
ELSEVIER Theoretical Computer Science 201 (1998) 99-136

Theoretical
Computer Science

Dynamical recognizers: real-time language recognition
by analog computers

Cristopher Moore*

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Received June 1996; revised December 1996
Communicated by F. Cucker

Abstract

We consider a model of analog computation which can recognize various languages in real

time. We encode an input word as a point in [Wd by composing iterated maps, and then apply
inequalities to the resulting point to test for membership in the language.

Each class of maps and inequalities, such as quadratic functions with rational coefficients, is

capable of recognizing a particular class of languages. For instance, linear and quadratic maps
can have both stack-like and queue-like memories. We use methods equivalent to the Vapnik-
Chervonenkis dimension to separate some of our classes from each other: linear maps are less
powerful than quadratic or piecewise-linear ones, polynomials are less powerful than elementary

(trigonometric and exponential) maps, and deterministic polynomials of each degree are less
powerful than their non-deterministic counterparts.

Comparing these dynamical classes with various discrete language classes helps illuminate
how iterated maps can store and retrieve information in the continuum, the extent to which
computation can be hidden in the encoding from symbol sequences into continuous spaces, and
the relationship between analog and digital computation in general.

We relate this model to other models of analog computation; in particular, it can be seen as
a real-time, constant-space, off-line version of Blum, Shub and Smale’s real-valued machines.
@ 1998 Published by Elsevier Science B.V. All rights reserved

1. Introduction

Suppose that for each symbol a in a finite alphabet, we have a map fa acting on

a continuous space. Given an input word, say abca, we start with an initial point and

apply the maps fa, f&fc and fa in that order. We then accept or reject the input

word depending on whether or not the resulting point x&a is in a particular sub-

set of the space; the set of words we accept forms a language recognized by the

system.

* Tel.: I 505 986 2071; fax: 505 982 0565; e-mail: moore@santafe.edu.

0304-3975/98/$19.00 @ 1998 Published by Elsevier Science B.V. All rights reserved

PII SO304-3975(97)00028-5

100 C. Moore/ Theoretical Computer Science 201 (1998) 99-136

We will call such systems dynamical recognizers; they were formally defined by

Jordan Pollack in [36]. To define them formally, we will use the following notations

(slightly different from his):

A* is the set of finite words in an alphabet A, with E the empty word. If w is

a word in A*, then IwI is its length and wi is the ith symbol, 1 <i 6]wl. We write

ak for a repeated k times. The concatenation of two words u . v, or simply UV, is

2.41 ..’ +[a1 . ” q,j.
Suppose we have a map fa on Rd for each symbol a E A. Then for any word w,

fw = fw,,, O . . ’ 0 fw, o fw, is the composition of all the fw,, and x, = fw(xo) is the

encoding of w into the space where x0 =x, is a given initial point.

Then a real-time deterministic dynamical recognizer p consists of a space M = Rd,

an alphabet A, a function fa for each a E A, an initial point ~0, and a subset H,,, c M

called the accepting subset. The language recognized by p is then L, = (w/x, E HyeS},

the set of words for which iterating the maps fw, on the initial point yields a point in

the accepting set Hyes.

For example, suppose M = R, A = {a, b}, fa(x) =x + 1, fb(x) =x - 1, x0 = 0, and

H,,, = [0,x1). Then if #,(w) and #b(w) are the number of a’s and b’s in w, respectively,

x, =#&w) - #b(w) and L(p) is the set of words for which #,(w)>#&w).

We can also define non-deterministic dynamical recognizers: for each a E A, let there

be several choices of function fa(*), fj2) etc. Then we accept the word w if there exists

a set of choices that puts x, in H,,,, i.e.

X(k)=j$~l)o...O j-L& j-$1’
w (x0) E H,,, for some sequence k.

In this paper, we will look at classes of dynamical recognizers and the corresponding

language classes they recognize. For a given class %? of functions and a given subset

U c R such as B or Q, we define the class U(U) as the set of languages recognized

by dynamical recognizers where

(1) XOEU,

(2) 4,s is defined by a Boolean function of a finite number of inequalities of the

form h(x)30, and

(3) the h and fa for all a are in %? with coefficients in U.

We will indicate a non-deterministic class with an N in front. In particular:

Poly,(U) and NPoly,(U) are the language classes recognized by deterministic

and non-deterministic polynomial recognizers of degree k with coefficients in U.

Lin(U) = Poly, (U) and NLin(U) = NPoly, (U) are the deterministic and non-deter-

ministic linear languages.

Poly(U) = Uk Poly,(U) and NPoly(U) = Uk NPoly,(U) are the deterministic and

non-deterministic polynomial languages of any degree.

PieceLin(U) and NPieceLin(U) are the languages recognized by piecewise-linear

recognizers with a finite number of components, whose coefficients and component

boundaries are in U.

C. Moore I Theoretical Computer Science 201 (1998) 99-136 101

Elem(U) and NElem(U) are languages recognized by elementary functions, meaning

compositions of algebraic, trigonometric, and exponential functions, whose constants

can be written as elementary functions of numbers in U.

We will take U to be Z, Q, or R. We will leave U out if it doesn’t affect the

statement of a theorem.

2. Memory, encodings, analog computation, and language

There are several reasons one might want to study such things.

First, by restricting ourselves to real time (i.e. one map is applied for each symbol,

with no additional processing between) and only allowing measurement at the end

of the input process, we are in essence studying memory. If a dynamical system is

exposed to a series of influences over time (a control system, say, or the external

environment), what can we learn about the history of those influences by performing

measurements on the system afterwards? What kinds of long-time correlations can it

have? What kinds of information storage and retrieval can it do? For instance, we will

show that linear and quadratic maps can have both stack-like (last in, first out) and

queue-like (first in, first out) memories.

Secondly, a number of recent papers [30,32,10, l] have shown that various kinds

of iterated maps (piecewise-linear, differentiable, C”, analytic, etc.) in low dimensions

are capable of various kinds of computation, including simulation of universal Turing

machines. However, in and of themselves, these statements are ill-defined; for a contin-

uous dynamical system to simulate discrete computation, we need to define an interface

between the two. We illustrate this conceptually in Fig. 1: we encode a discrete input

w as a point x = f(w) in the continuous space, iterate the continuous dynamics until

some halt condition is reached, and then measure the result by mapping the continuous

state back into a discrete output h(x).

The problem is that with arbitrary encoding and measurement functions, the identity

function, with no dynamics at all, can recognize any language! All we have to do is

hide all the computation in the encoding itself: let f(w) = 1 if w EL and 0 otherwise,

and let h(x) be ‘yes’ if x >O. We can do the same thing on the measurement side by

letting h(x,) be ‘yes’ if w E L and ‘no’ otherwise.

Clearly there is something unreasonable about such encoding and measurement fimc-

tions; the question is how to define reasonable ones. Most of these papers use the best-

known encoding from discrete to continuous, namely the digit sequence x = .aoa~ . . .

of a real number. Finite words correspond to blocks in the unit interval. If we add

gaps between the blocks, we get a Cantor set; for instance, the middle-thirds Cantor

set consists of those reals with no l’s in their base-3 expansion.

This encoding can be carried out by iterating affine maps: if A = {0,2}, let x0 = 0.1,

f,(x) = fx and fz(x) = 4x + $. Then &(x0) = .wl,l . . ~2~11 is the point in the center

of the block corresponding to w. We could say then that this encoding is reasonable

to whatever extent that affine maps are.

102 C. Moore! Theoretical Computer Science 201 (1998) 99-136

Fig. 1. The interface between discrete and continuous computation: encoding a discrete word in a continuous

space, evolving the dynamics, and performing a measurement to extract a discrete result.

This suggests the following thesis: that reasonable encodings consist of reasonable

maps, iterated in real time as the symbols of the word are input one by one. If we

accept this, then this paper is about how much computation can be hidden in the

encoding and measurement process, depending on what kinds of maps are allowed.

Thirdly, there is an increasing amount of interest in models of analog computa-

tion, such as Blum, Shub, and Smale’s flowchart machines with polynomial maps and

tests [3] and other models [28] with linear or trigonometric maps as their elementary

operations. In this context, dynamical recognizers form a hierarchy of analog computers

with varying sets of elementary operations. We show below that dynamical recognizers

can be thought of as off-line BSS-machines with constant space.

Finally, recurrent neural networks are being studied as models of language recogni-

tion [36] for regular [16], context-free [13,16], and context-sensitive [39] languages,

as well as fragments of natural language [14], where grammars are represented dy-

namically rather than symbolically. The results herein then represent upper and lower

limits on the grammatical capabilities of such networks in real time, with varying sorts

of nonlinearities. Perhaps, these are ‘baby steps’ toward understanding the cognitive

processes of experience, imagination, and communication, so important to our everyday

lives [33], in a dynamical, rather than digital, way.

3. Discrete computation classes

We will relate our dynamical classes to the following language classes from the

standard theory of discrete computation [2 1,341:

Reg, the regular languages, are recognizable by finite-state automata (FSAs) and

are representable by expressions using concatenation, union, and the Kleene star *

(iteration 0 or more times). For instance, (a+ba)* consists of those strings where two

adjacent b’s never appear and which end with an a.

CF, the context-free languages, are recognizable by pushdown automata (PDAs),

which are FSAs with access to a single stack memory. A word is accepted either when

the FSA reaches a certain state or when the stack is empty. Context-free languages

C. Moore/ Theoretical Computer Science 201 (1998) 99-136 103

are also generated by context-free grammars where single symbols are replaced by

strings.

For instance, the Dyck language {E, (), (()), ()(), . . .} of properly matched parenthe-

ses is generated from an initial symbol X by a grammar where the initial symbol X can

be replaced with (X)X or erased. It is recognized by a PDA that pushes a symbol onto

its stack when it reads a “(” and pops one when it reads a “)“. Since this PDA is de-

terministic, this language is actually in DCF, the deterministic context-free languages.

CS, the context-sensitive languages, are recognizable by Turing machines which only

use an amount of memory proportional to the input size. For instance, the language

{x”} of words of prime length is context-sensitive.

We have Reg c DCF c CF c CS, with all containments proper.

TIME(f (n)), NTIME(f (n)), SPACE(f (n)), and NSPACE(f (n)) are the langu-

ages recognizable by a multi-tape Turing machine, deterministic or non-deterministic,

using only time or memory proportional to f(n) where n is the length of the in-

put. For instance, NSPACE(n) = CS, and lJk TIME(&) and Uk NTIME(n’) are the

(distinct?) classes P and NP of problems that can be solved deterministically and non-

deterministically in polynomial time - not to be confused with the Poly and NPoly of

this paper!

NCk is the class of languages recognizable by a Boolean circuit of depth logk n

and polynomial size, or equivalently by a parallel computer with a polynomial number

of processors in time logk n. The union NC = lJk NCk, Nick’s Class, is the set of

problems that can be solved in polylogarithmic parallel time; it is believed to be a

proper subset of P.

