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Why least squares?

the most common way to fit a line to noisy data

data points Y = {(x1,y1),(x2,¥2), ..., (X0, Y1)}

model: yi=ax;+b

find a,b that minimize
D (vi—(axi+b)y
i

but why?
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a model with noise: yj=ax; +b+ w

1
where w is Gaussian, P(w) x exp (—2— w*
o

total probability of the data is

P(Y |a,b)=] | Pvila,b)

X exp (— % Z(.Vi —(ax;+ b))z)

Bayes: posterior (with flat prior) P(a,b|Y)x P(Y|a,b)

least squares = maximum likelihood estimate
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From probability to energy

define the energy of (a,b) as E =—logP

springs between the model and data

1.,
EFE=—-kx
2

maximizing P = minimizing E
maximum likelihood estimate = ground state

but what if the energy were different?
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Changing the model

outliers skew our estimates
use a noise model with heavier tails

“gooey springs” that exert less force
at large distances

P(w)

E(w)
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Uncertainty, equilibrium, and the energy landscape

[Bayes] don’t just give an estimate!
what’s the posterior distribution?

[Boltzmann] at thermal equilibrium,

P(s)ox e BT

low T: concentrated on ground states
high T: uniform

thermal noise: T=0 (or looser springs)
E(a,b) defined by model and data

posterior distribution = equilibrium

In this case, landscape is simple and convex
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The Ising model of magnetism

the atoms of a block of iron interact with their neighbors T T T l l T T l T T T T

when these interactions are strong enough, or the temperature is low enough,
they line up and form a magnetic field

each site has a spin s; ==%1 and (ferromagnet) E = —]Z SiS;
(2,])
ground state: all up or all down

1
how does the magnetization ‘— Zsi vary with temperature?
n 4«

l
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at a critical temperature, the iron suddenly loses its magnetic field

r/t

atoms become uncorrelated: (s;s;) ~e~''*, no long-range information
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The Ising model of magnetism

at a critical temperature, the iron suddenly loses its magnetic field

atoms become uncorrelated: (s;s;) ~e "/

A

, N0 long-range information

1.0

0.6

accuracy

0.2

-y 90—
0 0.5 1.0 1.5 2.0 Tc

noise / sparsity
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BuMmpy landscapes

least squares has a landscape with one optimum, and the Ising model has two
but a “spin glass” with energy E = —Z]ijs,-sj can have exponentially many
suppose the interactions J;; depend(gj% the data and the model

which local optimum is the true one?

can we find it efficiently? can we find it at all, given the posterior distribution?

let’s look at a classic problem in social networks...
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The stochastic block model

nodes have discrete labels: k “groups” or types of nodes

kxk matrix p of connection probabilities

iIf ti=r and tj=s, there is a link /—/ with probability prs
sparse: p=0(1/n)

popular special case:

( Cin Tt Cout\

kcout Cin }

S~ =

ferromagnetic (assortative, homophilic) if Cin > Cout
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Likelihood and energy

the probability of G given the types t is a product over edges and non-edges:

P(G|t)= I_I Pt l_l (I_Pti,tj)

(i,/)€E (i,])EE

the corresponding energy is

E(t)=—-1ogP(G|t)=— Y logps..,— »_ logl—py.)
(i,j)EE (i,j)¢E

like Ising model, but with weak antiferromagnetic interactions on non-edges

what can we learn from the “physics” of the block model?
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Ground states vs. the landscape

even random graphs have good-looking communities: only 11% of edges cross!
many local optima, with nothing in common
we need to understand the entire landscape, not just the optimum

otherwise, we could be overfitting...
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Overfitting

we, and our algorithms, are prone to false positives

fitting the data with fancy models is tempting...

but often we’re really fitting the noise, not the underlying process

we want to understand the coin, not the coin flips
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k equal groups, p = -

( Cin

\Cout

Cout\

Cin }

. average degree ¢ =
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k
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by a transition matrix
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Information in the block model: the effect of a link

1 ( Cin Tt Cout\
k equal groups, p=—1 - . average degree ¢ =

n
\Cout Cin j

Cin +(k — 1)Cout
k

If there is a link /—/, the probability distribution of t; is related to that of
by a transition matrix

. {Cin Cout\ (l/k l/k\
kc ' '
\Cout Cin } \I/k l/kj
Cin — Cout
h A=
wnere e

with probability A, copy from i to j; with probability 1 — A, set j’s type randomly

if Ais fixed, community detection gets easier as ¢ increases...
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Detectabllity thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]|:

A

,

information-theoretically

) Impossible; can’t do better

g than a coin flip, or even easy.

& distinguish from a purely efficient algorithms

© random graph G(n,p=c/n) (belief propagation,

spectral)

0 » C

(chance) 1
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Detectabllity thresholds

For k=4 groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

1 A
—
iInformation-theoretically - |
impossible T
> clusters, A
© | but can’t tell ’ | Information- easy:
§ which is the i theoretically efficient algorithms
© | trueone: / I possible; but (belief propagation,
overfitting ; ' computationally spectral)
! : hard?
| |
.' |
0 . l » C
(chance) O (log k) 1
kA2 A?
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m points in n-dimensional space, where m=0(n)
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Clustering high-dimensional data

m points in n-dimensional space, where m=0(n)

k clusters with Gaussian noise
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Clustering high-dimensional data

m points in n-dimensional space, where m=0(n)
k clusters with Gaussian noise
when can we...

find the cluster centers?

label the points better than chance?

tell that there are clusters, i.e., distinguish
from a null model with one big cluster?

phase transitions as a function of noise vs.
cluster distances, and m/n

when k is large enough, we can do better
(information-theoretically) than PCA
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If we iteratively estimate the probabilities with which nodes belong to groups, can
we avoid a fixed point where each node is equally likely to be in each group?
What can we learn about the ancestor of a family tree from its descendants?

How does community structure affect random walks (or epidemics) on networks?
When does it show up in the spectrum of the adjacency matrix? When is it
dominated by the randomness in the graph?

How can we tell the difference between the block model and a null model with no
community structure? Can we bound the likelihood ratio between them? How
can we tell when an apparent community is real, instead of overfitting?

Next two lectures!



A little light reading

OXFORD

THE NATURE of
COMPUTATION

Cristopher Moore & Stephan Mertens

www.nature-of-computation.org

To put it bluntly: this book rocks! It somehow

manages to combine the fun of a popular

book with the intellectual heft of a textbook.
Scott Aaronson, MIT

This is, simply put, the best-written book on
the theory of computation | have ever read,;
one of the best-written mathematical books |
have ever read, period.

Cosma Shalizi, Carnegie Mellon


http://www.nature-of-computation.org

