Complexity, Phase Transitions, and Inference

Cristopher Moore, Santa Fe Institute

with Aurelien Decelle, Lenka Zdeborová, Florent Krzakala, Xiaoran Yan, Yaojia Zhu,
Cosma Shalizi, Lise Getoor, Aaron Clauset, Mark Newman, Elchanan Mossel, Joe Neeman, Allan Sly, Pan Zhang, Jess Banks, Praneeth Netrapalli, Thibault Lesieur, Caterina de Bacco, Roman Vershynin, and Jiaming Xu

Statistical inference \Leftrightarrow statistical physics

Statistical inference \Leftrightarrow statistical physics

How can we find patterns in noisy data?

Statistical inference \Leftrightarrow statistical physics

How can we find patterns in noisy data? Phase transitions and fundamental limits

Statistical inference \Leftrightarrow statistical physics

How can we find patterns in noisy data? Phase transitions and fundamental limits Optimal algorithms

Statistical inference \Leftrightarrow statistical physics

How can we find patterns in noisy data? Phase transitions and fundamental limits

Optimal algorithms
Information vs. efficient computation

Statistical inference \Leftrightarrow statistical physics

How can we find patterns in noisy data? Phase transitions and fundamental limits

Optimal algorithms
Information vs. efficient computation Interdisciplinary exchange

Why least squares?

Why least squares?

the most common way to fit a line to noisy data

Why least squares?

the most common way to fit a line to noisy data data points $Y=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$

Why least squares?

the most common way to fit a line to noisy data data points $Y=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ model: $y_{i}=a x_{i}+b$

Why least squares?

the most common way to fit a line to noisy data data points $Y=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
model: $y_{i}=a x_{i}+b$
find a, b that minimize

$$
\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}
$$

Why least squares?

the most common way to fit a line to noisy data data points $Y=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
model: $y_{i}=a x_{i}+b$
find a, b that minimize

$$
\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}
$$

but why?

A model of noise

A model of noise

a model with noise: $y_{i}=a x_{i}+b+w$

A model of noise

a model with noise: $y_{i}=a x_{i}+b+w$
where w is Gaussian, $P(w) \propto \exp \left(-\frac{1}{2 \sigma} w^{2}\right)$

A model of noise

a model with noise: $y_{i}=a x_{i}+b+w$
where w is Gaussian, $P(w) \propto \exp \left(-\frac{1}{2 \sigma} w^{2}\right)$
total probability of the data is

$$
\begin{aligned}
& P(Y \mid a, b)=\prod_{i} P\left(y_{i} \mid a, b\right) \\
& \quad \propto \exp \left(-\frac{1}{2 \sigma} \sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}\right)
\end{aligned}
$$

A model of noise

a model with noise: $y_{i}=a x_{i}+b+w$
where w is Gaussian, $P(w) \propto \exp \left(-\frac{1}{2 \sigma} w^{2}\right)$
total probability of the data is

$$
\begin{aligned}
& P(Y \mid a, b)=\prod_{i} P\left(y_{i} \mid a, b\right) \\
& \quad \propto \exp \left(-\frac{1}{2 \sigma} \sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}\right)
\end{aligned}
$$

Bayes: posterior (with flat prior) $P(a, b \mid Y) \propto P(Y \mid a, b)$

A model of noise

a model with noise: $y_{i}=a x_{i}+b+w$
where w is Gaussian, $P(w) \propto \exp \left(-\frac{1}{2 \sigma} w^{2}\right)$
total probability of the data is

$$
\begin{aligned}
& P(Y \mid a, b)=\prod_{i} P\left(y_{i} \mid a, b\right) \\
& \quad \propto \exp \left(-\frac{1}{2 \sigma} \sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}\right)
\end{aligned}
$$

Bayes: posterior (with flat prior) $P(a, b \mid Y) \propto P(Y \mid a, b)$
least squares = maximum likelihood estimate

From probability to energy

From probability to energy

define the energy of (a, b) as $E=-\log P$

From probability to energy

define the energy of (a, b) as $E=-\log P$

$$
E=\frac{1}{2 \sigma} \sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}
$$