4. Closure properties and general results

Closure properties are a useful tool in language theory. We say a class % of languages

is closed under a given operator (union, intersection, complementation, and so on) if

whenever languages Li, LZ are in %? then L1 U L2,Li n L2,zi . . . are also.

Then we can prove the following easy lemmas. Most of these are axiomatic in

nature, and would be equally true for any recognition machine with a read-only input

whose state spaces are closed under simple operations.

Lemma 1. Any deterministic or non-deterministic class of real-time dynamical rec-

ognizers for which the set of allowed fa is closed under direct product, and for which

the set of allowed H,,, is closed under direct product and union, is closed under union

and intersection.

Proof. Suppose we have two recognizers p1 and p2 with functions fa and ga on spaces

M and N and accepting subsets J,,, c M and KY,, c N, respectively. Then define a new

recognizer p with h, = fa x ga on M x N; in other words, simply run both recognizers

in parallel.

104 C. Moore1 Theoretical Computer Science 201 (1998) 99-136

Then to recognize L,, n L,, or L,, U L,, , let H& = Jyes x KY,, or H,,, = (Jyes x N) u
(44 x K,,,) respectively. 0

This includes all of the recognizer classes under discussion.

Lemma 2. Any deterministic class of recognizers for which the set of allowed Hyes

is closed under complementation is closed under complementation.

Proof. Let Hi,, = Hyes. 0

This includes all of the deterministic classes under discussion. It does not work

for non-deterministic ones, since the complement of a non-deterministic language is

the set of words for which all computation paths reject, namely a set defined by a

‘d quantifier (“for all”) rather than a 3 (“there exists”). This is typically not another

non-deterministic language.

A homomorphism from one language to another is a map h from its alphabet to the

set of finite words in some (possibly different) alphabet. For instance, if h(a)=b and

h(b) = ab, then h(bab) = abbab. If L is a language, then its image and inverse image

under h are h(L) = {h(w) 1 w E L} and h-‘(L) = {w 1 h(w) EL}.

A homomorphism is E-free if no symbol is mapped to the empty word, and alphabetic

if each symbol is mapped to a one-symbol word.

Lemma 3. Deterministic and non-deterministic recognizer classes for which the set

of allowed fa is closed under composition are closed under inverse homomorphism.

All recognizer classes are closed under alphabetic inverse homomorphism.

Proof. If we have a recognizer p for a language L, we can make a recognizer for

h-‘(L) by converting the input word w to h(w) and feeding h(w) to p. To do this,

simply replace fa with f&j (where fC is the identity function z), i.e. just compose

the maps for the symbols in h(a). If the homomorphism is alphabetic, h(a) is a single

symbol and no composition of functions is necessary. 0

Since linear, polynomial and piecewise-linear functions are closed under composition,

we have

Corollary. Lin, NLin, Poly, NPoly, PieceLin and NPieceLin are closed under inverse
homomorphism.

We actually mean Lin(U),NLin(U), Poly(U) and so on are each closed under h-’

for U = 7, Q or R. These are potentially distinct classes (see Theorem 3).

Lemma 4. Any non-deterministic language is an alphabetic homomorphism of a lan-
guage in the corresponding deterministic class.

C. Moore! Theoretical Computer Science 201 (1998) 99-136 105

Proof. If each symbol a has several choices of map j$, make the recognizer deter-

ministic by expanding the alphabet to {(a, i)} so that the input explicitly tells it which

map to use. Then h((a, i)) = a is an alphabetic homomorphism. 0

Lemma 5. FSAs with n states can be simulated by linear maps in n dimensions.

Proof. Simply use the unit vectors ei = (0,. . . , 1,. . . , 0) to represent the states of a FSA,

with fa acting as the transition matrix when it reads the symbol a. Then let xo be the ei

corresponding to the start state, and let H,,, pick out the ei corresponding to accepting

final states. (Deterministic maps suffice, since non-deterministic and deterministic finite

state automata can both recognize the regular languages [21].) 0

Corollary. Reg c Lin(Z).

This containment is proper, since the example {w 1 #,(w) a#b(w)} given in the in-

troduction is a non-regular language.

Lemma 6. Non-deterministic recognizer classes containing linear maps are closed

under E-free homomorphism.

Proof. We have to show that a recognizer p for a language L can be converted into

one p’ for h(L). Specifically, p’ will work by guessing a pre-image h-‘(w) of the input

word, and applying p to that pre-image.

Consider a non-deterministic FSA with states labelled (a, i), representing a guess that

we are currently reading the ith symbol of h(a) where a is a symbol in the pre-image

of w. Add a start state I and a reject state R. Let it make transitions based on the

current input symbol u in the obvious way:

Z+(a,l) if u=h(a),

Fyi+ 1) if u=h(a)i+l,
otherwise,

(a, Ih(a)I) 1) if u=h(bh,

R+R.

In order to plug the original recognizer p into this FSA, we apply fa to x whenever

we complete a word h(u), i.e. when the FSA arrives at the state (a, Ih(a) and leave

x unchanged otherwise. We next show how to do this.

Suppose p acts on a space M. Then let the new recognizer p’ act on M’ = M” where

n is the total number of states in the FSA. At all times, the state x’ EM’ will be a

vector with only one non-zero component xi =x, where s is the current FSA state and

x is the simulated state of p. Denote this vector Xs.

106 C. Moore1 Theoretical Computer Science 201 (1998) 99-136

Then for each symbol a and each allowed transition s -+ t of the FSA, define a
non-deterministic map

f(t)= fa if t = (a, Ih(a)
4s

1 otherwise,

where 1 is the identity function. Then let fi be the non-deterministic map

where we non-deterministically choose a transition s --+ ts for each s. Finally, let xt, = 4

and let Hi,_, = U~@$‘h(0)‘) so that we accept only when we have completed the last
symbol in the pre-image and x is in Hyes. 0

Non-determinism is required here in general, since most homomorphisms are many-
to-one. However, deterministic maps suffice for one-to-one (or constant-to-one) ho-
momorphisms where we only need to look ahead a constant number of symbols to
determine the pre-image, such as the h(a) = b, h(b) = ab example above.

Recall [Zl] that a trio is a class of languages closed under inverse homomorphism,
s-free homomorphism, and intersection with a regular language. (For a formal treatment
of trios and other families of languages closed under various operations, see [2].) Then
we have shown that

Theorem 1. NLin, NPoly and NPieceLin are trios.

Proof. Lemma 3 applies since all
Lemmas 1, 5, and 6 also apply. q

these classes are closed under composition.

The interleave of two languages L1 1 Lz is the set of words

where the wi and Xi are words, including possibly E. For instance, {ab} 1 {cd} = {abed,

acbd, acdb, cabd, cadb, cdab}. The concatenation of two languages L1. L2 is the set of
words {wx]wEL~,xEL~}. Then

Lemma 7. Non-deterministic classes closed under direct product are closed under

interleaving, and non-deterministic classes that include linear maps are closed under
concatenation. Deterministic classes are closed under these operations if L1 and L2

have disjoint alphabets,

Proof. Suppose L1 and L2 are recognized by pt and p2 with maps go and h, on spaces
A4 and N, with initial points yo and zo and accepting subsets JyeS and Kyes, respectively.

Then L1 l Lz is recognized by p on A4 x N with x0 = (yc,zo), HyeS = JyeS x Kyes, and
where fO non-deterministically chooses between ga x z and 1 x h,; in other words, with

C. Moore1 Theoretical Computer Science 201 (1998) 99-136 107

each symbol we update either pi or ~2, and we demand that both reach an accepting

state by the end. If Li and LZ have disjoint alphabets, there is no ambiguity about

which map to apply and deterministic maps suffice.

To recognize L1 . L2, expand the space to M x N x R2, and let x0 = (ys,zs, 1,O). We

can use the last two components as a finite-state machine to enforce that we never

follow a map from p2 by one from pi by letting &(y,z,s, t) choose between

(&Y),z,s,O) and (y,Uz),O,s + t).

Then if we ever follow the second map with the first, both s and t will be zero. So

let

H,,, = Jyes x KY,, x K4W

More abstractly, we can use an alphabetic inverse homomorphism h-’ to send L1 and

L2 to disjoint alphabets Al and AZ. Then

L1 .L2 =h((h-‘(L,) l h-1(L2)) n (4 .A2))

is in the class of Lemmas 1, 3, 5, and 6 (since Al . A2 is a regular language). If L1

and L2 already have disjoint alphabets, then no homomorphism is necessary:

L1 .Lz=(L1 lL2)n(A1 .A2)

and deterministic maps suffice by Lemmas 1 and 5. q

This ability to run several recognizers in parallel gives dynamical recognizers some

closure properties that not all trios have. For instance, the context-free languages are

not closed under interleaving or intersection.

Now let a =0-recognizer be one for which H,,, = {x) h(x) = 0} for some h, and call

a class of such recognizers a =0-class. Define > 0 and 20-classes similarly. Write

subsets of the classes we’ve already defined as NPoly,,, NPieceLindo, and so on.

Then

Lemma 8. For PieceLin and NPieceLin, the =0-classes and a@classes coincide.

Proof. Let f(x) = 1x1 - x and g(x) = - 1x1. Then f(x) = 0 if and only if x 2 0, and

g(x) 20 if and only if x = 0. Then if h is a measurement function in the =0-class

(resp. >O-class) then g o h (f o h) is in the >O-class (=0-class). 0

As alluded to in the definition of regular languages above, the Kleene star of a

language L consists of zero or more concatenations of it, L* = Uiao L’ = v-kL+(L.L)+

. . . The positive closure of a language L is L+ = Uial L’, one or more concatenations.

Lemma 9. Non-deterministic =O-classes that are closed under composition, and that

contain a function fA such that j,,(x, y) = 0 zf and only tfx = y = 0, are closed under

positive closure and Kleene star. Similarly for > O-classes and 2 O-classes.

108 C. Moore1 Theoretical Computer Science 201 (1998) 99-136

Proof. For the =0-classes, let M’ = A4 x R! with XI, = (x0,0). Then define f,‘(x, y) non-

deterministically,

fa’(x7 y, = 1

(fa(x), Y)>
(fa(xo), fn(h(x), y)).

That is, either iterate fa on x or transfer h(x) to y and start over with x0. Let

h/(x, y) = fA(h(x), y). Then if w = wiw2 . . . wk,

h’(xw, Yw) = f~(&,), fn@(xwk-,), . . fAvGl>, 0)))

and h’ = 0 if and only if h(wi) = 0 for all i, SO all the wi are in L.

As in Lemma 6, non-determinism is required to guess how to parse the input into

subwords, unless there is some way of determining this with a bounded look-ahead

(such as a symbol that only occurs at the beginning of each word).

If the empty word E is a member of L, then Lf = L*. If not, add a variable z with

zo = 1 and fa(z) = 0 for all a and let

H,,, = {(x, y,z)] h/(x, y) = 0 or z = 1 }

Then Hyes accepts L+ U {E} = L*. Similarly for >O and 30-classes. Cl

Finally, recall [21] that an abstract family of languages (AFL) is a trio which is

also closed under union, concatenation, and positive closure.

