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Constraint satisfaction, optimization
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Planted problems: good solution + noise

Constraint satisfaction, optimization
Generative models, Bayesian inference
Satisfying assignments, cliques, communities. . .

Information-theoretic (a.k.a. statistical) and computational barriers
Statistical physics = conjectures, proofs, and algorithms
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Planted matchings: particle tracking

Tracking particles advected by turbulent fluid flow

* * *

o > g’y <
23 ‘é'z';’}’m..
Lot SR "
KXS [ ]

%o SN &"“(i;.’w A

[Chertkov-Kroc-Krzakala-Vergassola-Zdeborova PNAS'10]

Goal: recover the underlying true one-to-one mapping of the particles
Flocks of birds, swimming microbes, ...
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The planted assignment model

® A complete bipartite graph
® A hidden perfect matching M
® Edge weight

W"ind' P eeM
v Q e¢M

® Goal: recover M from W
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® Our work: P = Exp()), @ = Exp(1/n) (mean 1/X vs. n)
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The planted assignment model

® A complete bipartite graph
® A hidden perfect matching M
® Edge weight

W"ind' P eeM
v Q e¢M

@) ® Goal: recover M from W

Our work: P = Exp()), @ = Exp(1/n) (mean 1/X vs. n)

® Minimum-weight matching M is the Maximum Likelihood Estimator

How much does M have in common with M?

A phase transition in A, and exact results
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Main result: phase transition at A = 4

Theorem (Moharrami-M.-Xu '19)

if A>4
overlap: lim — HM N MH I -
n—00 n ()\) ifO<A<4

where a(X) =1—2 [7° (1 — F(x)) (1 — G(x)) V(x)W(x)dx < 1,
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Main result: phase transition at A = 4

Theorem (Moharrami-M.-Xu '19)

if A>4
overlap: lim — HM N MH I -
n—00 n ()\) ifO<A<4

where a(X) =1—2 [7° (1 — F(x)) (1 — G(x)) V(x)W(x)dx < 1,

and F, G, V, W is the unique solution to a system of ODEs:

F=(1-F)(1-G)V
G=—-(1-F1-G)W
V=AV-F)
W =-\W - G)

Boundary conditions: FQ)V&LG@«LW@«)%{é ?:fz
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When X\ > 4: count augmenting cycles
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® Probability that M’ has lower total weight than M is
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P[Erlang(¢, \) > Erlang(¢,1/n)] < (Y)
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When X\ > 4: count augmenting cycles

® Probability that M’ has lower total weight than M is

—
P[Erlang(¢, \) > Erlang(¢,1/n)] < (Y)

e There are (7)1 < nle=*/2" matchings M’ with [MAM'| = 2/
= Expected number of such M’ is at most (\/4)‘e—¢*/2n

=- Sum over ¢: total probability a planted edge is in augmenting cycle
iso(l)if A >4
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Warmup: the (un-planted) random assignment problem

® A complete bipartite graph
® Weights uniform in [0, n] or Exp(1/n)

® Cost of minimum matching?
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Warmup: the (un-planted) random assignment problem

@ @
() @) e A complete bipartite graph

® Weights uniform in [0, n] or Exp(1/n)
() @) ® Cost of minimum matching?
@————O

® [Walkup '79, Mézard-Parisi '87, Aldous '92, Steele '97, Aldous '01, ...]

72 11
m'nz =g =l+g+g5+

lim —
n—oo n
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Warmup: the (un-planted) random assignment problem

Cavity method: model as a tree [Mézard-Parisi '87, Aldous'00]
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i B SN SN .
/ \ NI / \ -
/ | SN / | S
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X, = cost of min matching on T, — cost of min matching on T, \ {v}
sort edge weights Wy 1, Wy 2, ... from smallest to largest:
arrivals (1, (2, ... of a Poisson process with rate 1

d .
X = rgy{é, - X}
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From distributional to differential equations

X < min {¢i — Xi} where (; are Poisson arrivals
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From distributional to differential equations

d . . .
X = min{¢; — X;} where (; are Poisson arrivals

Generate pairs (¢, x): two-dimensional Poisson process with density f(x)