From probability to energy

define the energy of (a, b) as $E=-\log P$

$$
E=\frac{1}{2 \sigma} \sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}
$$

springs between the model and data

$$
E=\frac{1}{2} k x^{2}
$$

From probability to energy

define the energy of (a, b) as $E=-\log P$

$$
E=\frac{1}{2 \sigma} \sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}
$$

springs between the model and data

$$
E=\frac{1}{2} k x^{2}
$$

maximizing $P=$ minimizing E

From probability to energy

define the energy of (a, b) as $E=-\log P$

$$
E=\frac{1}{2 \sigma} \sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}
$$

springs between the model and data

$$
E=\frac{1}{2} k x^{2}
$$

maximizing $P=$ minimizing E
maximum likelihood estimate = ground state

From probability to energy

define the energy of (a, b) as $E=-\log P$

$$
E=\frac{1}{2 \sigma} \sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}
$$

springs between the model and data

$$
E=\frac{1}{2} k x^{2}
$$

maximizing $P=$ minimizing E
maximum likelihood estimate = ground state
but what if the energy were different?

Changing the model

Changing the model

outliers skew our estimates

Changing the model

outliers skew our estimates
use a noise model with heavier tails

Changing the model

outliers skew our estimates
use a noise model with heavier tails
"gooey springs" that exert less force at large distances

Uncertainty, equilibrium, and the energy landscape

Uncertainty, equilibrium, and the energy landscape

[Bayes] don't just give an estimate! what's the posterior distribution?

Uncertainty, equilibrium, and the energy landscape

[Bayes] don't just give an estimate! what's the posterior distribution?
[Boltzmann] at thermal equilibrium,

$$
P(s) \propto \mathrm{e}^{-E(s) / T}
$$

Uncertainty, equilibrium, and the energy landscape

[Bayes] don't just give an estimate! what's the posterior distribution?
[Boltzmann] at thermal equilibrium,

$$
P(s) \propto \mathrm{e}^{-E(s) / T}
$$

low T : concentrated on ground states

Uncertainty, equilibrium, and the energy landscape

[Bayes] don't just give an estimate! what's the posterior distribution?
[Boltzmann] at thermal equilibrium,

$$
P(s) \propto \mathrm{e}^{-E(s) / T}
$$

low T : concentrated on ground states
high T : uniform

Uncertainty, equilibrium, and the energy landscape

[Bayes] don't just give an estimate! what's the posterior distribution?
[Boltzmann] at thermal equilibrium,

$$
P(s) \propto \mathrm{e}^{-E(s) / T}
$$

low T : concentrated on ground states
high T : uniform
thermal noise: $T=\sigma$ (or looser springs)

Uncertainty, equilibrium, and the energy landscape

[Bayes] don't just give an estimate! what's the posterior distribution?
[Boltzmann] at thermal equilibrium,

$$
P(s) \propto \mathrm{e}^{-E(s) / T}
$$

low T : concentrated on ground states high T : uniform
thermal noise: $T=\sigma$ (or looser springs)
$E(a, b)$ defined by model and data

Uncertainty, equilibrium, and the energy landscape

[Bayes] don't just give an estimate! what's the posterior distribution?
[Boltzmann] at thermal equilibrium,

$$
P(s) \propto \mathrm{e}^{-E(s) / T}
$$

low T : concentrated on ground states high T : uniform
thermal noise: $T=\sigma$ (or looser springs)
$E(a, b)$ defined by model and data
posterior distribution $=$ equilibrium

Uncertainty, equilibrium, and the energy landscape

[Bayes] don't just give an estimate! what's the posterior distribution?
[Boltzmann] at thermal equilibrium,

$$
P(s) \propto \mathrm{e}^{-E(s) / T}
$$

low T : concentrated on ground states high T : uniform
thermal noise: $T=\sigma$ (or looser springs)
$E(a, b)$ defined by model and data
posterior distribution $=$ equilibrium

in this case, landscape is simple and convex

The Ising model of magnetism

The Ising model of magnetism

the atoms of a block of iron interact with their neighbors $\uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$

The Ising model of magnetism

the atoms of a block of iron interact with their neighbors

$\uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow$

 when these interactions are strong enough, or the temperature is low enough, they line up and form a magnetic field

The Ising model of magnetism

the atoms of a block of iron interact with their neighbors $\uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$ when these interactions are strong enough, or the temperature is low enough, they line up and form a magnetic field
each site has a spin $s_{i}= \pm 1$ and (ferromagnet) $E=-J \sum_{(i, j)} s_{i} s_{j}$

