

n
E
[∣∣∣M̂ ∩M

∣∣∣] =

{
1 if λ ≥ 4

α(λ) if 0 < λ < 4

where α(λ) = 1− 2
∫∞

0 (1− F (x)) (1− G (x))V (x)W (x) dx < 1 ,
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where α(λ) = 1− 2
∫∞

0 (1− F (x)) (1− G (x))V (x)W (x) dx < 1 ,

and F ,G ,V ,W is the unique solution to a system of ODEs:

Ḟ = (1− F )(1− G )V

Ġ = −(1− F )(1− G )W

V̇ = λ(V − F )

Ẇ = −λ(W − G )

Boundary conditions: F (x),V (x),G (−x),W (−x)→

{
1 x → +∞
0 x → −∞
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When λ ≥ 4: count augmenting cycles

• Probability that M ′ has lower total weight than M is

P [Erlang(`, λ) ≥ Erlang(`, 1/n)] ≤
(
λn

4

)−`
• There are

(n
`

)
`! ≤ n`e−`

2/2n matchings M ′ with |M4M ′| = 2`

⇒ Expected number of such M ′ is at most (λ/4)−`e−`
2/2n

⇒ Sum over `: total probability a planted edge is in augmenting cycle
is o(1) if λ ≥ 4
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Warmup: the (un-planted) random assignment problem

• A complete bipartite graph

• Weights uniform in [0, n] or Exp(1/n)

• Cost of minimum matching?

• [Walkup ’79, Mézard-Parisi ’87, Aldous ’92, Steele ’97, Aldous ’01, . . . ]

lim
n→∞

1

n
E

[
min
π

n∑
i=1

Wiπ(i)

]
=
π2

6
= 1 +

1

4
+

1

9
+ · · ·
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Warmup: the (un-planted) random assignment problem

Cavity method: model as a tree [Mézard-Parisi ’87, Aldous’00]

Ø

1 2 3 4

11 12 13 21 22 23 31 32 33 41 42 43

ζ2 ζ3 ζ4ζ1

Xv , cost of min matching on Tv − cost of min matching on Tv \ {v}
sort edge weights W∅,1,W∅,2, . . . from smallest to largest:
arrivals ζ1, ζ2, . . . of a Poisson process with rate 1

X
d
= min

i≥1
{ζi − Xi}
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Ø

1 2 3 4

11 12 13 21 22 23 31 32 33 41 42 43

ζ2 ζ3 ζ4ζ1

Xv , cost of min matching on Tv − cost of min matching on Tv \ {v}
sort edge weights W∅,1,W∅,2, . . . from smallest to largest:
arrivals ζ1, ζ2, . . . of a Poisson process with rate 1

X
d
= min

i≥1
{ζi − Xi}

Cristopher Moore The Planted Matching Problem 8



From distributional to differential equations

X
d
= min {ζi − Xi} where ζi are Poisson arrivals

Generate pairs (ζ, x): two-dimensional Poisson process with density f (x)

X

ζ
ζ–x
=X

Define the cdf F̄ (x) = 1− F (x) = P [X > x ] = P [∀i : ζi − x > Xi ]

F̄ (x) = exp

(
−
∫ ∞
−x

F̄ (t) dt

)
⇒ dF (x)

dx
= F (x)F (−x)
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From distributional to differential equations, cont’d

dF (x)

dx
= F (x)F (−x)

F (x) =
ex

1 + ex
or f (x) =

1

(ex/2 + e−x/2)2

vs. Z Z´

W

Contribution of a single edge: E
[
W 1[W < X + X ′]

]
=

1

4
Var[X + X ′] =

1

2
Var[X ] =

π2

6
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Now with planted edges

Partner in planted matching is either parent or child 0,
other children sorted 1, 2, 3, . . .

Ø

0 1 2 3

01 02 03 10 11 12 20 21 22 30 31 32

ζ1 ζ2 ζ3η

Xv , cost of min matching in Tv − cost of min matching on Tv \ {v}

Recursion:

X∅ = min

{
W∅,0 − X0, min

i≥1
{W∅,i − Xi}

}
X0 = min

i≥1
{W0,0i − X0i}

Y
d
= min

{
η − Z ,Z ′

}
Z

d
= min

i
{ζi − Yi}
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From distributional to differential equations, redux

Y
d
= min

{
η − Z ,Z ′

}
Z

d
= min {ζi − Yi}∞i=1

where η ∼ Exp(λ) and ζi are Poisson arrivals

F (x) = P [Z < x ],G (x) = F (−x),V (x) = E[F (x + η)] ,W (x) = V (−x)

Ḟ = (1− F )(1− G )V

Ġ = −(1− F )(1− G )W

V̇ = λ(V − F )

Ẇ = −λ(W − G )

V̇ and Ẇ from η ∼ Exp(λ), integration by parts

Boundary conditions: F (+∞) = V (+∞) = 1, F (−∞) = V (−∞) = 0
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No solution for λ ≥ 4

At least no sensible one. . .

