
Message-Passing Algorithms for Network Analysis

Cristopher Moore (UNM / Santa Fe Institute)
joint work with
Lenka Zdeborová, Florent Krzakała, Aurelien Decelle (CNRS)
Xiaoran Yan, Yaojia Zhu (UNM)
Mark Newman (Michigan)
and a brief mention of joint work with
Varsha Dani (UNM)
Anna Olson (Chicago)

Tuesday, January 24, 2012

Functional communities

assortative communities: vertices connect with others of the same type

but food webs, word adjacency networks, even some social networks have a
more general kind of structure

a functional community or “module” is a set of vertices that connect to the rest
of the network in similar ways

how do we find them? modularity, spectral approaches...

statistical inference: choose a class of generative models, and find the one
most likely to generate the data

Tuesday, January 24, 2012

The stochastic block model

each vertex i has a type ti ∈ {1,...,k}, with prior distribution q1,...,qk

k×k matrix p

if ti = r and tj = s, there is an edge i→j with probability prs

p is not necessarily symmetric

we don’t assume that prr > prs

given G, we want to infer the type assignment t : V→{1,...,k} and the matrix p

how do we get off the ground?

Tuesday, January 24, 2012

The likelihood

the probability of G given the types t and parameters θ=(p,q) is

so the probability of t given G is

call this the Gibbs distribution on t. How do we maximize it, or sample from it?

P(G | t ,θ) =
�

(i ,j)∈E

pti ,t j

�

(i ,j)/∈E

(1−pti ,t j)

P(t |G ,θ) =
P(t |θ)P(G | t ,θ)�
t �∈{1,...,k }n P(G | t �,θ)

∝
�

i∈V

qti

�

(i ,j)∈E

pti ,t j

�

(i ,j)/∈E

(1−pti ,t j)

Tuesday, January 24, 2012

Maximizing the likelihood

single-site heat-bath dynamics: choose a random vertex and update its type

if we like, we can jointly maximize P(G|t,θ) as a function of t and p by setting

this works reasonably well on small networks...

pr s =
er s

n r n s
, qr =

n r

n

Tuesday, January 24, 2012

I record that I was born on a Friday

Tuesday, January 24, 2012

Maximizing the likelihood

single-site heat-bath dynamics: choose a random vertex and update its type

if we like, we can jointly maximize P(G|t,p) as a function of t and p by setting

this works reasonably well on small networks... but it isn’t really what we want

the probability of θ given G is a proportional to a partition function

and –log P(G|θ) is a free energy, not a ground state energy

pr s =
er s

n r n s
, qr =

n r

n

P(G |θ) =
�

t∈{1,...,k }n
P(G | t ,θ)

Tuesday, January 24, 2012

Maximizing the free energy

a several-line derivation shows that

expectation-maximization (EM): given the current estimate , find the new
that maximizes the expected log-likelihood

then set and iterate

but how to compute this expectation?

∇θ logP(G |θ) =
�

t

P(t |G ,θ)∇θ log P(t ,G |θ) .

�

t

P(t |G , θ̂) logP(t ,G |θ)

θ̂ θ

θ̂ = θ

Tuesday, January 24, 2012

Marginals

to do the maximization, we don’t need the entire Gibbs distribution

suppose we can estimate the one- and two-point marginals

then the expected log-likelihood is maximized by θ=(p,q) where

µi
r = Pr[ti = r] , µi j

r s = Pr[ti = r and t j = s]

qr =

�
i µ

i
r

n
, pr s =

�
(i ,j)∈E µ

i j
r s

�
i ,j µ

i j
r s

Tuesday, January 24, 2012

Belief propagation (a.k.a. the cavity method)

each vertex i sends a “message” to each of its neighbors j, giving i’s marginal
distribution based on its other neighbors k

denote this message

how do we update it?

j

i

k

µi→j
r = estimate of Pr[ti = r] if j were absent

Tuesday, January 24, 2012

BP on a complete graph — takes O(n2) time to update

can simplify by assuming that for all non-neighbors i

each vertex k applies an “external field” to all vertices of type s

j

i

k

�

r

µk
r (1−pr s)

µk→i
r =µk

r

Belief propagation (a.k.a. the cavity method)