The Ising model of magnetism

the atoms of a block of iron interact with their neighbors $\uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$ when these interactions are strong enough, or the temperature is low enough, they line up and form a magnetic field
each site has a spin $s_{i}= \pm 1$ and (ferromagnet) $E=-J \sum_{(i, j)} s_{i} s_{j}$
ground state: all up or all down

The Ising model of magnetism

the atoms of a block of iron interact with their neighbors

$\uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow$

 when these interactions are strong enough, or the temperature is low enough, they line up and form a magnetic fieldeach site has a spin $s_{i}= \pm 1$ and (ferromagnet) $E=-J \sum_{(i, j)} s_{i} s_{j}$ ground state: all up or all down
how does the magnetization $\left|\frac{1}{n} \sum_{i} s_{i}\right|$ vary with temperature?

The Ising model of magnetism

The Ising model of magnetism

at a critical temperature, the iron suddenly loses its magnetic field

The Ising model of magnetism

at a critical temperature, the iron suddenly loses its magnetic field

The Ising model of magnetism

at a critical temperature, the iron suddenly loses its magnetic field atoms become uncorrelated: $\left\langle s_{i} s_{j}\right\rangle \sim \mathrm{e}^{-r / \ell}$, no long-range information

The Ising model of magnetism

at a critical temperature, the iron suddenly loses its magnetic field atoms become uncorrelated: $\left\langle s_{i} s_{j}\right\rangle \sim \mathrm{e}^{-r / \ell}$, no long-range information

The Ising model of magnetism

at a critical temperature, the iron suddenly loses its magnetic field atoms become uncorrelated: $\left\langle s_{i} s_{j}\right\rangle \sim \mathrm{e}^{-r / \ell}$, no long-range information

Bumpy landscapes

Bumpy landscapes

least squares has a landscape with one optimum, and the Ising model has two

Bumpy landscapes

least squares has a landscape with one optimum, and the Ising model has two

Bumpy landscapes

least squares has a landscape with one optimum, and the Ising model has two but a "spin glass" with energy $E=-\sum_{(i, j)} J_{i j} s_{i} s_{j}$ can have exponentially many

Bumpy landscapes

least squares has a landscape with one optimum, and the Ising model has two but a "spin glass" with energy $E=-\sum_{(i, j)} J_{i j} s_{i} s_{j}$ can have exponentially many suppose the interactions $J_{i j}$ depend on the data and the model

Bumpy landscapes

least squares has a landscape with one optimum, and the Ising model has two but a "spin glass" with energy $E=-\sum_{(i, j)} J_{i j} s_{i} s_{j}$ can have exponentially many suppose the interactions $J_{i j}$ depend on the data and the model which local optimum is the true one?

Bumpy landscapes

least squares has a landscape with one optimum, and the Ising model has two but a "spin glass" with energy $E=-\sum_{(i, j)} J_{i j} s_{i} s_{j}$ can have exponentially many suppose the interactions $J_{i j}$ depend on the data and the model which local optimum is the true one?
can we find it efficiently? can we find it at all, given the posterior distribution?

Bumpy landscapes

least squares has a landscape with one optimum, and the Ising model has two but a "spin glass" with energy $E=-\sum_{(i, j)} J_{i j} s_{i} s_{j}$ can have exponentially many suppose the interactions $J_{i j}$ depend on the data and the model which local optimum is the true one?
can we find it efficiently? can we find it at all, given the posterior distribution?
let's look at a classic problem in social networks...

Who eats whom

I record that I was born on a Friday

The stochastic block model

The stochastic block model

nodes have discrete labels: k "groups" or types of nodes

The stochastic block model

nodes have discrete labels: " "groups" or types of nodes
$k \times k$ matrix p of connection probabilities

The stochastic block model

nodes have discrete labels: k "groups" or types of nodes
$k \times k$ matrix p of connection probabilities
if $t_{i}=r$ and $t_{j}=s$, there is a link $i \rightarrow j$ with probability prs

The stochastic block model

nodes have discrete labels: k "groups" or types of nodes
$k \times k$ matrix p of connection probabilities
if $t_{i}=r$ and $t_{j}=s$, there is a link $i \rightarrow j$ with probability prs
sparse: $p=O(1 / n)$

The stochastic block model

nodes have discrete labels: k "groups" or types of nodes
$k \times k$ matrix p of connection probabilities
if $t_{i}=r$ and $t_{j}=s$, there is a link $i \rightarrow j$ with probability prs
sparse: $p=O(1 / n)$
popular special case:

$$
p=\frac{1}{n}\left(\begin{array}{ccc}
c_{\mathrm{in}} & \cdots & c_{\mathrm{out}} \\
\vdots & \ddots & \\
c_{\mathrm{out}} & & c_{\mathrm{in}}
\end{array}\right)
$$