Theorem 2. NPoly=,, NPieceLin,O and NPieceLin,o are AFLs.

Proof. For NPoly,,, NPieceLin=a and NPieceLin,o, let f*(x, y) =x2 + y*, 1x1 + Jyl

and min(x, y) respectively. Since all these classes are closed under composition, by

Lemma 9 they are closed under positive closure. We now show that they are also

trios, and closed under union and concatenation.

We already have an ‘and’ function; we need an ‘or’. For =0-classes, f”(x,y)=xy
is polynomial and f&y) = min(ix], Jyj) ’ p IS iecewise-linear. For NPieceLin > 0, let

fv(x,y)=x + Y + /xl + IYI.
Then letting h = f,(hl, IQ) or fv(hl,h2) will recognize Li fX2 or Li uL2 respectively.

So Lemma 1 applies, and we have closure under union and intersection.

Lemmas 3, 6 and 7 also apply since these classes contain the regular languages

(inequalities of any kind can be used in Lemma 5). This completes the proof. q

Theorems 1 and 2 suggest that these dynamical classes deserve to be thought of as

‘natural’ language classes.

5. Linear and polynomial recognizers

We now prove some specific theorems about the linear, piecewise-linear and poly-

nomial language classes. First, we show that rational coefficients are no more powerful

than integer ones:

C. Moore1 Theoretical Computer Science 201 (1998) 99-136 109

Theorem 3. g(E) = %?(Cl) for %? = Poly,, NPoly,, PieceLin, and NPieceLin.

Proof. Suppose a recognizer p uses polynomial maps fa and h of degree k with

rational coefficients. We will transform these to maps of the same degree with integer

coefficients by using a continually expanding system of coordinates (and one additional

variable).

If h and the fg have rational coefficients, then there exists a q such that qh and

qfa(x) have integer coefficients. If fa(x) = ckxk +. . . + CO, add a variable r with rs = 1

and let

%&r) = 4CkXk f qck- IX~-‘Y + . . . $ qCIXrk-’ + qCork = qrk fa(x/r)

and

fa’(x, r) = &(x7 r), qrk).

Then the reader can easily check that

XI, = fL(xo, yo) = (r1xw, rt),

where

rt =4
k’-‘+...+k+l

Finally, if one of the inequalities in Hyes is h(x) > 0, let

h’(x, r) = qrkh(x/r)

so that h’(xk) = qr,kh(xw), and h’ > 0 iff h > 0. Similarly for h = 0 or h B 0.

Then f,’ and h’ are polynomials of degree k with integer coefficients. We can easily

transform the coefficients and component boundaries of piecewise-linear maps in the

same way. 0

Henceforth we will simply refer to Lin(Z), Poly(E), etc.

5.1. Queues and stacks

We now explore the specific abilities of the first few classes. A k-tape real-time
queue automaton [9] is a finite-state machine with access to k queues. The queues are

first-in-first-out (FIFO), so that the machine can add symbols at one end (say the right),

but only read them at the other (say the left). At each time-step the machine reads a

symbol of the input word and, based on this and the leftmost symbol in each queue, it

may (1) add a finite word to each queue, (2) pop the leftmost symbol off one or more

queues, and (3) update its own state. The machine accepts a word if its FSA ends

in an accepting state. The languages recognized by deterministic and non-deterministic

k-queue automata are called QAk and NQAk, respectively, and QA= Uk QAk and

NQA = Uk NQA, .

110 C. Moorei Theoretical Computer Science 201 (1998) 99-136

Here we will add a new class CQA C QA, the languages recognized by copy
queue automata. Instead of popping symbols off a queue q, CQAs push them onto

a ‘copy queue’ q’ and demand at the end of the computation that q’ = q (or inequal-

ities such as q’ 5 q, i.e. q’ is an initial subsequence of q). Equivalently, CQAs

allow us to pop symbols we have not pushed yet, as long as we push them be-

fore are done. If you like, it creates ‘ghost symbols’ that haunt the queue until they

are cancelled by pushing real ones. CQAs can be deterministic or non-deterministic

(NCQAs).

Finally, we say a deterministic QA or CQA is obstinate if its move, including what

symbols if any it wants to push or pop, depends only on the input symbol and the

FSA state, and not on any of the queue symbols. If the symbols it wants to pop aren’t

there, it rejects immediately. For instance, the copy language LcoPY = {waw}, of words

repeated twice with a marker a in the middle, is in the class OCQA.
Then we can show

Theorem 4. The following containments hold, and are proper:

NQA c NPieceLin(E) n NPoly,(Z),

QA c PieceLin(Z) f? NPoly,(B),

OQA c PieceLin(Z) n Poly,(Z),

NCQA c NLin(7),

OCQA c Lin(Z),

Proof. Let the queue alphabet be { 1,2,. . . , m}. Then we will represent a word w we

wish to push or pop by a real number W= Cl!?\ wi(m + l)-’ = .wiwz . . . WI,,,I in base

mf 1.

Each queue will be represented by the digit sequence of a variable q, with a ‘pointer’

Y = (m + 1)-k where k is the number of symbols in the queue. Let go = 0 and ro = 1.

Then the functions

push$“(q, y) = (q + KY, (m + ~)-“‘IY),

popi*(q,r)=((m + l)iwl(q - W), (m + l)lwlr),

push w onto the least significant digits, pop w off the most significant, and update Y

accordingly. Since for any particular QA the W are constants, these maps are linear.

It is easy to see that the final value of each q will be within the unit interval if and

only if the sequence of symbols we popped off each queue is an initial subsequence

of the symbols we pushed. Therefore, we add qi E [0, 1) for all queues 1 <i <k as an

accepting condition along with the final state of the FSA.

However, unless we’re dealing with a CQA, we also need to make sure that

qi E [0, 1) throughout the computation, i.e. we do not pop symbols off before we push

them. We can ensure this either with piecewise-linear maps that sense when q falls

outside the unit interval, or with a variable s for each queue with SO = 1 and a quadratic

C. Moore/ Theoretical Computer Science 201 (1998) 99-136 111

map f(s) = S(Y + 1) such that s = 0 if the Y ever becomes - 1 during the computation,

i.e. if we pop more symbols than we have pushed. Then we add s # 0 for each queue

as an accepting condition.

For a CQA, we require that q = q’, or that q - q’ E [0, r4t) if we wish q’ to be an

initial subsequence of q.

And unless our automaton is obstinate, we need to sense the most significant digits

of q. Piecewise-linear maps can do this, so that (deterministic) QAs can be simulated

by (deterministic) piecewise-linear maps; but linear or quadratic maps seem to be too

smooth for this, so they will have to non-deterministically guess the most significant

digit even if the QA is deterministic.

In other words, OCQA c Lin(Z). Relaxing ‘copyness’ requires piecewise-linear or

quadratic maps, relaxing obstinacy requires piecewise-linear maps or non-determinism,

and non-determinism requires non-determinism. From these observations follow the

containments stated above.

To show that these containments are proper, consider the language of palindromes

Opal = {wuw”}, where ti means w in reverse order (we assume w is in an alphabet

not including a). This language is known [7] not to be in NQA; we will show it is

in Lin(Z).

By using push:’ = (pop!*)-I, we can push symbols on to the left end of the queue,

i.e. the most significant digits of q. Do this for the first copy of w until you see the

a, whereupon switch (with a FSA control as in Lemma 6) to popis and remove the

symbols as they appear in reverse order. Then accept if q = 0 at the end. So Spat is in

Lin(Z) but not in NQA. Cl

To recognize &I, we used the digits of q as a stack rather than a queue. With this

construction, we can recognize a subset of the context-free languages. A metalinear

lunguage [21] is one accepted by a PDA which makes a bounded number of turns,

a turn being a place in its computation where it switches from pushing to popping.

We can also consider obstinate PDAs, which like obstinate QAs only look at the stack

symbol to see if it’s the one they wanted to pop.

Let the (deterministic, obstinate) metalinear languages be Met, DMet and OMet;

for instance, Spat is in OMet. (Incidentally, Met is a trio). Then

Theorem 5. The following containments hold, and are proper:

Met c NLin(Z),

DMet c PieceLin(Z),

OMet c Lin(Z).

Proof. Simulate a PDA with push:’ and pop:’ as we did above, pushing and popping

the most significant digits of q. To make sure we pop what we push, it suffices to

check that q E [0, 1) each time the PDA turns from popping to pushing (there are k - 1

of these ‘interior turns’) as well as at the end of the computation. Otherwise, we risk

112 C. Moorei Theoretical Computer Science 201 (1998) 99-136

sequences like

40 = 0,

push 1: q=O.l,

pop 2: q = - 1,

push 2: q-0.1,

pop 1: q=o,

where we popped a 2 when the stack symbol was a 1, and then covered our tracks by

pushing it again. Here q ends at 0, but at the turn from popping to pushing, q = - 1

and we fell outside the unit interval.

To prevent this, copy q into a storage variable si each time the PDA makes an

interior turn. If it turns k times, then only k such variables are needed; so to accept,

demand that si E [0, 1) for all i (and that the FSA be in an accepting final state).

As before, piecewise-linear maps can be deterministic if the PDA is, while linear

maps have to non-deterministically guess what symbol to pop, unless the PDA is

obstinate.

To show that these containments are proper, we note that the language of words

with more a’s than b’s is not metalinear [2 11, while we showed in the introduction

that it is in Lin(Z). 0

In addition to OMet, some context-free languages that are not metalinear are in

Lin(Z), such as the language {w 1 #,(w)>#b(w)} of the introduction. This seems to be

because when its PDA tries to pop a symbol off an empty stack, it starts a ‘negative

stack’ rather than rejecting; for instance, if we represent extra a’s by having a’s on

the stack, popping one off each time we read a b, we can simply start putting b’s on

the stack instead if we run out of a’s. This is reminiscent of the copy queue automata

above, and presumably Lin(Z) contains some suitably defined subset of the CFLs

where ‘ghost symbols’ can be popped off the stack and later pushed into a peaceful

grave.

The Dyck language {s,(),(()),()(), . . .), h owever, relies on rejecting if the stack is

overdrawn. We conjecture that

*
Conjecture 1. LDyck is not in Lin(i?).

Proof? For a language L, say that w pumps L if uwv E L if and only if uv EL,

i.e. inserting or removing w does not change whether a word is in L or not. Let

0(VV) = W2W3 . WI,IWI. Then the conjecture would follow if for any L in Lin(Z),

whenever w pumps L, then a(w) does also.

The proof of this might go like this: if w pumps L, then fw N z where “N” means

some sort of equivalence on the subset of Rd generated by the fa. Then

C. Moore I Theoretical Computer Science 201 (1998) 99-136 113

I
O.OOO...

I ,. .w... 0.11
0.12

1-1 ..4;. T22’. (

0.1 0.1222... 0.2 0.222...