µi→j
s =

1
Z i→j qs

�

k �=j
(i ,k)∈E

�

r

µk→i
r pr s ×
�

k �=j
(i ,k)/∈E

�

r

µk→i
r (1−pr s)

conditional independence

Tuesday, January 24, 2012

each update now takes O(n+m) time

update until the messages reach a fixed point

j

i

k

µi→j
s =

1
Z i→j qs

�

k �=j
(i ,k)∈E

�

r

µk→i
r pr s ×
�

k �=j
(i ,k)/∈E

�

r

µk→i
r (1−pr s)µi→j

s =
1

Z i→j qs

�

k �=j
(i ,k)∈E

�

r

µk→i
r pr s ×
�

k

�
r µ

k
r (1−pr s)�

k :(i ,k)∈E

�
r µ

k
r (1−pr s)

Belief propagation (a.k.a. the cavity method)

Tuesday, January 24, 2012

From expectation to maximization

after the messages reach a fixed point,

the two-point BP marginals are

and we update θ=(p,q) to

EM: alternate expectation (through BP) and maximization to find θ and μ

µk→i
r

qr =

�
i µ

i
r

n
, pr s =

�
(i ,j)∈E µ

i j
s t�

i ,j µ
i j
s t

µi j
r s ∝µi→j

r µj→i
s ×
�

pr s (i , j)∈ E

1−pr s (i , j) /∈ E

Tuesday, January 24, 2012

The Bethe free energy

Bayes’ rule implies

physically, the free energy has an energy and entropy term,

the average energy U=E[-log P(G|t,θ)] is a function of the marginals

to compute the entropy S of the Gibbs distribution, we assume an approximate
joint distribution based on the marginals for which we can compute S exactly,

yields a surprisingly good approximation of F, even on finite graphs with loops;
can compare with exact calculations and MCMC calorimetry

F =U −TS

logP(G |θ) =
�

t

P(t |G ,θ) ln P(G | t ,θ)−
�

t

P(t |G ,θ) ln P(t |G ,θ)

µi j
r s

PBethe(t |G ,θ) =

�
i j µ

i j
ti ,t j�

i (µ
i
ti
)d i−1

Tuesday, January 24, 2012

Performance on large synthetic networks

fix θ=(p,q) and take n=105 or so

choose type assignment t randomly according to q

generate edges randomly according to p

run the algorithm — how well does it do? given θ, does it find the right t?
can it find θ using EM?

given the marginals , guess that

note: not the ground state!

define the overlap as the fraction of vertices labeled correctly...

...minus the size of the largest group, and normalized

µk→i
r ti = argmaxr µ

k→i
r

Tuesday, January 24, 2012

Sparse benchmarks

set qi = 1/k for all i

let pij = cij/n where cij = cin if i=j and cout if i≠j

vary the ratio

while keeping the average degree c = cin/k + (1-1/k)cout fixed

if ε is too close to 1, BP converges to the uniform fixed point

� =
cout

c in

µi→j
r =

1
k

Tuesday, January 24, 2012

A phase transition from detectable to undetectable
communities

13

A. Phase transitions in community detection

We will first study the result given by the cavity method in the thermodynamic limit in the case when the parameters
q, {na}, {cab} used to generate the network are known.

Fig. 1 represents two examples where the overlap Q is computed on a randomly generated graph with q groups of the
same size and an average degree c. We set caa = cin and cab = cout for all a != b and vary the ratio ε = cout/cin. The
continuous line is the overlap resulting from the BP fixed point obtained by converging from a random initial condition
(i.e., where for each i, j the initial messages ψi→j

ti
are random normalized distributions on ti). The convergence time

is plotted in Fig. 2. The points in Fig. 1 are results obtained from Gibbs sampling, using the Metropolis rule and
obeying detailed balance with respect to the Hamiltonian (8), starting with a random initial group assignment {qi}.
We see that Q = 0 for cout/cin > εc. In other words, in this region both BP and MCMC converge to the factorized
state, where the marginals contain no information about the original assignment. For cout/cin < εc, however, the
overlap is positive and the factorized fixed point is not the one to which BP or MCMC converge.

In particular Fig. 1(b) shows the case of q = 4 groups with average degree c = 16, corresponding to the benchmark
of Newman and Girvan [9]. We show the large N results and also the overlap computed with MCMC for size N = 128
which is the commonly used size for this benchmark. Again, up to symmetry breaking, marginalization achieves the
best possible overlap that can be inferred from the graph by any algorithm. Therefore, when algorithms are tested
for performance, their results should be compared to Fig. 1 instead of to the common but wrong expectation that the
four groups are detectable for any ε < 1.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ov
er

la
p

!*= c*out/c*in

(a)

undetectabledetectable

q*=2, c=3

N=500k, BP
N=70k, MC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ov
er

la
p

!= cout/cin

(b)