The stochastic block model

nodes have discrete labels: k "groups" or types of nodes
$k \times k$ matrix p of connection probabilities
if $t_{i}=r$ and $t_{j}=s$, there is a link $i \rightarrow j$ with probability prs
sparse: $p=O(1 / n)$
popular special case:

$$
p=\frac{1}{n}\left(\begin{array}{ccc}
c_{\mathrm{in}} & \cdots & c_{\mathrm{out}} \\
\vdots & \ddots & \\
c_{\mathrm{out}} & & c_{\mathrm{in}}
\end{array}\right)
$$

ferromagnetic (assortative, homophilic) if $c_{\text {in }}>c_{\text {out }}$

Likelihood and energy

Likelihood and energy

the probability of G given the types t is a product over edges and non-edges:

$$
P(G \mid t)=\prod_{(i, j) \in E} p_{t_{i}, t_{j}} \prod_{(i, j) \notin E}\left(1-p_{t_{i}, t_{j}}\right)
$$

Likelihood and energy

the probability of G given the types t is a product over edges and non-edges:

$$
P(G \mid t)=\prod_{(i, j) \in E} p_{t_{i}, t_{j}} \prod_{(i, j) \notin E}\left(1-p_{t_{i}, t_{j}}\right)
$$

the corresponding energy is

$$
E(t)=-\log P(G \mid t)=-\sum_{(i, j) \in E} \log p_{t_{i}, t_{j}}-\sum_{(i, j) \notin E} \log \left(1-p_{t_{i}, t_{j}}\right)
$$

Likelihood and energy

the probability of G given the types t is a product over edges and non-edges:

$$
P(G \mid t)=\prod_{(i, j) \in E} p_{t_{i}, t_{j}} \prod_{(i, j) \notin E}\left(1-p_{t_{i}, t_{j}}\right)
$$

the corresponding energy is

$$
E(t)=-\log P(G \mid t)=-\sum_{(i, j) \in E} \log p_{t_{i}, t_{j}}-\sum_{(i, j) \notin E} \log \left(1-p_{t_{i}, t_{j}}\right)
$$

like Ising model, but with weak antiferromagnetic interactions on non-edges

Likelihood and energy

the probability of G given the types t is a product over edges and non-edges:

$$
P(G \mid t)=\prod_{(i, j) \in E} p_{t_{i}, t_{j}} \prod_{(i, j \notin \notin E}\left(1-p_{t_{i}, t_{j}}\right)
$$

the corresponding energy is

$$
E(t)=-\log P(G \mid t)=-\sum_{(i, j) \in E} \log p_{t_{i}, t_{j}}-\sum_{(i, j) \notin E} \log \left(1-p_{t_{i}, t_{j}}\right)
$$

like Ising model, but with weak antiferromagnetic interactions on non-edges what can we learn from the "physics" of the block model?

Ground states vs. the landscape

Ground states vs. the landscape

even random graphs have good-looking communities: only 11\% of edges cross!

Ground states vs. the landscape

even random graphs have good-looking communities: only 11\% of edges cross!

Ground states vs. the landscape

even random graphs have good-looking communities: only 11\% of edges cross! many local optima, with nothing in common

Ground states vs. the landscape

even random graphs have good-looking communities: only 11\% of edges cross! many local optima, with nothing in common
we need to understand the entire landscape, not just the optimum

Ground states vs. the landscape

even random graphs have good-looking communities: only 11\% of edges cross! many local optima, with nothing in common
we need to understand the entire landscape, not just the optimum
otherwise, we could be overfitting...

Overfitting

Overfitting

we, and our algorithms, are prone to false positives

Overfitting

we, and our algorithms, are prone to false positives
fitting the data with fancy models is tempting...

Overfitting

we, and our algorithms, are prone to false positives
fitting the data with fancy models is tempting...

Overfitting

we, and our algorithms, are prone to false positives
fitting the data with fancy models is tempting...

Overfitting

we, and our algorithms, are prone to false positives
fitting the data with fancy models is tempting...

Overfitting

we, and our algorithms, are prone to false positives
fitting the data with fancy models is tempting...