Fig. 2. The Cantor set encoding of words on alphabets with m symbols. Here m = 2 and a = i

Since “()” pumps J&k, we would have ft N f)-’ and fo N fj(- 1. Then “)(” would

pump Lo,,,& also, which it does not. 0

In any case, we can keep track of a stack with an unbounded number of turns with

a little more work. Let OCF, the obstinate context-free languages, be the languages

recognized by obstinate PDAs.

Theorem 6. The following containments hold:

CF c NPieceLin(Z) n NPoly,(Z),

DCF c PieceLin(Z) n NPoly,(Z),

OCF c PieceLin(Z) n Poly,(Z).

Proof. To recognize arbitrary context-free languages, we need to make sure that the

stack variable q is in the unit interval at all times. To do this quadratically, note that

the map

.&(x3 Y) = &’ + Y2)

has the property that if x,y E [0, l] then &(x,Y) E [O,l], while if 1x122 or]y] 32

then .fn(x, y)>,2. So rather than simply using base m + 1, we will use a Cantor set

with gaps between the blocks. If the gaps are large enough, any mistake will send q

far enough outside [0, I] that f* will be able to sense the mistake and remember it.

To push and pop single symbols 1 <i <rn in the stack alphabet, let

push,(q)=aq+(l -CX);,

POP,(q) = ‘-’ q - (1 - c(,’
m

= push;‘(q).

If E= l/(m+ 1) this is just pushIeri and popleft in base m + 1 as before; smaller a gives

a Cantor set as shown in Fig. 2.

If we pop the wrong symbol, our value of q will be

qoops = POPj(PU$(q)) = 4 + ($2) (y),

where i # j, then

lqoopsl> J-=$ - 1.

Then if we choose a such that a < 1/(3m + 1), any mistake will result in Jqoops) >2.

114 C. Moore I Theoretical Computer Science 201 (1998) 99-136

Then as in Lemma 9, add a variable y with ya = 0 and update it to fj(q, y) at each

step. Then requiring y E [0, l] in H,,, ensures that lq(has always been less than 2, i.e.

we always popped symbols that were actually there. With piecewise-linear maps, we

can use h(q,y)= max(M Ml.
Once again, (deterministic) piecewise-linear maps can read the top stack symbol of

(deterministic) PDAs, while for non-obstinate PDAs quadratic maps need to guess. 0

The fact that CF c NPieceLin(Z) and DCF c PieceLin(Z) was essentially shown in

[31,11.
The closure of CF (DCF, OCF) under intersection and union is the class of COIZCUY-

rent (deterministic, obstinate) context-free languages, or CCF (CDCF, COCF). They

are recognized by (deterministic, obstinate) PDAs with access to any finite number of

stacks. Then

Corollary 1. The following containments hold, and are proper:

CCF c NPieceLin(Z) n NPoly,(Z),

CDCF c PieceLin(Z) n NPoly,(Z),

COCF c PieceLin(7) f? Poly,(Z).

Proof. The contaimnents follow since all the classes in Theorem 6 are closed under

intersection and union. To show that they are proper, recall that for a context-free

language L on a one-symbol alphabet {a}, the set {n 1 a” E L} is eventually periodic

[21]. Since the intersection or union of eventually periodic sequences is eventually

periodic, this holds for CCF as well.

But Lin(Z) contains numerous non-periodic one-symbol languages. Consider a rec-

ognizer p with

fakY)= (; y) (;)
which dilates the X, y plane and rotates it by an irrational angle tan- ‘($). Then if

(xo,Yo)=(LO) and HYes is the upper half-plane, {n I a” E Lp} is a quasiperiodic se-

quence and so L, $! CCF.

Alternately, consider the language LCopY = {wuw}, which is in QA, and Lin(Z) but

not CCF (this follows easily from the results in [27]). 0

Corollary 2. NTIME(O(n)) C NPieceLin(Z) n NPoly,(H) and
TIME(n) C PieceLin(Z) n NPoly,(Z).

Proof. We have shown that (deterministic) piecewise-linear and non-deterministic

quadratic maps can simulate (deterministic) FSAs with access to a finite number of

strings that can act like both queues and stacks, i.e. that we can read, push or pop

C. Moore! Theoretical Computer Science 201 (1998) 99-136 115

at either end. These are called double-ended queues or deques in the literature, but I

prefer to call them quacks.

FSAs with access to a finite number of quacks can simulate multi-tape Turing ma-

chines in real time, and vice versa [26]. Book and Greibach [6] showed that in the

non-deterministic case, real time (n) is equivalent to linear time (Co(n)). Furthermore,

NTIME(O(n)) is precisely the images of languages in CCF under alphabetic homo-

morphisms, and is the smallest AFL containing CF. 0

Piecewise-linear and non-deterministic recognizers seem more powerful than Turing

machines. For instance, they can compare the contents of two tapes in a single step,

or add one tape to another. We therefore conjecture that

Conjecture 2. PieceLin and NPoly, maps are more powerful than Turing machines

in real time, i.e. the inclusions in Corollary 2 are proper.

5.2. A language not in Poly or PieeeLin, and its consequences

Our next theorem puts an upper bound on the memory capacity of deterministic

piecewise-linear and polynomial maps of any degree.

Theorem 7. The language

L7 = {w, #wz#. . . #w, hu / u = wj for some i},

where the wi and u are in A*, is in NLin(E) but not Poly(lR) or PieceLin(R).

Proof. Note that L7 is a kind of universal language, in that it can be “programmed”

to recognize any finite language: if u = wt #wz# . . . #w, b where wt , . . . , w, are all the

words in a finite language L,, then uv E L7 if and only if u E L,. Therefore, any recog-

nizer p for L7 contains recognizers for all possible finite languages in its state space,

since it recognizes L, if we let x0 =xU. We will show that no polynomial recognizer

of finite degree can have this property.

A family of sets St, . . . ,S, is independent if all 2” possible intersections of the Si and

their complements are non-empty; in other words, if the Si overlap in a Venn diagram.

But since fv(xU) E H,,, if and only if v EL,, x, is in the following intersection of sets:

GE (n&i-%$ n (fIU”““-‘).

Since any such intersection is therefore non-empty, the set of sets fOP’(Hyes) over any

finite set of words w is independent.

Now a theorem of Warren [40] states that m polynomials of degree k can divide Rd

into at most (4emk/d)d components if mad. If this number is less than 2m, then not

all these sets can be independent.

Suppose p is polynomial of degree k, has d dimensions, and has an alphabet with n

symbols. Assume for the moment that H,,, is defined by a single polynomial inequality

116 C. MooreITheoretical Computer Science 201 (1998) 99-136

of degree k. Then fU-‘(Hyes) is defined by a polynomial of degree kl”i+‘. Then for all

n’ of the sets fOP’(HY,,) for words of length I to be independent, we need

This is clearly false for sufficiently large I, since the right-hand side is doubly expo-

nential in I while the left-hand side is only singly so.

If H,,, is defined by c inequalities instead of one, we simply replace nl with cn’ on

the left-hand side; the right-hand side remains the same, since we still need to create

n’ independent sets.

Thus polynomial maps of a fixed degree, in a fixed number of dimensions, cannot

be programmed to recognize arbitrary finite languages of words of arbitrary length, so

L7 is not in Poly(R). A similar argument works for piecewise-linear maps, as long as

the number of components of the map is finite.

However, L7 is in NLin(Z): just non-deterministically keep Wi for some i and ignore

the others, and check that V=i?i. q

(Another language we could use here is {walk 1 y= l}.) Several corollaries fol-

low from Theorem 7, using arguments almost identical to those used in [37] for the

deterministic real-time languages TIME(n):

Corollary 1. Poly, Poly, for all k, and PieceLin are properly contained in NPoly,

NPoly,, and NPieceLin respectively, for both U = Z and R.

Corollary 2. There are non-deterministic context-free languages not in Poly(R) or

PieceLin(W).

Proof. The reversal of a word w is wR = WI,,, . . . wzwl. Let L’ be a modified version

of L7 in which # = Wi for some i, instead of v = Wi. Then L’ is context-free: it is

accepted by a non-deterministic PDA that puts one of the wi on the stack, ignores

the others, and then compares v to it in reverse. However, L’ is not in Poly(R) or

PieceLinf R) by the same argument we used for LT.

Corollary 3. Poly, Poly, for all k, and PieceLin are not closed under alphabetic

homomorphism, concatenation, Kleene star or positive closure.

Proof. By Lemma 4, since L7 E NLin(Z), it is an alphabetic homomorphism h of a

language in Lin(Z): simply mark the wi that v will be equal to, and let h remove the

mark. So none of these classes can be closed under h.

For concatenation, let L1 be a modified version of L7 where v = wi. Then L1 is in

Lin(Z), since we can ignore everything between the first # and the tl, and just compare

V to Wi . Then L7 = (A U { #})* .Ll is the concatenation of a regular language with L1, so

these classes can’t be closed under concatenation (or even concatenation with a regular

language).

C. Moore/ Theoretical Computer Science 201 (1998) 99-136 117

Finally, L” = (A U { #})* U L1 is in Lin(Z). But

L, =L”* n (A u {#})*hA*.

Since these classes are closed under intersection, they can’t be closed under Kleene
star or positive closure (we can use L”+ in place of L”*.) q

Let CYCLE(L) = { w1w2 1 w2w1 EL}. Then:

Corollary 4. Poly, Poly, for k 32, and PieceLin are not closed under reversal or

CYCLE.

Proof. LT, where the first word has to be equal to one that follows, is in Poly,(h).
Just update a variable y to v(V - i&) each time you see a # and require that y = 0
or V=& at the end. We can do the same thing with piecewise-linear maps. Since
L7 = (L’;‘)R, these classes cannot be closed under reversal.

Let L!, be L7 where the symbols of v are in a marked alphabet A’, while the wi are
still in A*. Clearly, LG is not in Poly(R) or NPoly(R) for the same reason that L7

isn’t, while L$” is in Poly,(B) and NPoly(Z) just as L; is. But

L$ = CYCLE(LGR) n (A u { #})* hA’*.

Since both these classes contain regular languages and are closed under intersection,
they cannot be closed under CYCLE. q

Conjecture 3. Lin(Z) is closed under reversal.

Proof. We can use transposes to reverse the order of matrix multiplication, since
(IU?)~ = BTAT. However, it’s unclear how to make these matrices take xa to points

in H,,,, rather than the reverse. We also leave as an open problem whether Lin(H) is
closed under CYCLE.

On the other hand, we have

Theorem 8. All non-deterministic classes containing Lin(Z) are closed under reversal

and CYCLE.

Proof. Add variables po =qo =O. At each step when we read a =wi, make a guess
that I@ = a’ and let

fa(n"(p,q,x)=(push$*(p),push~~ht(q),f,,(x)),

where x represents the other variables. Then p = W and q = W’R where IV’ is composed
of the guessed symbols a’, so require that p = q.

