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data points

model:

find a,b that minimize
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a model with noise: 

where w is Gaussian, 

total probability of the data is

Bayes: posterior (with flat prior) 

least squares = maximum likelihood estimate
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define the energy of (a,b) as

springs between the model and data

maximizing P = minimizing E

maximum likelihood estimate = ground state

but what if the energy were different?
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outliers skew our estimates

use a noise model with heavier tails

“gooey springs” that exert less force 
at large distances

Changing the model

P(w ) E (w )
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[Bayes] don’t just give an estimate!         
what’s the posterior distribution?

[Boltzmann] at thermal equilibrium,

low T: concentrated on ground states

high T: uniform

thermal noise: T=σ (or looser springs)

E(a,b) defined by model and data

posterior distribution = equilibrium

in this case, landscape is simple and convex

Uncertainty, equilibrium, and the energy landscape

P(s )/ e�E (s )/T

a b
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the atoms of a block of iron interact with their neighbors

when these interactions are strong enough, or the temperature is low enough, 
they line up and form a magnetic field

each site has a spin              and (ferromagnet)

ground state: all up or all down

how does the magnetization                   vary with temperature?
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FIGURE 12.1: The typical magnetization of the two-dimensional Ising model in the limit n →∞. It drops
to zero at Tc = 2.269...

Let’s lump states with the same energy together into macrostates. Then the total probability of being
in a macrostate with energy E is proportional to

W e−βE = eS−βE = e−β (E−T S) ,

where W is the number of states in that macrostate. Its logarithm S = ln W is called the entropy. The
likeliest macrostate is then the one that minimizes E −TS, a quantity that physicists call the free energy.

12.3This creates a tug-of-war between energy and entropy, whose outcome depends on the temperature.
When T is small, E −TS is minimized when E is minimized, and the system is magnetized. But when T is
large enough, E −TS is minimized by maximizing S. Then entropy triumphs over energy, and the system
becomes unmagnetized.

Of course, the previous paragraph is just a cartoon, in which we assumed that magnetization is an all-
or-nothing affair. What actually happens is shown in Figure 12.1. If we define the magnetization as the
average spin, m = (1/n )

∑
i s i , the expectation of its absolute value decreases continuously as T increases,

and hits zero at the critical temperature Tc = 2.269.... For the interested reader, Problem 12.4 shows how
to derive this result qualitatively, using a simplified mean field assumption that ignores the neighborhood
relationships of the spins. We will see how to compute Tc exactly in Section 13.7.3.

To get a better sense of how the Ising model behaves, consider Figure 12.2, where we show typical
states above, below, and at the phase transition. When T < Tc the world is covered by a sea of spins all
pointing up, say, with isolated islands of spins pointing down. The fraction of islands with size s obeys a

temperature
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FIGURE 12.2: Typical states of a 1024×512 Ising model sampled at three different temperatures. Below Tc

(bottom) there are small islands of the minority spin. Above Tc (top) there are small clumps with the same
spin, but at large scales the up and down spins cancel out. At Tc (middle) there are islands and clumps at
all scales, and the statistics of the model are scale-free.
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Bumpy landscapes

least squares has a landscape with one optimum, and the Ising model has two

but a “spin glass” with energy                            can have exponentially many

suppose the interactions       depend on the data and the model

which local optimum is the true one?  

can we find it efficiently? can we find it at all, given the posterior distribution?

let’s look at a classic problem in social networks…

E =�
X

(i ,j )

Ji j si s j
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ing corrected and uncorrected blockmodels with K = 2,
we find the results shown in Fig. 1. As pointed out also
by other authors [11, 30], the non-degree-corrected block-
model fails to split the network into the known factions
(indicated by the dashed line in the figure), instead split-
ting it into a group composed of high-degree vertices and
another of low. The degree-corrected model, on the other
hand, splits the vertices according to the known commu-
nities, except for the misidentification of one vertex on
the boundary of the two groups. (The same vertex is also
misplaced by a number of other commonly used commu-
nity detection algorithms.)
The failure of the uncorrected model in this context

is precisely because it does not take the degree sequence
into account. The a priori probability of an edge be-
tween two vertices varies as the product of their degrees,
a variation that can be fit by the uncorrected blockmodel
if we divide the network into high- and low-degree groups.
Given that we have only one set of groups to assign, how-
ever, we are obliged to choose between this fit and the
true community structure. In the present case it turns
out that the division into high and low degrees gives the
higher likelihood and so it is this division that the algo-
rithm returns. In the degree-corrected blockmodel, by
contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood,
which frees up the block structure for fitting to the true
communities.
Moreover it is apparent that this behavior is not lim-

ited to the case K = 2. For K = 3, the ordinary
stochastic blockmodel will, for sufficiently heterogeneous
degrees, be biased towards splitting into three groups by
degree—high, medium, and low—and similarly for higher
values of K. It is of course possible that the true com-
munity structure itself corresponds entirely or mainly to
groups of high and low degree, but we only want our
model to find this structure if it is still statistically sur-
prising once we know about the degree sequence, and this
is precisely what the corrected model does.
As a second real-world example we show in Fig. 2 an

application to a network of political blogs assembled by
Adamic and Glance [31]. This network is composed of
blogs (i.e., personal or group web diaries) about US pol-
itics and the web links between them, as captured on
a single day in 2005. The blogs have known political
leanings and were labeled by Adamic and Glance as ei-
ther liberal or conservative in the data set. We consider
the network in undirected form and examine only the
largest connected component, which has 1222 vertices.
Figure 2 shows that, as with the karate club, the uncor-
rected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model
finds a split more aligned with the political division of
the network. While not matching the known labeling ex-
actly, the split generated by the degree-corrected model
has a normalized mutual information of 0.72 with the la-
beling of Adamic and Glance, compared with 0.0001 for
the uncorrected model.