undetectable

q=4, c=16

N=100k, BP
N=70k, MC
N=128, MC

N=128, full BP

FIG. 1. (color online): The overlap (5) between the original assignment and its best estimate given the structure of the graph,
computed by the marginalization (13). Graphs were generated using N nodes, q groups of the same size, average degree c, and
different ratios ε = cout/cin. Thus ε = 1 gives an Erdős-Rényi random graph, and ε = 0 gives completely separated groups.
Results from belief propagation (26) for large graphs (red line) are compared to Gibbs sampling, i.e., Monte Carlo Markov
chain (MCMC) simulations (data points). The agreement is good, with differences in the low-overlap regime that we attribute
to finite size fluctuations. In the part (b) we also compare to results from the full BP (22) and MCMC for smaller graphs with
N = 128, averaged over 400 samples. The finite size effects are not very strong in this case, and BP is reasonably close to the
exact (MCMC) result even on small graphs that contain many short loops. For N → ∞ and ε > εc = (c−

√
c)/[c+

√
c(q−1)] it

is impossible to find an assignment correlated with the original one based purely on the structure of the graph. For two groups
and average degree c = 3 this means that the density of connections must be ε−1

c (q = 2, c = 3) = 3.73 greater within groups
than between groups to obtain a positive overlap. For Newman and Girvan’s benchmark networks with four groups (b), this
ratio must exceed 2.33.

Let us now investigate the stability of the factorized fixed point under random perturbations to the messages when
we iterate the BP equations. In the sparse case where cab = O(1), graphs generated by the block model are locally
treelike in the sense that almost all nodes have a neighborhood which is a tree up to distance O(log N), where the
constant hidden in the O depends on the matrix cab. Equivalently, for almost all nodes i, the shortest loop that i
belongs to has length O(log N). Consider such a tree with d levels, in the limit d → ∞. Assume that on the leaves
the factorized fixed point is perturbed as

ψk
t = nt + εk

t , (39)

and let us investigate the influence of this perturbation on the message on the root of the tree, which we denote k0.
There are, on average, cd leaves in the tree where c is the average degree. The influence of each leaf is independent,

Tuesday, January 24, 2012

BP converges in a constant number of iterations
14

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1

co
nv

er
ge

nc
e

tim
e

!= cout/cin

!c

q=4, c=16

N=10k
N=100k

FIG. 2. (color online): The number of iterations needed for convergence of the BP algorithm for two different sizes. The
convergence time diverges at the critical point εc. The equilibration time of Gibbs sampling (MCMC) has qualitatively the
same behavior, but BP obtains the marginals much more quickly.

so let us first investigate the influence of the perturbation of a single leaf kd, which is connected to k0 by a path
kd, kd−1, . . . , k1, k0. We define a kind of transfer matrix

T a
i ≡

∂ψki
a

∂ψki+1

b

∣

∣

∣

ψt=nt

=

[

ψki
a cab

∑

r carψ
ki+1
r

− ψki
a

∑

s

ψki
s csb

∑

r carψ
ki+1
r

]

∣

∣

∣

ψt=nt

= na

(cab

c
− 1

)

. (40)

where this expression was derived from (26) to leading order in N . The perturbation εk0

t0 on the root due to the

perturbation εkd
td

on the leaf kd can then be written as

εk0

t0 =
∑

{ti}i=1,...,d

[

d−1
∏

i=0

T ti,ti+1

i

]

εkd
td

(41)

We observe in (40) that the matrix T ab
i does not depend on the index i. Hence (41) can be written as εk0 = T dεkd .

When d → ∞, T d will be dominated by T ’s largest eigenvalue λ, so εk0 ≈ λdεkd .
Now let us consider the influence from all cd of the leaves. The mean value of the perturbation on the leaves is

zero, so the mean value of the influence on the root is zero. For the variance, however, we have

〈

(

εk0

t0

)2
〉

≈

〈





cd

∑

k=1

λdεk
t





2
〉

≈ cdλ2d
〈

(

εk
t

)2
〉

. (42)

This gives the following stability criterion,

cλ2 = 1 . (43)

For cλ2 < 1 the perturbation on leaves vanishes as we move up the tree and the factorized fixed point is stable. On
the other hand, if cλ2 > 1 the perturbation is amplified exponentially, the factorized fixed point is unstable, and the
communities are easily detectable.