Similarly, for CYCLE, let po = qo = r. = 0. Start out with

fa'n"(p,q,r,x)=(push~(p),push~~(q),r,f,l(x))

118 C. Moore/ Theoretical Computer Science 201 (1998) 99-136

and non-deterministically switch to

fa(“)(p,q, r,x> = (push:*(p), qlb,push:*(r), f&>>,

where p, q and Y are in base b. Then p = W and q + r = CYCLE(w’), so require that

p=q+r. q

Next, we will show that a unary version of L7 separates Lin from PieceLin and

from Poly, (and from their intersection):

Theorem 9. Lin is properly contained in PieceLin n Poly, for both U = H and R.

Proof. Consider a version of L7 where the wi and v are over a one-symbol alphabet:

L unw = {up’ #aPZ# . . . #up- tiaq (q = pi for some i}.

Suppose Luna,.,, is in Lin(R). Since fal is linear, if Hyes is described by c linear in-

equalities, then each of the sets fd;‘(HY~s) is also. But these all have to be indepen-

dent by the same argument as in Theorem 7, so for 1 <i < 1, cl linear inequalities

have to divide Rd into at least 2’ components. But for k = 1, Warren’s inequality

becomes

32’

which is false for sufficiently large 1. So Lunaw is not in Lin(R).
However, Lunary is in PieceLin(Z). Let x0 = yo = 0 and r. = 1, with the following

dynamics:

fn(x, y, r) = (x, 2y mod 2, r/2),

f&y,r) =
{

(x+r,x+r,l) if yE[O,I),

(x,x, 1) ifyE[1,2),

f&,y,r) = f&,y,r).

The sequence a@ adds 2-P to x unless the 2-P digit of x was already 1, i.e. unless

y = 2px mod 2 E [1,2). By the time we reach the tl, we have x = xi 2-P,. Then with

an additional variable w, let f h(w) =x, let fO(w) = 2wmod 2, and let H,,, require that

w E [1,2), checking that the 2-q digit of x is 1.

What about LR unq? It is in Poly,(B) by the same construction as in Corollary 4

above. Just let f#(y) = y(q - pi) and require that y = 0 or q = ~1. Similarly, it is in

PieceLin(H). However, we can show that it is not in Lin(R).
Let p[j] be the 2j digit of p in base 2. For a given k, and 0 Q j < k, let Uj be the

word

Uj = n (V@P,
0<pt2k,p[j]=l

C. Moore I Theoretical Computer Science 201 (1998) 99-136

where n means concatenation and (tl/#) means # except for the first

means ti. For instance, for k = 3,

us = ha#a3#a5#a7, ul = ha2#a3#a6#a7, u2 = ha4#a5#a6#a7.

NOW let si = fu;‘(Hyes). Since apuj EL&,, if and only if p[j] = 1, we

119

one, where it

have

and the Sj are independent. For instance, X,S E SO n s n &.

But since fu, is linear, each of the Sj are described by c linear inequalities if H,,,

is, so ck linear inequalities have to divide Rd into at least 2k components and once

again Warren’s inequality applies. So L$, is in PieceLin(%) n Poly,(Z), but not

Lin(R). q

(It is an interesting open question whether Lunaly is in Poly,(Z). For k = 2 and n = 1,

Warren’s inequality becomes

d

(,ec:l+’ >
22’

and no longer yields a contradiction for large I.)

Using the same techniques, we can sharpen Theorem 5:

Theorem 10. There are deterministic metalinear context-free languages not in Lin(Z).

Proof. For two words u, u E (0, 1)“) say that u c u if uidvi for all i, e.g. 01001 c

11011. Then consider the language LC pal = {uav) uR c v}. It can be recognized by a

deterministic, one-turn PDA: simply push u onto the stack until you see the a, then

pop u back off as you read u, checking that z$ d ui as you go. So Lcpal is in DMet
(in fact, it is one-turn or linear [21]).

NOW for a given k and 0 d j < k, let Vj be the word of length 2k such that (aj)i = i[j]

(here we are numbering Vi’s symbols from 0 to 2k - 1 instead of from 1 to (ujl as

before). For instance, for k = 3,

va = 01010101, v1= 00110011, 02=00001111.

analogous to the Uj of Theorem 9. Then if u, is the word of length 2k such that its

mth symbol is 1 and all its other symbols are 0, we have

XuRa E m n
MA=1

j,m~n=oh~lmes)

and once again we have an arbitrarily large number of independent sets. So Lcpal is

not in Lin(Z). 0

120 C. Moore/ Theoretical Computer Science 201 (1998) 99-136

There is an interesting connection between Theorems 7, 9 and 10 and computational

learning theory. The Vapnik-Chervonenkis dimension has been used to quantify the

difficulty of learning sets by example [4]. For a family of sets 3, the VC dimension is

the size of the largest independent family S c 3. Then our arguments about independent

sets can be re-stated in the following way: in IWd with d fixed, the VC dimension of

the family

is Co(l) for polynomial maps and fixed for linear maps (this also follows from the

results in [17]), while L7 and Lunary require a VC dimension of at least n’ and 1,

respectively.

Unfortunately, arguments about independent sets do not seem capable of proving our

conjecture that Lqck $ Lin(Z), since uu E Lnyck if u and u have the same non-negative

number of excess (s and)s, respectively (and Dyck languages with k types of brackets

have no more independent sets than palindromes {waw”} where w is over a k-symbol

alphabet).

5.3. Discrete time and space complexity

We now compare polynomial recognizers directly to Turing machines.

Theorem 11. For all k > 2,

Poly,(E) c TIME(k”n log n),

NPoly,(Z) G NTIME(k”n log n),

where c indicates proper inclusion.

Proof. Calculating a polynomial function consists of a fixed number of multiplications

and additions. Multi-tape Turing machines can add m-digit numbers in time O(m) and

multiply them in Lo(m log m log log m) [22]. The number of digits of the result is @(km).

Iterating such a polynomial n times on initial values x0 with a fixed number of digits,

then, gives us LO(P) digits and a total time O(k”n logn). 0

As in [34] let E be the class UkTIME(k”) of problems solvable in exponential time.

Then

Corollary. Poly(Z) c E and NPoly(Z) C NE.

Since exponential time is rather powerful, this does not tell us very much (but we

give tighter bounds below). In addition, for particular subsets of Poly and NPoly, we

can say more. Recall [21] the deterministic context-sensitive languages DCS = SPACE

(n). This class is believed, but not known, to be a proper subset of CS = NSPACE(n).

Now define a language in Poly or NPoly as compact and exponentially bounded,
in Poly,, or NPoly,,,, if its recognizer acts on a compact subset of [Wd and the final

C. Moore I Theoretical Computer Science 201 (1998) 99-136 121

points x, are bounded away from the boundary of H,,, by at least rlwl for some r < 1.

Then we have

Theorem 12. The following containments hold:

poly(&b c DCS f- TIME(n2 log n log log n),

NPOly@),,b 2 CS n NTIME(n2 log n log log n),

Lin(Z), PieceLin(Z) c DCS n TIME(n2),

NLin(Z), NPieceLin(Z) C CS n NTIME(n2),

where c indicates proper inclusion.

Proof. Since the recognizer’s space is compact, we can re-scale the system and assume

that x never leaves the unit cube. Then if r < 2-b, we only need to know b digits of

x, to tell if it is in H,,, or not.

Furthermore, since the f= are polynomials, their derivatives are bounded, say by 2’.

To get m digits of fa(x), then, we need at most m + c digits of x. In the course of

iterating the system n times, then, we never need to know x to more than b + nc digits

of accuracy, so we only use an amount of space linear in n.

Again, a multi-tape Turing machine can multiply O(n) digits in O(n log n log log n)

time, and doing this n times gives us the stated result (or actually something slightly

stronger, namely that a single algorithm exists within both the time and space bounds).

Similarly, n iterations of a linear or piecewise-linear function with rational coeffi-

cients generates Co(n) digits. Each iteration takes O(n) time, so n of them take C5(n2)
time.

All these inclusions are proper in the deterministic case, since (we state without

proof) L7 is in both DCS and TIME(n2). 0

Finally, we note that deterministic linear recognition can be parallelized:

Theorem 13. Lin(Z) is properly contained in NC2.

Proof. Any fa in a linear recognizer can be written fa(x) =Aax + B,, where A, is

a matrix and B, a vector. The composition of two such functions is another of the

same form. In fact, by adding an additional dimension we can write

fa(x,l)=Ca “f where C,= $ “;
0 (+I

To calculate fW, then, we just need to multiply n matrices C, of fixed degree together.

By multiplying them together in pairs we can do this in O(log n) parallel steps. Each of

these steps potentially doubles the number of digits in the matrices’ entries, and multi-

plying n digit numbers takes O(logn) parallel time. So we get a total parallel time of

0(log1+log2+log4+...+logn)=8(log2n).

122 C. Moore I Theoretical Computer Science 201 (1998) 99-136

This is proper since (we state without proof) L7 is in NC1 c NC2 (and in fact there

are NCi languages not in Lin(Z)). 0

It would be nice if polynomial maps were parallelizable also, but since the com-

position of n polynomials of degree k > 1 is a polynomial of degree k”, the space

requirements grow exponentially with n.

5.4. Equation languages

Equation languages are an amusing source of examples for dynamical recognizers:

for instance, the set of words in A = (0, 1, x, = } of the form “WI x w2 = wg” where
_-
w1 w2 = iV3, such as “101 x 11 = 1111”. We can also consider inequalities such as

“10 x 11 > 10 + 11”. We will write [E]b for the language corresponding to an equation

E expressed in base b. Then

Theorem 14. [E]b is in Lin(Z) for any E involving + and x (with x given

precedence).

Proof. We read in the first variable wi by letting x0 = 0 and fn(x) = bx + n for

O<n<b; then x,, = Wi. (This maps wi to the integer Wi it represents, rather than

to a real in the unit interval as before.) Then we inductively proceed as follows.

If the next operation is a f, we store x and evaluate what is being added to it. This

evaluation will conclude when we reach the next + or the = . We then add the two

together.

If the next operation is a x, let a new variable be yo = 0 and use the functions
--

fn(y) = by + nx. Then x,, xwZ = wiw2.

Finally, on reading the = (or > or whatever), simply store x, evaluate the right-

hand side in the same way, and compare them. 0

This shows that Lin(Z) can be considerably more expressive than regular or context-

free languages. Decimal points are easily added (exercise for the reader).

Exponentiation takes a little more work:

Theorem 15. [El6 is in Poly,,, (Z) f or any E involving +, x and T (exponentiation),

in order of increasing precedence. If the only occurrences of 7 are of the form WI t w2
where w1 is a constant, then [E]b is in Poly,(Z).

Proof. To evaluate wi r ~2, read in x = Wi as before. When you read the t, prepare

b variables a,, =x” for 0 <n < b. Let another variable be yo = 1, and let f”(y) = a, yb

thereafter; this is a polynomial of order b + 1, or order b if wi and the a, are constants.