T +

2
° 5
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From distributional to differential equations

d . . .
X = min{¢; — X;} where (; are Poisson arrivals

Generate pairs (¢, x): two-dimensional Poisson process with density f(x)

T +

2
° 5

X

Define the cdf F(x) =1 — F(x) =P[X > x] =P[Vi: {; — x > Xj]

Flx) :exp<— / T F) dt> N d’;(xx) — F(x)F(—x)

—X
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From distributional to differential equations, cont'd
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From distributional to differential equations, cont'd
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From distributional to differential equations, cont'd
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From distributional to differential equations, cont'd

SN PRI P BN N
/ \ / \ / \ [N
SN SN / \ NN
SN FARETERN / \ N
AN AN / \ N
{ ; { \ / \ S

Contribution of a single edge: E[W 1[W < X + X']]
2

1 , 1 T
—ZVar[X—i—X]—EVar[X]—K
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Now with planted edges

Partner in planted matching is either parent or child 0,
other children sorted 1,2, 3, ...

X, £ cost of min matching in T, — cost of min matching on T, \ {v}
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Now with planted edges

Partner in planted matching is either parent or child 0,
other children sorted 1,2, 3, ...

X, £ cost of min matching in T, — cost of min matching on T, \ {v}

Recursion:

Xz = min { W0 — Xo, m>l? Wi — Xi}}
I_

Xo = min {Wo,0i — Xoi}
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Now with planted edges

Partner in planted matching is either parent or child 0,
other children sorted 1,2, 3, ...

X, £ cost of min matching in T, — cost of min matching on T, \ {v}

Recursion:

X@:min{ Wz 0 — Xo, m>i{1{W®7,-—X,-}} ngin{n—Z,Z’}

d .
Xo = m>|£1 {Wo}o,' - Xo,'} Z= mim {CI - Yl}
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From distributional to differential equations, redux

Y L min{n-22)}
Z < min {Gi— Vit

where 1 ~ Exp(A) and (; are Poisson arrivals
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From distributional to differential equations, redux

Y L min{n-22)}
Z < min {Gi— Vit

where 1 ~ Exp(A) and (; are Poisson arrivals
F(x) =P[Z < x], G(x) = F(=x), V(x) = E[F(x + 1)], W(x) = V(—x)
F=(1-F)(1-G)V
G=—-(1-F)(1-G6)W
V=MV -F)

W =-\W —G)

V and W from 5 ~ Exp()), integration by parts
Boundary conditions: F(+00) = V(+00) =1, F(—o00) = V(—00) =0
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No solution for A > 4

At least no sensible one. ..
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No solution for A > 4

At least no sensible one. ..
Want F(+00) = V(4+00) = 1. But...

F(x), V()
1.0t
0.8
0.6/
0.4/

0.2

00 05 10 15 20 25 30"
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No solution for A > 4

Conservation law: FW + GV — VW =0 = V/(0) = 2F(0)
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No solution for A > 4

Conservation law: FW + GV — VW =0 = V/(0) = 2F(0)

Let U(x) = F(x)/V(x).

Then U(0) =1/2, want U(+o0) =1...

F(x), V(x), U(x)

1.0
0.8
0.6
0.4
0.2

0

0 05 10 15 20 25 30
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Let U(x) = F(x)/V(x).

Then U(0) =1/2, want U(+o0) =1...

F(x), V(x), U(x)

1.0
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0.4
0.2

0
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No solution for A > 4

Conservation law: FW + GV — VW =0 = V/(0) = 2F(0)

Let U(x) = F(x)/V(x).
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F(x), V(x), U(x)

1.0
0.8
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If A>4 U(1/2)<0
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No solution for A > 4

Conservation law: FW + GV — VW =0 = V(0) = 2F(0)

Let U(x) = F(x)/V(x).

Then U(0) =1/2, want U(+o0) =1...