Consider the case with q groups of equal size, where caa = cin for all a and cab = cout for all a &= b. This includes the
Newman-Girvan benchmarks, as well as planted (noisy) graph coloring and planted graph partitioning. If there are q
groups, then cin +(q−1)cout = qc. The transfer matrix T ab has only two distinct eigenvalues, λ1 = 0 with eigenvector
(1, 1, . . . , 1), and λ2 = (cin − cout)/(qc) with eigenvectors of the form (0, . . . , 0, 1,−1, 0, . . . , 0) and degeneracy q − 1.
The factorized fixed point is then unstable, and communities are easily detectable, if

|cin − cout| > q
√

c . (44)

The stability condition (43) is known in the literature on spin glasses as the de Almeida-Thouless local stability
condition [39], in information science as the Kesten-Stigum bound on reconstruction on trees [40, 41], or the threshold
for census reconstruction [25], or robust reconstruction threshold [42].

Tuesday, January 24, 2012

The free energy landscape

18

B. Phase transitions in parameter learning

In this section we will continue to focus on the special case of the parameters defined by (36), where all groups have
the same average degree. We will, however, no longer assume that the correct values of the parameters q, {na} and
{cab} are known; now our goal is to learn them.

In Fig. 4, we generate graphs with q = 2 groups of the same size, N = 105, with average degree c, and c11 = c22 = cin

and c12 = cout where ε∗ = cout/cin = 0.15. We then compute the free energy as a function of ε. Fig. 4(a) shows the
factorized free energy (38) minus the free energy obtained from the BP fixed point as a function of ε. As expected,
this curve is maximized at the correct value ε = ε∗. The learning procedure searches for this maximum.

Note that the initial values of the parameters are important. For ε > εs = 0.36, the free energy equals the factorized
one, and BP converges to the factorized fixed point. Hence if we start the learning process with ε > εs, the local slope
of the free energy will not push us in the correct direction.

Fig. 4(b) shows (red crosses) the corresponding values of the overlap between the marginalized group assignment
and the original one. We see that this overlap is maximized at the correct value ε = ε∗. We also plot the estimated
overlap (Eq. (14), green crosses), which is based only on the marginals with no knowledge of the original group
assignment. At ε = ε∗, it indeed equals the true overlap with the original assignment.

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.1 0.2 0.3 0.4 0.5

f fa
ct

or
iz

ed
- f

BP

!= cout/cin

(a)

!*=0.15

q=2, c=3

-fBP+ffactorized

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

ov
er

la
p

!= cout/cin

(b)

!*=0.15 q=2, c=3

overlap actual
overlap marginalization

 0.62
 0.63
 0.64
 0.65
 0.66

 0 0.1 0.2 0.3

!*=0.15 q=2, c=3

!*=0.15

FIG. 4. (color online): Learning for graphs of N = 105 nodes with q = 2 groups, average degree c = 3, and ε∗ = cout/cin = 0.15.
(a) The BP free energy as a function of ε. Specifically, we plot the factorized free energy (which is independent of ε) minus the
BP free energy. As we expect, the maximum is achieved at ε = ε∗. Our learning procedure looks for this maximum via a kind
of expectation-maximization (EM) algorithm. Note that for ε > εs = 0.36 the BP free energy is equal to the factorized one,
so we need to initialize the learning process somewhere in the region ε < εs. (b) The overlap (5) between the original group
assignment and the best estimate using BP marginalization, compared to the estimated overlap (14). They are equal only at
the correct parameters, ε = ε∗. In the inset we see that the actual overlap is maximized at ε = ε∗, illustrating that to infer the
group assignment optimally one needs to have the correct parameters.

Fig. 5 uses graphs generated in the same way as in Fig. 4. For each ε we compute the averages (18–19) from the
BP fixed point. In terms of the BP messages, the most likely values of the parameters are then, as in (35),

c′out =
q2

N

∑

(i,j)∈E

cout(ψ
i→j
1 ψj→i

2 + ψi→j
2 ψj→i

1)

Zij
(48)

c′in =
2q2

N

∑

(i,j)∈E

cinψi→j
1 ψj→i

1

Zij
. (49)

The learning process iteratively updates cin and cout (more generally, the affinity matrix cab) and looks for a fixed
point where ε′ = ε. As we said above, this is essentially an expectation-maximization (EM) algorithm, where we use
BP to approximate the expectation step.

In Fig. 5 we plot ε′ = c′out/c′in as a function of ε. We see that ε∗ is the only fixed point in its vicinity. However,
every ε > εs is also a fixed point due to the factorized BP fixed point, again showing that we need to initialize the
learning process at some ε < εs.