Then x,,,, T ,,,2 = tiip. The rest of the evaluation can take place as before. 0

With non-determinism, we can add a sort of exponentially bounded existential quan-

tifier. Consider equations E such as “wf +x2 = w; for some x cm,” a member of

which is “100 7 2 + x 12 = 101 t 2”. Then we have the following:

C. Moore/ Theoretical Computer Science 201 (1998) 99-136 123

Lemma 10. For any integer constant c, non-deterministic linear maps can prepare
a variable x with any integer value in the range 0 <x < c’ in I steps.

Proof. Let x0 = 0 and non-deterministically choose among the maps f(“)(x) = cx + n,
O<n<c. IX

Theorem 16. Let E be an equation with a finite number of variables x; bound by

quanti$ers of the form 3x; cm;. Let 1 be the total length of the input word, and let

1; and r; be the leftmost and rightmost positions at which x; appears. Then [E]b is

in:
(1) NLin(Z) if E involves only + and x and m; < cl8 for some constant c,

(2) NPoly,+,(Z) if E involves +, x and T but not terms of the form w TX, and

t?l; < Ct’,

(3) NPoly,(Z) ifE is a jxed polynomial of degree k in the w; and x; and m; < c’,

(4) NPo~Y,,(,,,+,@) if E is a fixed polynomial of degree k of terms including

w tx and m; < cipr~ orm;~l-r; ifC=1,

(5) NPoly,,~,,,~(Z) if E is a fixed polynomial of degree k of terms including w T x

for constant w and m; < C’ or m; 0; r; tf c = 1.

Proof. In cases 1 and 2, we have 1; steps of the input with which to prepare xi with

a value up to cl, as in Lemma 10. Then we simply plug this value into the evaluation

process of theorems 14 and 15.

In case 3, if E is a fixed polynomial P, we have all 1 steps of the input word to

prepare the xi and evaluate sums, products and exponents of the wi. Then we can plug

it all into P at the end.

In cases 4 and 5, we can evaluate wX by non-deterministically applying the maps fn
of Theorem 15. If the exponent is in unary (c = 1) we can generate linearly growing

values of x, while higher bases (c > 1) allow x to grow exponentially. If w is a

constant (case 5), we know it in advance and we can use all 1 steps in the input word

to increment x. In general (case 4), we only have the 1 - r; steps between the last

occurrence of w tx and the end of the word.

If xi appears several times, we can easily check that we use the same value for it

each time. In the first two cases we can prepare the value for its first instance, and

stick to that thereafter. In the third, fourth and fifth cases each Xi only appears a finite

number of times since the equation is fixed, and so we can use a different variable for

each instance and check that they are all equal at the end. Cl

As an example of the fifth case, the language of powers of 3 in binary

is in NLin(Z). Just let ya = 1, non-deterministically multiply y by 3 or leave it alone,

and check that y = W at the end. It is also in PieceLin(Z), since we can multiply y

by 3 whenever 3 y <i? as we read in W.

124 C. Moore1 Theoretical Computer Science 201 (1998) 99-136

The reader may also enjoy showing that w! can be understood in equations by

Poly,(Z) if w is written in unary, and that the language

{1,10,110,11000,111000,1011010000,1001110110000,...}

of factorials n! written in binary is in NPoly,(Z) (and in PiecePoly,(Z) as defined

below).

Two obvious generalizations of Theorems 14-16 come to mind. First, with real

coefficients we can name various real constants and use them in equations (although

not on the right-hand side of a T). Secondly, by maintaining an evaluation stack, we

can parse parentheses up to a bounded number of levels.

5.5. Real coeficients

We end this section with two simple results about linear and polynomial recognizers

with real, rather than integer or rational, coefficients.

Theorem 17. PieceLin(R) and Poly,(lR) each contain all languages on a one-symbol

alphabet.

Proof. Consider recognizers on a one-symbol alphabet {a} where f=(x) = 2x mod 1

(piecewise-linear) or 4x(1 -x) (quadratic). Both of these map the half-intervals [0,1/2)

and [l/2, l] onto the entire unit interval. For any initial point x0, we can define an

itinerary

{

0
St =

if fa’(xa) < i,

1 if f,‘(xa)> i

showing which half of the interval x falls into as fa is iterated. For fa(x) =2x mod 1

this is just x0’s binary digit sequence.

If H,,, = [$, I], then, LP = {a’ 1 st = 1). Both these maps have complete symbolic

dynamics [20], i.e. there is an x0 for every possible itinerary; so we can get any

LP c {a}* we want by properly choosing x0. 0

Corollary. The class V(BB) properly contains S’(Z) for %‘= Lii, NLin, PieceLin,
NPieceLin, Poly, NPoly, Poly, and NPoly, for all k, Elem and NElem.

Proof. Theorem 17 shows that %?(lR) is uncountable for all these classes except Lin
and NLin. These are uncountable as well; for instance, for each angle 4 there is

a distinct language L+ c a * in Lin(R) recognized by an fa that rotates the plane by 4

and accepts whenever x,~ is in the upper half-plane.

On the other hand, V(Z) is countable for all these classes, since any recognizer with

integer or rational coefficients can be described with a finite list of integers. So U(Z)

is of smaller cardinality than %?(I%). 0

C. Moore I Theoretical Computer Science 201 (1998) 99-136 125

6. The polynomial degree hierarchy

We will call the classes Poly, and NPoly, the deterministic and non-deterministic

polynomial degree hierarchies (not to be confused with the polynomial hierarchy &P
of discrete computation theory). Are these hierarchies distinct? That is, does Polyk+,
properly contain Poly, for all k? Or do they collapse, so that there a k such that

Polyj = Poly, for all j > k?

Conjecture 4. Both the deterministic and non-deterministic polynomial degree hierar-

chies are distinct.

Proof? We have already shown (Theorem 9) that the lowest two levels are distinct

in the deterministic case. We can imagine several methods of proof for the entire

hierarchy.

First, we could refine the argument of Theorem 7 to produce a series of languages

Lk each recognizable in Poly, but out-stripping the ability of polynomials of smaller

degree to produce independent sets.

Secondly, we could use polynomials of degree k + 1 to simulate all possible poly-

nomials of degree k by representing their constants with additional variables, and then

introduce some kind of diagonalization.

Thirdly, we can connect distinctness to the idea that we can’t recognize equation

languages unless we actually calculate the quantities in them:

Lemma 11. If equation languages involving terms of the form w1 t w2 cannot be rec-

ognized without some variables reaching values of at least Lo@?), then the polyno-

mial degree hierarchy is distinct.

Proof. An expression of the form WI 7 w;! with length 1 in base b can have a value

of O(Wp’), while polynomials of degree k can only reach Co(&) in 1 steps. If the

premise is true, then, the languages [I$ of Theorem 15 with constant wt are each

in Poly, but not Poly, for k < b. 0

Fourth, distinctness is equivalent to the conjecture that, for each k, Polyk and NPoly,
lack a particular closure property:

Lemma 12. For any j > k 32, any language in Polyj is a non-alphabetic inverse

homomorphism of a language in Poly,. Therefore, the (deterministic) polynomial

degree hierarchy collapses to level k 32 tf and only tf Poly, is closed under non-

alphabetic inverse homomorphism. Similarly fur NPoly.

Proof. Let h, be the non-alphabetic homomorphism that repeats each symbol n times,

e.g. h3(abca) = aaabbbcccaaa. We will show that for any L in Polyj and any k > 2,

h,(L) is in Polyk for some n.

126 C. Moore1 Theoretical Computer Science 201 (1998) 99-136

A polynomial of degree j can be written as the composition of n = [log, jl polyno-

mials of degree k, for any k > 2. This composition can be carried out by a finite-state

control with n states. For the body of the word, then, n repetitions of each symbol

allow a Polyk-recognizer to simulate a Polyi-recognizer.

But for the last symbol, we need to simulate fn and also calculate the measurement

functions h, giving polynomials ho fa of degree j2. This requires [log, j2] polynomials

of degree k. One of these can be provided by the new measurement functions, so

12 log, j] - 1 repetitions of the last symbol suffice.

So for any L in Poly, and any k > 2, h,(L) is in Poly, where n = [2 log, j] - 1.

If Poly, is closed under non-alphabetic inverse homomorphism, then, L is in Poly,

since h,(L) is and the hierarchy collapses.

Conversely, if L is in Poly, and h is a non-alphabetic homomorphism that maps

symbols onto words of length at most n, then h-‘(L) is in Poly,, since, as in Lemma 3,

each step is the composition of n polynomials of degree k. So if the hierarchy collapses,

Poly, is closed under h-l. cl

Corollary 1. Zf Polyk = Poly,, for some k > 1, then Polyi = Poly, for all j > k. Sim-

ilarly for NPoly.

Proof. If POlYk = Poly,,, then Poly, is closed under inverse homomorphisms that at

most double the length of words. But by composing these, we can get any homo-

morphism we want, so Poly, is closed under inverse homomorphisms in general and

Lemma 12 applies. 0

We can improve this to the following, analogous to standard lemmas in recursion

theory:

Corollary 2. Zf Poly, = Poly,,, then Polyj = Poly, for all j > k, and similarly for

NPoly.

Proof. Recall [21] that a generalized sequential machine (GSM) is a finite-state ma-

chine that converts an input word into an output. If L is in Polyk and a GSM map-

ping M increases the length of words by a factor of at most m, then M-‘(L) is

in Poly,,.

Therefore, if Poly, = Polyk+ 1, then Poly, is closed under inverse GSM mappings

that increase the length of the word by at most m = log,(k + 1). It is easy to show

that we can get any homomorphism we like by composing GSM mappings with any

m > 1, except on words of length less than l/(m - 1) which cannot increase in length.

But this is a finite set of exceptions which we can catch with additional variables, so

Poly, is closed under all inverse homomorphisms and Lemma 12 applies again. 0

It hardly seems possible that the composition of any number of polynomials can be

simulated by a single polynomial of the same degree; but this is exactly what it would

C. Moore I Theoretical Computer Science 201 (1998) 99-136 127

mean for some Poly, to be closed under arbitrary inverse homomorphisms. Therefore,

we consider Lemma 12 strong evidence for distinctness.

We note that we cannot prove distinctness, even in the deterministic case, using VC-

dimension: since it has an upper bound of O(nd log k) [17], polynomials of degree k

in [Wd could conceivably be simulated by quadratic polynomials in (WO(d’osk).

A proof of Conjecture 4 seems just around the corner. We invite clever readers to

complete it!

7. Higher recognizer classes

7.1. Elementary functions

We now consider the classes Elem and NElem, where we allow exponential, trigono-

metric and polynomial functions, as well as their compositions. In Elem(Z) we allow

coefficients that are elementary functions of integers, such as rational or algebraic num-

bers.

Theorem 18. Elem(Z) properly contains Poly(H).

Proof. We will show that the language L7 of Theorem 7 is in Elem(Z). Recall its

definition:

L7={Mq#w~#. . . #w,hu 1 U=Wi for some i}.