Overfitting

we, and our algorithms, are prone to false positives
fitting the data with fancy models is tempting...

but often we're really fitting the noise, not the underlying process

Overfitting

we, and our algorithms, are prone to false positives
fitting the data with fancy models is tempting...

but often we're really fitting the noise, not the underlying process
we want to understand the coin, not the coin flips

Information in the block model: the effect of a link

Information in the block model: the effect of a link

k equal groups, $p=\frac{1}{n}\left(\begin{array}{ccc}c_{\text {in }} & \cdots & c_{\text {out }} \\ \vdots & \ddots & \\ c_{\text {out }} & & c_{\text {in }}\end{array}\right):$ average degree $c=\frac{c_{\text {in }}+(k-1) c_{\text {out }}}{k}$

Information in the block model: the effect of a link

k equal groups, $p=\frac{1}{n}\left(\begin{array}{ccc}c_{\text {in }} & \cdots & c_{\text {out }} \\ \vdots & \ddots & \\ c_{\text {out }} & & c_{\text {in }}\end{array}\right)$: average degree $c=\frac{c_{\text {in }}+(k-1) c_{\text {out }}}{k}$
if there is a link $i \rightarrow j$, the probability distribution of t_{j} is related to that of t_{i} by a transition matrix

Information in the block model: the effect of a link

K equal groups, $p=\frac{1}{n}\left(\begin{array}{ccc}c_{\text {in }} & \cdots & c_{\text {out }} \\ \vdots & \ddots & \\ c_{\text {out }} & & c_{\text {in }}\end{array}\right)$: average degree $c=\frac{c_{\text {in }}+(k-1) c_{\text {out }}}{k}$
if there is a link $i \rightarrow j$, the probability distribution of t_{j} is related to that of t_{i} by a transition matrix

$$
\frac{1}{k c}\left(\begin{array}{ccc}
c_{\text {in }} & \cdots & c_{\text {out }} \\
\vdots & \ddots & \\
c_{\text {out }} & & c_{\text {in }}
\end{array}\right)=\lambda \mathbb{1}+(1-\lambda)\left(\begin{array}{ccc}
1 / k & \cdots & 1 / k \\
\vdots & \ddots & \\
1 / k & & 1 / k
\end{array}\right)
$$

where $\lambda=\frac{c_{\text {in }}-c_{\text {out }}}{k c}$

Information in the block model: the effect of a link

K equal groups, $p=\frac{1}{n}\left(\begin{array}{ccc}c_{\text {in }} & \cdots & c_{\text {out }} \\ \vdots & \ddots & \\ c_{\text {out }} & & c_{\text {in }}\end{array}\right)$: average degree $c=\frac{c_{\text {in }}+(k-1) c_{\text {out }}}{k}$
if there is a link $i \rightarrow j$, the probability distribution of t_{j} is related to that of t_{i} by a transition matrix

$$
\frac{1}{k c}\left(\begin{array}{ccc}
c_{\text {in }} & \cdots & c_{\text {out }} \\
\vdots & \ddots & \\
c_{\text {out }} & & c_{\text {in }}
\end{array}\right)=\lambda \mathbb{1}+(1-\lambda)\left(\begin{array}{ccc}
1 / k & \cdots & 1 / k \\
\vdots & \ddots & \\
1 / k & & 1 / k
\end{array}\right)
$$

where $\lambda=\frac{c_{\text {in }}-c_{\text {out }}}{k c}$
with probability λ, copy from i to j; with probability $1-\lambda$, set j 's type randomly

Information in the block model: the effect of a link

K equal groups, $p=\frac{1}{n}\left(\begin{array}{ccc}c_{\text {in }} & \cdots & c_{\text {out }} \\ \vdots & \ddots & \\ c_{\text {out }} & & c_{\text {in }}\end{array}\right)$: average degree $c=\frac{c_{\text {in }}+(k-1) c_{\text {out }}}{k}$
if there is a link $i \rightarrow j$, the probability distribution of t_{j} is related to that of t_{i} by a transition matrix

$$
\frac{1}{k c}\left(\begin{array}{ccc}
c_{\text {in }} & \cdots & c_{\text {out }} \\
\vdots & \ddots & \\
c_{\text {out }} & & c_{\text {in }}
\end{array}\right)=\lambda \mathbb{1}+(1-\lambda)\left(\begin{array}{ccc}
1 / k & \cdots & 1 / k \\
\vdots & \ddots & \\
1 / k & & 1 / k
\end{array}\right)
$$

where $\lambda=\frac{c_{\mathrm{in}}-c_{\mathrm{out}}}{k c}$
with probability λ, copy from i to j; with probability $1-\lambda$, set j 's type randomly
if λ is fixed, community detection gets easier as c increases...