In Fig. 5(b) we depict the region in the (ε, c) plane in which the learning process converges to ε∗ if we start it at
ε. We see that learning is possible for c > c! = 1.83, where c! was obtained from (44) by considering ε∗ = 0.15.

Tuesday, January 24, 2012

Which kind of community do you want?

Tuesday, January 24, 2012

Which kind of community do you want?

Tuesday, January 24, 2012

Two local optima

21

Depending on the initial parameters {na}, {cab}, it converges to one of two attractive fixed points in parameter space:

n(i) =

(

0.525
0.475

)

, c(i) =

(

8.96 1.29
1.29 7.87

)

,

n(ii) =

(

0.854
0.146

)

, c(ii) =

(

16.97 12.7
12.7 1.615

)

. (50)

For comparison, we also performed learning using MCMC for the expectation step; this network is small enough,
with such a small equilibration time, that MCMC is essentially exact. We again found two attractive fixed points in
parameter space, very close to those in (50):

n(i)
MC =

(

0.52
0.48

)

, c(i)
MC =

(

8.85 1.26
1.26 7.97

)

,

n(ii)
MC =

(

0.85
0.15

)

, c(ii)
MC =

(

16.58 12.52
12.52 1.584

)

. (51)

A first observation is that even though Zachary’s karate club is both small and “loopy,” rather than being locally
treelike, the BP algorithm converges to fixed points that are nearly the same as the (in this case exact) MCMC. This
is despite the fact that our analysis of the BP algorithm assumes that there are no small loops in the graph, and
focuses on the thermodynamic limit N → ∞. This suggests that our BP learning algorithm is a useful and robust
heuristic even for real-world networks that have many loops.

 1.5

 2

 2.5

 3

 3.5

 4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

- f
re

e
en

er
gy

interpolation parameter t

(b)

(i) (ii)

q=2, interpolation
q=3
q=4

FIG. 7. (color online): (a) The partitioning of Zachary’s karate club found by our inference algorithm using the first fixed point,
(i) in (50). The colors indicate the two groups found by starting with an assortative initial condition, i.e., where c11, c22 > c12.
The shades represent the marginal probabilities: a white node belongs to both groups with equal probability, whereas a node
that is solid red or solid blue belongs to the corresponding group with probability 1. Most of the nodes are strongly biased.
The ×s show the five nodes that are grouped together by the second fixed point, (ii) in (50), which divides the nodes into
high-degree and low-degree groups rather than into the two factions. (b) The negative free energy for parameters interpolating
between the two fixed points, with (i) at t = 0 and (ii) at t = 1. The two fixed points are local maxima, and each one has a
basin of attraction in the learning algorithm. As noted in [8], the high-degree/low-degree fixed point actually has lower free
energy, and hence a higher likelihood, in the space of block models with q = 2. The horizontal lines show the largest values of
the likelihood that we obtained from using more than two groups. Unlike in Fig. 6, the likelihood continues to increase when
more groups are allowed. This is due both to finite-size effects and to the fact that the network is not, in fact, generated by
the block model: in particular, the nodes in each faction have a highly inhomogeneous degree distribution.

Fig. 7 shows the marginalized group assignments for the division into two groups corresponding to these two fixed

points. Fixed point (i) corresponds to the actual division into two factions, and c(i)
ab has assortative structure, with

larger affinities on the diagonal. In contrast, fixed point (ii) divides the nodes according to their degree, placing
high-degree nodes in one group, including both the president and the instructor, and the low-degree nodes in the
other group. Of course, this second division is not wrong; rather, it focuses on a different kind of classification, into
“leaders” on the one hand and “students/followers” on the other. In Fig. 7(b) we plot the negative free energy (32)

achieved by interpolating between the two fixed points according to a parameter t, with cab(t) = (1− t)c(i)
ab + tc(ii)

ab and
similarly for na. We see that the two fixed points correspond to two local maxima, the second (ii) being the global

Tuesday, January 24, 2012

Degree-corrected block models

the “vanilla” block model expects vertices of the same type to have roughly the
same degree

a random multigraph [Karrer & Newman, 2010]

each vertex i has an expected degree di

analogous to pij, a k×k matrix wij

for each pair i, j with ti=r and tj=s, the number of edges between them is

now the degrees are parameters, not data to be explained

can again write down the BP/EM algorithm

mi j = Poi(d i d j wr s)