F(x), V(x), U(x)

1.0f

0.8
0.6
0.4
0.2

0

0 05 10 15 20 25 30

U=-\A-U)+(1-F)(1-G)<-AUQ-U)+1

If A>4 U(1/2)<0

No fixed distribution on finite values: cost of un-planted edge is 400
= almost perfect recovery
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A unique solution when \ < 4

(F,G,V,W) <= (U, V,W): three-dimensional dynamical system

U=-\U1-U)+(1-UV)1-(1-U)W)
V =AV(1-U)
W = \wu

1
Initial conditions: U(0) = > V(0) = W(0) =e¢
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A unique solution when \ < 4

(F,G,V,W) <= (U, V,W): three-dimensional dynamical system

U=-\U1-U)+(1-UV)1-(1-U)W)
V =AV(1-U)
W = \wu

1
Initial conditions: U(0) = > V(0) = W(0) =e¢

Lemma

If X < 4 there is a unique ¢y € (0,1) such that
® Ifee|0,e), U(x) = 400
® Ife=e, Ulx)—1and V(x)—1
e Ifee (e, 1], V(x) = 40
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A unique solution when \ < 4

Geometric intepretation: (U =1,V =1, W = 0) is a saddle point
If V(0) = W(0) = ¢o we approach the saddle along its unstable manifold

V(x)

o 1 2 3 4 5 6 71”7

This gives cdfs F, V — 1 of the unique fixed point distribution
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A numerical experiment

A\ = 2.5, population dynamics with N = 10°

CDFsfor Y, Z
1.0
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Finally, computing the overlap for A < 4
m i . .

SO0 GO0 00O 300
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Finally, computing the overlap for A < 4

elele OOO O O ele
+oo
a()\):IP’[n<Z+Z']:1En/_ f(x)F(n— x)dx

+oo

:1—/_ f(x)E,F(n — x) dx
foo

=1- /_ (1—-F(x))(1—G(x))V(x)W(x)dx
oo+oo

=1- 2/0 (1—-F(x))(1—G(x))V(x)W(x)dx
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Proving it: Local weak convergence (Aldous 1992, 2001)

o M only depends on weights = symmetry in the joint distribution of
weights and matching

® Vertex-transitive involutions on Kj, , or infinite tree T,

® A random matching is involution invariant if it has these symmetries

® We have constructed an involution invariant Myt on T, and
computed its cost and overlap
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Proving it: Local weak convergence (Aldous 1992, 2001)

® Easy: any invariant sequence {M,} of matchings on K, , has a
subsequence {M,, } that converges to a (possibly random) invariant
matching on T,
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Proving it: Local weak convergence (Aldous 1992, 2001)

® Easy: any invariant sequence {M,} of matchings on K, , has a
subsequence {M,, } that converges to a (possibly random) invariant
matching on T,

» Local treelikeness of light edges, compactness

® Hard: for any invariant matching M, there is a sequence
{Mp : n — oo} that converges to My,
» Martingale convergence
» Almost-doubly-stochastic matrix
> Almost-perfect matching on Kj, 5, can fix to make a perfect matching

® Uniqueness: any invariant matching M. that differs from M,y with
positive probability has strictly greater cost

» By invariance, M/ and M, differ at the root
» M’ often chooses the wrong partner for &
> Right partner given by recursion = differential equations

e Together these imply lim,_,o0 overlap(M,) = overlap(Ms.)
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Open questions
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Open questions

@ Order of the phase transition?

» Overlap is continuous, and so is its derivative
» Appears to be third or higher
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Open questions

@ Order of the phase transition?

» Overlap is continuous, and so is its derivative
» Appears to be third or higher

® Concentration of the overlap?
> We computed its expectation
© Information-theoretically optimal recovery?
» Gibbs sampling, posterior marginals
@ Distributions other than 1 ~ Exp(\)?
» Distributional equations rarely collapse to ODEs
@ Spatial structure (particle tracking)?

@ Other planted structures: spanning trees, traveling salespeople?
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Shameless Plug

OXFORD

WHE NATURE Qf To put it bluntly: this book rocks! It somehow

manages to combine the fun of a popular book

COMPUTATION with the intellectual heft of a textbook.

Scott Aaronson, UT Austin

This is, simply put, the best-written book on the
theory of computation | have ever read;
one of the best-written mathematical books
| have ever read, period.
Cosma Shalizi, Carnegie Mellon

A creative, insightful, and accessible introduction
to the theory of computing, written with a keen
eye toward the frontiers of the field and a vivid

Cristopher Moore & Stephan Mertens

enthusiasm for the subject matter.
www.nature-of-computation.org Jon KIeinberg, Cornell
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