Want F (+∞) = V (+∞) = 1. But. . .

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0

F(x), V(x)
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No solution for λ ≥ 4

Conservation law: FW + GV − VW = 0 ⇒ V (0) = 2F (0)

Let U(x) = F (x)/V (x). Then U(0) = 1/2, want U(+∞) = 1. . .

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0

F(x), V(x), U(x)

U̇ = −λU(1− U) + (1− F )(1− G ) ≤ −λU(1− U) + 1

If λ ≥ 4, U̇(1/2) ≤ 0

No fixed distribution on finite values: cost of un-planted edge is +∞
⇒ almost perfect recovery
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No solution for λ ≥ 4

Conservation law: FW + GV − VW = 0 ⇒ V (0) = 2F (0)

Let U(x) = F (x)/V (x). Then U(0) = 1/2, want U(+∞) = 1. . .
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A unique solution when λ < 4

(F ,G ,V ,W )⇐⇒ (U,V ,W ): three-dimensional dynamical system

U̇ = −λU(1− U) + (1− UV ) (1− (1− U)W )

V̇ = λV (1− U)

Ẇ = λWU

Initial conditions: U(0) =
1

2
,V (0) = W (0) = ε

Lemma

If λ < 4 there is a unique ε0 ∈ (0, 1) such that

• If ε ∈ [0, ε0), U(x)→ +∞
• If ε = ε0, U(x)→ 1 and V (x)→ 1

• If ε ∈ (ε0, 1], V (x)→ +∞
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A unique solution when λ < 4

Geometric intepretation: (U = 1,V = 1,W = 0) is a saddle point
If V (0) = W (0) = ε0 we approach the saddle along its unstable manifold

0 1 2 3 4 5 6 7
x

1

V(x)

This gives cdfs F ,V → 1 of the unique fixed point distribution
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A numerical experiment

λ = 2.5, population dynamics with N = 106
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CDFs for Y, Z
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Finally, computing the overlap for λ < 4

vs.

η

Z Z´

α(λ) = P
[
η < Z + Z ′

]
= 1− Eη

∫ +∞

−∞
f (x)F (η − x) dx

= 1−
∫ +∞

−∞
f (x)EηF (η − x) dx

= 1−
∫ +∞

−∞
(1− F (x))(1− G (x))V (x)W (x) dx

= 1− 2

∫ +∞

0
(1− F (x))(1− G (x))V (x)W (x) dx
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Proving it: Local weak convergence (Aldous 1992, 2001)

Ø

• M̂ only depends on weights ⇒ symmetry in the joint distribution of
weights and matching

• Vertex-transitive involutions on Kn,n or infinite tree T∞
• A random matching is involution invariant if it has these symmetries

• We have constructed an involution invariant Mopt on T∞ and
computed its cost and overlap
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Proving it: Local weak convergence (Aldous 1992, 2001)

• Easy: any invariant sequence {Mn} of matchings on Kn,n has a
subsequence {Mnj} that converges to a (possibly random) invariant
matching on T∞

I Local treelikeness of light edges, compactness

• Hard: for any invariant matching M∞ there is a sequence
{Mn : n→∞} that converges to M∞
I Martingale convergence
I Almost-doubly-stochastic matrix
I Almost-perfect matching on Kn,n, can fix to make a perfect matching

• Uniqueness: any invariant matching M ′∞ that differs from Mopt with
positive probability has strictly greater cost
I By invariance, M ′

∞ and Mopt differ at the root
I M ′

∞ often chooses the wrong partner for ∅
I Right partner given by recursion ⇒ differential equations

• Together these imply limn→∞ overlap(M̂n) = overlap(M̂∞)
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Open questions

1 Order of the phase transition?
I Overlap is continuous, and so is its derivative
I Appears to be third or higher

2 Concentration of the overlap?
I We computed its expectation

3 Information-theoretically optimal recovery?
I Gibbs sampling, posterior marginals

4 Distributions other than η ∼ Exp(λ)?
I Distributional equations rarely collapse to ODEs

5 Spatial structure (particle tracking)?

6 Other planted structures: spanning trees, traveling salespeople?
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Shameless Plug	

To put it bluntly: this book rocks! It somehow 
manages to combine the fun of a popular book 
with the intellectual heft of a textbook.


Scott Aaronson, UT Austin


This is, simply put, the best-written book on the 
theory of computation I have ever read;            
one of the best-written mathematical books         
I have ever read, period. 


Cosma Shalizi, Carnegie Mellon


A creative, insightful, and accessible introduction 
to the theory of computing, written with a keen 
eye toward the frontiers of the field and a vivid 
enthusiasm for the  subject matter. 


Jon Kleinberg, Cornellwww.nature-of-computation.org

NEW! IMPROVED!
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