By reading in w as in Theorem 12, and letting xo = 0 and fa(x)=x+ 2”, we can

construct

x_ Ci2”’ =

i

[2k+ 1,2k+2) if u=wi for some i

2” [2k,2k+ 1) if u # w, for all i
for some integer k.

In other words, the 2” digit of xi 2”“l is 1 if u = Wi and 0 otherwise. So let Hyes require

that sinrcx,<O or cosrcx,=-1, i.e. xE(2k+1,2k+2) orx=2k+l.

Since L7 is in Elem(Z) but not Poly(R), the inclusion Poly(Z) c Elem(Z) is

proper. 0

Here we are using the fact that all the sets sj = {x 1 sin 2jx < 0) for j = 0, 1,2,. . are

independent, i.e. the family {Sj} has infinite VC-dimension.

Conjecture 5. NElem(Z) properly contains NPoly(Z).

Proof? Consider the numbers A4, = 2” + 1. Since A40 =Mt - 2 and M,,(M,, - 2) =

M n+l - 2,

fiMi=M,+~ -2
i=O

128 C. Moore I Theoretical Computer Science 201 (1998) 99-136

so the M,, are mutually prime for all n B 0. Therefore, if x = n,, M,” the cn are unique,

and we have random access to an arbitrary number of counters cn.

For instance, consider the language of block anagrams

L anag = {WI #wz#. . #w,tlUl #Uz# . . #U, 1 for some permutation 7t, Ui = Wr(i)

for all i}.

By reading in W, letting po = 1 and fb(p) =Mpp, and similarly for V and q, construct

p = ni MFl and q = ni MC,. Then let H,,, require that p = q.

Here we are accessing c, in O(logn) time for arbitrary n, and we conjecture that

NPoly-recognizers can’t do this. However, they can if we name n in unary, since

M,+l = (M, - 1)2 + 1 is a quadratic function of M,. For instance, Lanag is in Poly,(H)

if the wi and vi are over a one-symbol alphabet.

Unfortunately, besides the rather generous upper bounds given in Theorems 11

and 12, we have no idea how to prove a language is outside NPoly, or even NLin.

Finally, we note that allowing arbitrary reals makes Elem trivial:

Theorem 19. Elem(R) contains all languages.

Proof. For any language L, let XL = CwEL 3-” (we use base 3 to avoid ambiguities

in the digit sequence). Then the 3-” digit of XL is 1 if x E L and 0 otherwise, so let

H,,, require that

O< sin ~3wx~<-~cos y3”xL.

i.e. 93$.xL mod 2rtE [y,rt] or 3”x~ mod 3 E [l, 51. 0

7.2. Analytic and continuous functions

The class Analytic (which we will not abbreviate) is also trivial, unless we restrict

ourselves to a countable set of closed forms:

Theorem 20. The class Analytic contains all languages.

Proof. Simply map input words to an integer W, choose an analytic function h such

that h(i?) = 1 if w EL and 0 otherwise, and require that h(W) 3 i. (We can also do

this with piecewise-linear maps if we allow a countably infinite number of compo-

nents.) q

8. Complexity and decidability properties

Given a description of a dynamical recognizer p, we can ask whether LP = 0. Given

p and an input word w, we can ask whether w E LP. We will refer to these problems

C. Moore I Theoretical Computer Science 201 (1998) 99-136 129

as emptiness and membership respectively; we will show that even for the simplest

classes, they are undecidable or intractable. For definitions of P- and NP-completeness,

see [15].

Theorem 21. Emptiness is undecidable for Lin(h) ifd 22, andfor Elem(Z) for all d.

Proof. Post’s Correspondence Problem (PCP) is the following: given a list of words

w; and Ui, is there a sequence iI,&, . . . ,ik such that

To reduce PCP to the non-emptiness of a Lin(Z) language, let xc = yo = 0, let

fi(x~Y)=(pu%,(x), push,(y))

and require that x = y > 0 to accept. Post’s Correspondence Problem is undecida-

ble [21].

For Elem(B), we recall [32] that elementary functions in one dimension can simulate

Turing machines with an exponential slowdown. 0

Corollary 1. Membership is NP-complete for NLin(Z) if d 22, even for languages

on a one-symbol alphabet.

Proof. Post’s Correspondence Problem is NP-complete [15] if we place a bound on k.
Let a single map fji) non-deterministically choose between the 5 above, or do nothing.

Then ask if ak is in Lp. 0

Corollary 2. For languages in Lin(Z), it is undecidable whether L, n L2 = 0, L, C: L2

(inclusion), LI = L2 (equivalence), or L = A* (universality).

Proof. Emptiness is a special case of each of these, since Lin(E) is closed under

intersection, union, and complement (e.g. L1 G L2 if and only if L1 n G = 0). 0

Corollary 3. For languages in Lin(Z), it is undecidable whether L is regular, context-

free, DCF, QA, NQA, etc.

Proof. This follows from Greibach’s theorem [19,21], which states that virtually any

non-trivial property is undecidable for a class which is closed under concatenation with

a regular language (concatenation of languages with disjoint alphabets suffices, which

we have by Lemma 7) and union, and for which L = A* is undecidable. 0

Theorem 22. Membership is P-complete for PieceLin(Z) if d 23, for PieceEn if
d > 2, and Elem(Z) if d 2 2.

Proof. This follows from the fact that two-dimensional piecewise-linear maps with

rational coefficients can simulate Turing machines in real time [30, lo]. This reduces

130 C. Moore1 Theoretical Computer Science 201 (1998) 99-136

any problem in P that takes time t on input w to the membership of at where fa
iterates the map and x0 =x,. Doing this with integer coefficients as in Theorem 3

requires one more variable. Elementary functions in two dimensions can also simulate

Turing machines in real time [25]. 0

Several questions suggest themselves. Is emptiness decidable for Lin(E) if d = l?

Is membership still P-complete for PieceLin(H) if d <2, or for PieceLin(Q) if d = l?

Is membership P-hard for Poly,(E) for some k? Theorem 13 makes it highly un-

likely that membership in Lin(Z) is P-complete, since then we would have

NC2 = P.

9. Relationships with other models of analog computation

There are several differences between Bhun, Shub and Smale’s (BSS) analog ma-

chines [3], Siegelmann and Sontag’s (SSNN) neural networks [38], and dynamical

recognizers.

First, BSS-machines can branch on polynomial inequalities during the course of

the computation. Except for PieceLin, our recognizers have completely continuous

dynamics except for the final measurement of H,,,. SSNN-machines are defined with

piecewise-linear maps.

Secondly, BSS- and SSNN-machines are not restricted to real time, so that time

complexity classes such as P, EXPTIME and so on can be defined for them.

Thirdly, BSS-machines can recognize “languages” whose symbols are real numbers,

and can make real number guesses in their non-deterministic versions.

Finally, BSS-machines have unbounded dimensionality, and receive their entire input

as part of their initial state. Therefore, they have at least IZ variables on input of

length n. SSNN-machines, like ours, have bounded dimensionality, and receive their

input dynamically rather than as part of the initial state.

This last point seems entirely analogous to Turing machines. If we wish to consider

sub-linear space bounds such as LOGSPACE, we need to use an ofSine Turing

machine which receives its input on a read-only tape separate from its worktape.

This suggests a unification of all three models. First of all, let PieeePoly and

NPiecePoly be recognizer classes where the fa are piecewise polynomials, with poly-

nomial component boundaries (these could serve as models of “hybrid systems”).

Secondly, relax our real-time restriction by iterating an additional map fcomp, in the

same class as the fa, until x falls into some subset &,=it,

Thirdly, restrict BSS-machines to their Boolean part BP and to digital non-
determinism, e.g. DNPR [l 11.

And finally, define an ofS_line BSS-machine as one who receives its input dynam-

ically in the first n steps, and which has a bound SPACE(f (n)) on the number of

variables it can use during the computation. (In [181 these are called separated input
and output or SIO-BSS-machines.)

C. Moore/ Theoretical Computer Science 201 (1998) 99-136 131

Then we can look at these classes in a unified way:

PiecePoly(R)TIME(B(nk))SPACE(O(nk)) = BP(Pn) (Blum, Shub and

Smale [3]),

NPiecePoIy(R)TIME(O(nk))SPACE(O(nk)) = BP(NDPn) (Cucker and

Matamala [1 l]),

PieceLin(lR)TIME(O(n’))SPACE(O(n’)) = BP(Pk) (Meer [28] and

Koiran [23]),

PieceLin(R)TIME(O(nk))SPACE(O(1)) = NET - P (Siegelmann and

Sontag [38]),

PiecePoly,(Z)TIME(n)SPACE(O(1)) = PiecePoly,(Z)

(dynamical recognizers),

and similarly for other complexity classes. (The last two lines of this table contrast

with the discrete case, since Turing machines with constant space can only recognize

regular languages.)

Then there are a number of things we have already shown, or which are obvious:

Corollary to Theorem 7. PiecePoly and PiecePoly, fir all k are properly contained

in their non-deterministic counterparts in real time, and are not closed under reversal,

CYCLE, alphabetic homomorphism or concatenation.

Proof. The VC-dimension of PiecePoly, maps in Rd with j components each is

O(nd log jk) [171. So L7 is not in PiecePoly, but the various modified versions of L7
in Corollaries 1, 3 and 4 of Theorem 7 are in PiecePoly, = PieceLin. 0

Then, just as for deterministic Turing machines [37], linear time is more powerful

than real time:

Theorem 23. Real time TIME(n) is properly contained in linear time TIME(C”(n))

for PiecePoly and PiecePoly, for all k.

Proof. We will show that TIME(O(n)) is closed under reversal for all these classes.

Simply store the input with pushtight into a variable p =?, and then use piecewise-

linear maps to extract the digits in reverse order. 0

We can also conjecture, as we did for Poly and NPoly:

Conjecture 6. The deterministic and non-deterministic piecewise-polynomial degree

hierarchy is distinct.

132 C. Moore/ Theoretical Computer Science 201 (1998) 99-136

This could only be true in real time, since quadratic maps can simulate polynomials

of any degree with a constant slowdown. We also conjecture that branching is of

fundamental importance, even when additional computation time is allowed:

Conjecture 7. For all k and all f(n), Poly,TIME(f(n)) is properly contained in

PiecePoly,TIME(f(n)), and similarly for non-deterministic classes.

We have already shown this for k = 1 in Theorem 9: L,,,, is not in Lin no

matter how much time is allowed. Unless the degree hierarchies are distinct, VC-

dimension arguments can’t separate Poly, from PiecePoly,. Since it has an upper

bound of O(nd logjk) where j is the number of components of each map [17], branch-

ing could conceivably be simulated by polynomials of degree jk.