Detectability thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]:

Detectability thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]:

Detectability thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]:

Detectability thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]:

Detectability thresholds

For $k \geq 4$ groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

Detectability thresholds

For k ≥ 4 groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

Detectability thresholds

For $\mathrm{k} \geq 4$ groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

Detectability thresholds

For $\mathrm{k} \geq 4$ groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

Detectability thresholds

For $\mathrm{k} \geq 4$ groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

Detectability thresholds

For $\mathrm{k} \geq 4$ groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

Clustering high-dimensional data

Clustering high-dimensional data

m points in n-dimensional space, where $m=O(n)$

Clustering high-dimensional data

m points in n-dimensional space, where $m=O(n)$
k clusters with Gaussian noise

Clustering high-dimensional data

m points in n-dimensional space, where $m=O(n)$
k clusters with Gaussian noise
when can we...

Clustering high-dimensional data

m points in n-dimensional space, where $m=O(n)$
k clusters with Gaussian noise
when can we...
find the cluster centers?

Clustering high-dimensional data

m points in n-dimensional space, where $m=\mathrm{O}(n)$
k clusters with Gaussian noise
when can we...
find the cluster centers?
label the points better than chance?

Clustering high-dimensional data

m points in n-dimensional space, where $m=\mathrm{O}(n)$
k clusters with Gaussian noise
when can we...
find the cluster centers?
label the points better than chance?
tell that there are clusters, i.e., distinguish
from a null model with one big cluster?

Clustering high-dimensional data

m points in n-dimensional space, where $m=O(n)$
k clusters with Gaussian noise
when can we...
find the cluster centers?
label the points better than chance?
tell that there are clusters, i.e., distinguish
from a null model with one big cluster?
phase transitions as a function of noise vs.
cluster distances, and m / n

Clustering high-dimensional data

m points in n-dimensional space, where $m=\mathrm{O}(n)$
k clusters with Gaussian noise
when can we...
find the cluster centers?
label the points better than chance?
tell that there are clusters, i.e., distinguish
from a null model with one big cluster?
phase transitions as a function of noise vs. cluster distances, and m / n
when k is large enough, we can do better
(information-theoretically) than PCA

Techniques

Techniques

If we iteratively estimate the probabilities with which nodes belong to groups, can we avoid a fixed point where each node is equally likely to be in each group? What can we learn about the ancestor of a family tree from its descendants?

Techniques

If we iteratively estimate the probabilities with which nodes belong to groups, can we avoid a fixed point where each node is equally likely to be in each group? What can we learn about the ancestor of a family tree from its descendants?

How does community structure affect random walks (or epidemics) on networks? When does it show up in the spectrum of the adjacency matrix? When is it dominated by the randomness in the graph?

Techniques

If we iteratively estimate the probabilities with which nodes belong to groups, can we avoid a fixed point where each node is equally likely to be in each group? What can we learn about the ancestor of a family tree from its descendants?

How does community structure affect random walks (or epidemics) on networks? When does it show up in the spectrum of the adjacency matrix? When is it dominated by the randomness in the graph?

How can we tell the difference between the block model and a null model with no community structure? Can we bound the likelihood ratio between them? How can we tell when an apparent community is real, instead of overfitting?

Techniques

If we iteratively estimate the probabilities with which nodes belong to groups, can we avoid a fixed point where each node is equally likely to be in each group? What can we learn about the ancestor of a family tree from its descendants?

How does community structure affect random walks (or epidemics) on networks? When does it show up in the spectrum of the adjacency matrix? When is it dominated by the randomness in the graph?

How can we tell the difference between the block model and a null model with no community structure? Can we bound the likelihood ratio between them? How can we tell when an apparent community is real, instead of overfitting?

Next two lectures!

A little light reading

To put it bluntly: this book rocks! It somehow manages to combine the fun of a popular book with the intellectual heft of a textbook.

Scott Aaronson, MIT

This is, simply put, the best-written book on the theory of computation I have ever read; one of the best-written mathematical books I have ever read, period.

Cosma Shalizi, Carnegie Mellon