(a) Without degree-correction

(b) With degree-correction

FIG. 2: Divisions of the political blog network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The division in (b) corresponds
roughly to the division between liberal and conservative blogs
given in [31].

(To make sure that these results were not due to a fail-
ure of the heuristic optimization scheme, we also checked
that the group assignments found by the heuristic have a
higher objective score than the known group assignments,
and that using the known assignments as the initial con-
dition for the optimization recovers the same group as-
signments as found with random initial conditions.)

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we
use are themselves generated from the degree-corrected

[Adamic & Glance]
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k×k matrix p of connection probabilities

if ti=r and tj=s, there is a link i→j with probability prs
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Likelihood and energy

the probability of G given the types t is a product over edges and non-edges:

the corresponding energy is

like Ising model, but with weak antiferromagnetic interactions on non-edges

what can we learn from the “physics” of the block model?

P(G | t ) =
Y

(i ,j )2E

pti ,t j

Y

(i ,j )/2E

(1�pti ,t j )

E (t ) =� log P(G | t ) =�
X

(i ,j )2E

log pti ,t j �
X

(i ,j )/2E

log(1�pti ,t j )
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Ground states vs. the landscape

even random graphs have good-looking communities: only 11% of edges cross!

many local optima, with nothing in common

we need to understand the entire landscape, not just the optimum

otherwise, we could be overfitting…
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Overfitting

we, and our algorithms, are prone to false positives

fitting the data with fancy models is tempting…

but often we’re really fitting the noise, not the underlying process

we want to understand the coin, not the coin flips
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Information in the block model: the effect of a link

k equal groups,                                          : average degree

if there is a link i→j, the probability distribution of tj is related to that of ti            
by a transition matrix

where

with probability   , copy from i to j; with probability         , set j’s type randomly

if    is fixed, community detection gets easier as c increases…

c =
c

in

+(k �1)c
out

k

1

k c

0
BB@

c
in

· · · c
out

.

.

.

.

.

.

c
out

c
in

1
CCA=�1+(1��)

0
BB@

1/k · · · 1/k
.

.

.

.

.

.

1/k 1/k

1
CCA

�=
c

in

� c
out

k c

� 1��

�

p =
1

n

0
BB@

c
in

· · · c
out

.

.

.

.

.

.

c
out

c
in

1
CCA



Detectability thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]:



Detectability thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]:

ac
cu

ra
cy

c

1

0

(chance) 1

�2



Detectability thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]:

easy:

efficient algorithms

(belief propagation, 


spectral)

ac
cu

ra
cy

c

1

0

(chance) 1

�2



Detectability thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]:

easy:

efficient algorithms

(belief propagation, 


spectral)

ac
cu

ra
cy

c

1

0

(chance) 1

�2

information-theoretically

impossible; can’t do better 


than a coin flip, or even 

distinguish from a purely

random graph G(n,p=c/n)



Detectability thresholds

For k≥4 groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:



Detectability thresholds

For k≥4 groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

ac
cu

ra
cy

c

1

0

(chance) 1

�2O

✓
log k

k�2

◆



Detectability thresholds

For k≥4 groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

ac
cu

ra
cy

c

1

0

(chance) 1

�2O

✓
log k

k�2

◆

easy:

efficient algorithms

(belief propagation, 


spectral)



Detectability thresholds

For k≥4 groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

information-theoretically

impossible

ac
cu

ra
cy

c

1

0

(chance) 1

�2O

✓
log k

k�2

◆

easy:

efficient algorithms

(belief propagation, 


spectral)



Detectability thresholds

For k≥4 groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

information-theoretically

impossible

ac
cu

ra
cy

c

1

0

(chance) 1

�2O

✓
log k

k�2

◆

information-

theoretically

possible; but 


computationally

hard?

easy:

efficient algorithms

(belief propagation, 


spectral)



Detectability thresholds

For k≥4 groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

information-theoretically

impossible

ac
cu

ra
cy

c

1

0

(chance) 1

�2O

✓
log k

k�2

◆

information-

theoretically

possible; but 


computationally

hard?

clusters, 

but can’t tell

which is the


true one:

overfitting

easy:
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m points in n-dimensional space, where m=O(n)

k clusters with Gaussian noise

when can we...

find the cluster centers?

label the points better than chance?

tell that there are clusters, i.e., distinguish 
from a null model with one big cluster?

phase transitions as a function of noise vs. 
cluster distances, and m/n

when k is large enough, we can do better 
(information-theoretically) than PCA

Clustering high-dimensional data
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Techniques

If we iteratively estimate the probabilities with which nodes belong to groups, can 
we avoid a fixed point where each node is equally likely to be in each group?  
What can we learn about the ancestor of a family tree from its descendants?

How does community structure affect random walks (or epidemics) on networks?  
When does it show up in the spectrum of the adjacency matrix?  When is it 
dominated by the randomness in the graph?

How can we tell the difference between the block model and a null model with no 
community structure?  Can we bound the likelihood ratio between them? How 
can we tell when an apparent community is real, instead of overfitting?

Next two lectures!
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