Finally, we note that combining the above with results of Cucker and Grigoriev [121

and Koiran [23,24] give us bounds on Poly and NPoly tighter than Theorem 10, as

well as bounds on PieceLin(R) and NPieceLin(R). Recall [34] that a machine has

polynomial advice if it has access to an oracle whose advice is polynomially long and

depends only on the length of the input, rather than on the input itself. Classes with

polynomial advice are written P/poty, NP/poly, etc. Then:

Theorem 24. The following containments hold:

PiecePoly(Z) c NPiecePoly(Z) c NPiecePoly(R) c PSPACE/poly,

PieceLin(R) c P/poly,

NPieceLin(R) G NP/poZy,

where c indicates proper inclusion.

10. Conclusion and directions for further work

In addition to the conjectures and open problems mentioned above, there are several

directions in which one could extend this work.

(1) We have seen that PieceLin and NLin are fundamentally more powerful than Lin.
Is PieceLin contained in any continuous class, and is NLin contained in any determin-

istic class? In other words, can branching and non-determinism be compensated for in

real time by going to a more powerful class of functions such as Elem? We conjecture

that these are fundamentally different computational resources, and that NLin, PieceLin
and Elem are all incomparable.

(Two comments: NLm and PieceLin can be trivially simulated by arbitrary contin-

uous functions, but we want smooth, closed-form functions. We also note that without

the restriction of real time, NPR c EXPTIMER in the BSS model [3].)

(2) As alluded to in Lemma 11, let DIGITS be the maximum number of digits in

a recognizer’s variables as a function of the input length n. This is a computational

C. Moore/ Theoretical Computer Science 201 (1998) 99-136 133

resource, analogous to space in Turing machines, and (for variables in Z) proportional

to the logarithm of the volume in I@ the recognizer needs.

DIGITS is also related to the robustness of a dynamical recognizer with respect to

noise. If our variables are rational and confined to the unit cube, and the system is

exposed to noise of size F = 0(2-d), then words in a language in DIGITS(f(n)) will

be correctly recognized up to length n = f-‘(loge-’). Mike Casey has shown that,

in the presence of noise, finite-dimensional dynamical recognizers can only recognize

arbitrarily long words for regular languages [8].

For Lin and Poly,, DIGITS is limited to Lo(n) and LO(k”), respectively. Beneath

these bounds, or for Elem, are hierarchies based on DIGITS distinct? For instance, is

DIGITS(f(n)) properly contained in DIGITS(g(n)) if limn+w f(n)/g(n) = O?

DIGITS is at least linear for any language such as Lpai or LcopY where every word u

has a unique set of words v such that uv E L, since the recognizer has to represent

all 2” possible U’S in a unique way. But besides this trivial observation, how can we

prove lower limits on DIGITS?

(3) As a purely automata-theoretic question, it would be nice to show that obstinate

PDAs and QAs are strictly less powerful than their deterministic counterparts (OCF

is a subset of the input-driven CFLs), and that CQAs are strictly less powerful than

QAs in the obstinate, deterministic, and non-deterministic cases.

(4) As generalizations of non-determinism, we could consider alternating real time,

or probabilistic models analogous to ZPP, BPP or RP [34].

(5) In several cases (Theorem 9 vs. Theorem 18, and Theorem 17 vs. Theorem 19)

quadratic maps seem to be roughly equivalent to elementary maps when their input is

given in unary. How deep does this equivalence go?

(6) Can we exhibit a language not in Elem(Z)? Can we exhibit a language not

in NLin(Z), other than by using the complexity bounds in Theorem 12? Can we

exhibit a language not in NLin(R)? We need methods other than VC-dimension for

these.

(7) Is it possible to define natural reductions or transducers for these classes, and if

so, do they have natural complete problems? (I thank the referee for suggesting this

question.)

(8) What relation, if any, does our classes Lin, Poly and Elem have to function-

valued complexity measures such as those in [5,35]? The VC-dimension argument,

for instance, can be seen as a refinement of the latter; they count the number of

equivalence classes where two words are equivalent if they can be followed by the same

suffixes, while the VC-dimension measures how independently sets of allowed suffixes

overlap.

(9) Finally, we believe that sub-linear space classes in these models (such as

PiecePoly(Z)TIME(o(n))SPACE(6(log n)), linear time and logarithmic space) are

very much worth studying. It ought to be possible to prove space hierarchy theo-

rems within each time class analogous to those for Turing machines (constant space

is universal if unlimited time is allowed [29]). Grade1 and Meer have given a logical

description of the polynomial time, constant space class [181.

134 C. Moore1 Theoretical Computer Science 201 (1998) 99-136

Fig. 3. A summary of the inclusions proved in this paper. Inclusions known to be proper are in bold

In Fig. 3 we summarize the inclusions between language classes, both dynamical

and discrete, that we have been able to prove or which we already knew.

Acknowledgements

I thank Elizabeth Hunke and Mats Nordahl for careful readings of the manuscript;

Jean-Camille Berget, Mike Casey, Kiran Chilakamarri, Patrick Dymond, Jeff Erickson,

Michael Fischer, Christian Herzog, Volker Heun, Martin Huehne, Tao Jiang, Georg

Karner, Ilias Kastanas, Marco Ladermann, Torben Mogensen, Ian Parberry, Jordan

Pollack, Vicki Powers, Danny Raz, Kenneth Regan, Hava Siegelmann, Janos Simon,

D. Sivakumar and Burkhard Stubert for helpful communications; and Spootie the Cat

for companionship.

References

[l] R. Bartlett, M. Garzon, Computational complexity of piecewise linear maps of the interval, Theoret.
Comput. Sci., submitted.

[2] J. Berstel, Transductions and Context-Free Languages, Teubner Studienbiicher, Stuttgart, 1978.

[3] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers:

NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Sot. 21 (1989) l-46.

[4] A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth, Learning and the Vapnik-Chervonenkis
dimension, J. ACM 36 (4) (1989) 929-965.

C. Moore1 Theoretical Computer Science 201 (1998) 99-136 135

[5] L. Boasson, B. Courcelle, M. Nivat, The rational index: a complexity measure for languages, SIAM

J. Comput. 10 (2) (1981) 284-296.

[6] R. Book, S. Greibach, Quasi-realtime languages, Math. Systems Theory 4 (1970) 97-l 11.

[7] F.J. Brandenburg, Intersections of some families of languages, in: Proc. 13th ICALP, Lecture Notes in

Computer Science, vol. 226, Springer, Berlin, 1986, pp. 61-68.

[8] M. Casey, The dynamics of discrete-time computation, with application to recurrent neural networks

and finite-state machine extraction, Neural Comput. 8 (6) (1996) to appear.

[9] A. Cherubini, C. Citrini, SC. Reghizzi, D. Mandrioli, QRT FIFO automata, breadth-first grammars and

their relations, Theoret. Comput. Sci. 85 (1991) 171-203.

[IO] P. Koiran, M. Cosnard, M. Garzon, Computability properties of low-dimensional dynamical systems,

Theoret. Comput. Sci. 132 (1994) 113-128.

[1 l] F. Cucker, M. Matamala, On digital nondeterminism, Math. Systems Theory, to appear.

[12] F. Cucker, D. Grigoriev, On the power of real Turing machines over binary inputs, NeuroCOLT

Technical Report NC-TR-94-007, 1994.

[13] S. Das, C.L. Giles, G.Z. Sun, Using prior knowledge in an NNPDA to learn languages, Adv. Neural

Inform. Process. Systems 5 (1993) 65-72.

[14] J. Elman, Language as a dynamical system, in: R.F. Port, T. van Gelder (Eds.), Mind as Motion:

Explorations in the Dynamics of Cognition, MIT Press, Cambridge, MA, 1995.

[15] M.R. Garey, D.S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness,

Freeman, New York, 1979.

[16] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, Y.C. Lee, Learning and extracting finite-state

automata with second-order recurrent networks, Neural Comput. 2 (1992) 331-349.

[17] P.W. Goldberg, M.R. Jerrum, Bounding the Vapnik-Chevonenkis dimension of concept classes

parametrized by real numbers, Machine Learning 18 (1995) 131-148.

[181 E. Griidel, K. Meer, Descriptive complexity theory over the real numbers, NeuroCOLT Technical Report

NC-TR-95-040 (1995); in: Proc. 27th Symp. on the Theory of Computing, 1995, pp. 315-324.

[19] S.A. Greibach, A note on undecidable properties of formal languages, Math. Systems Theory 2 (1)

(1968) l-6.

[20] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector

Fields, Springer, Berlin, 1983.

[21] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-

Wesley, Reading, MA, 1979.

[22] D.E. Knuth, Seminumerical Algorithms, Addison-Wesley, Reading, MA, 1981.

[23] P. Koiran, Computing over the reals with addition and order, Theoret. Comput. Sci. 133 (1994) 35-47.

[24] P. Koiran, A weak version of the Blum, Shub and Smale model, DIMACS Technical Report 94-10,

1994.

[25] P. Koiran, C. Moore, Closed-form analytic maps in one and two dimensions can simulate Turing

machines, Theoret. Comput. Sci., to appear.

[26] B.L. Leong, J.I. Seiferas, New real-time simulations of multihead tape units, J. ACM 28 (1) (1981)

1666180.

[27] L. Liu, P. Weiner, An infinite hierarchy of intersections of context-free languages, Math. Systems Theory

7 (1973) 185-192.

[28] K. Meer, Real number models under various sets of operations, J. Complexity 9 (1993) 366-372.

[29] C. Michaux, Differential fields, machines over the real numbers and automata, Ph.D. thesis, Universite

de Mons Hainaut, Fact&e des Sciences, 1991.

[30] C. Moore, Unpredictability and undecidability in dynamical systems, Phys. Rev. Lett. 64 (1990)

2354-2357; Nonlinearity 4 (1991) 199-230.

[31] C. Moore, Generalized one-sided shifts and maps of the interval, Nonlinearity 4 (1991) 727-745.

[32] C. Moore, Smooth one-dimensional maps of the interval and the real line capable of universal

computation, Santa Fe Institute Working Paper 93-01-001.
[33] U. Nilsson, F. Hald, Her er en iille gris, Gyldendal, 1994.

[34] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.

[35] J. Paradaens, R. Vincke, A class of measures on formal languages, Acta Inform. 9 (1977) 73-86.

[36] J. Pollack, The induction of dynamical recognizers, Machine Leaming 7 (1991) 227-252.

[37] A.L. Rosenberg, Real-time definable languages, J. ACM 14 (1967) 645-662.

136 C. Moore! Theoretical Computer Science 201 (1998) 99-136

[38] H. Siegelmann, E.D. Sontag, Analog computation via neural networks, Theoret. Comput. Sci. 131 (1994)

331-360.

[39] M. Steijvers, P.D.G. Griinwald, A recurrent network that performs a context-sensitive prediction task,

NeuroCOLT Technical Report NC-TR-96-035 (1996); in: Proc. 18th Annual Conf. Cognitive Science

Society, Erlbaum, London, in press.

[40] H.E. Warren, Lower bounds for approximation by nonlinear manifolds, Trans. Amer. Math. Sot. 133

(1968) 167-178.