Tuesday, January 24, 2012

Blogs: vanilla block model
7

ing corrected and uncorrected blockmodels with K = 2,
we find the results shown in Fig. 1. As pointed out also
by other authors [11, 30], the non-degree-corrected block-
model fails to split the network into the known factions
(indicated by the dashed line in the figure), instead split-
ting it into a group composed of high-degree vertices and
another of low. The degree-corrected model, on the other
hand, splits the vertices according to the known commu-
nities, except for the misidentification of one vertex on
the boundary of the two groups. (The same vertex is also
misplaced by a number of other commonly used commu-
nity detection algorithms.)
The failure of the uncorrected model in this context

is precisely because it does not take the degree sequence
into account. The a priori probability of an edge be-
tween two vertices varies as the product of their degrees,
a variation that can be fit by the uncorrected blockmodel
if we divide the network into high- and low-degree groups.
Given that we have only one set of groups to assign, how-
ever, we are obliged to choose between this fit and the
true community structure. In the present case it turns
out that the division into high and low degrees gives the
higher likelihood and so it is this division that the algo-
rithm returns. In the degree-corrected blockmodel, by
contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood,
which frees up the block structure for fitting to the true
communities.
Moreover it is apparent that this behavior is not lim-

ited to the case K = 2. For K = 3, the ordinary
stochastic blockmodel will, for sufficiently heterogeneous
degrees, be biased towards splitting into three groups by
degree—high, medium, and low—and similarly for higher
values of K. It is of course possible that the true com-
munity structure itself corresponds entirely or mainly to
groups of high and low degree, but we only want our
model to find this structure if it is still statistically sur-
prising once we know about the degree sequence, and this
is precisely what the corrected model does.
As a second real-world example we show in Fig. 2 an

application to a network of political blogs assembled by
Adamic and Glance [31]. This network is composed of
blogs (i.e., personal or group web diaries) about US pol-
itics and the web links between them, as captured on
a single day in 2005. The blogs have known political
leanings and were labeled by Adamic and Glance as ei-
ther liberal or conservative in the data set. We consider
the network in undirected form and examine only the
largest connected component, which has 1222 vertices.
Figure 2 shows that, as with the karate club, the uncor-
rected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model
finds a split more aligned with the political division of
the network. While not matching the known labeling ex-
actly, the split generated by the degree-corrected model
has a normalized mutual information of 0.72 with the la-
beling of Adamic and Glance, compared with 0.0001 for
the uncorrected model.

(a) Without degree-correction

(b) With degree-correction

FIG. 2: Divisions of the political blog network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The division in (b) corresponds
roughly to the division between liberal and conservative blogs
given in [31].

(To make sure that these results were not due to a fail-
ure of the heuristic optimization scheme, we also checked
that the group assignments found by the heuristic have a
higher objective score than the known group assignments,
and that using the known assignments as the initial con-
dition for the optimization recovers the same group as-
signments as found with random initial conditions.)

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we
use are themselves generated from the degree-corrected

[Karrer & Newman, 2010]

Tuesday, January 24, 2012

Blogs: degree-corrected block model

7

ing corrected and uncorrected blockmodels with K = 2,
we find the results shown in Fig. 1. As pointed out also
by other authors [11, 30], the non-degree-corrected block-
model fails to split the network into the known factions
(indicated by the dashed line in the figure), instead split-
ting it into a group composed of high-degree vertices and
another of low. The degree-corrected model, on the other
hand, splits the vertices according to the known commu-
nities, except for the misidentification of one vertex on
the boundary of the two groups. (The same vertex is also
misplaced by a number of other commonly used commu-
nity detection algorithms.)
The failure of the uncorrected model in this context

is precisely because it does not take the degree sequence
into account. The a priori probability of an edge be-
tween two vertices varies as the product of their degrees,
a variation that can be fit by the uncorrected blockmodel
if we divide the network into high- and low-degree groups.
Given that we have only one set of groups to assign, how-
ever, we are obliged to choose between this fit and the
true community structure. In the present case it turns
out that the division into high and low degrees gives the
higher likelihood and so it is this division that the algo-
rithm returns. In the degree-corrected blockmodel, by
contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood,
which frees up the block structure for fitting to the true
communities.
Moreover it is apparent that this behavior is not lim-

ited to the case K = 2. For K = 3, the ordinary
stochastic blockmodel will, for sufficiently heterogeneous
degrees, be biased towards splitting into three groups by
degree—high, medium, and low—and similarly for higher
values of K. It is of course possible that the true com-
munity structure itself corresponds entirely or mainly to
groups of high and low degree, but we only want our
model to find this structure if it is still statistically sur-
prising once we know about the degree sequence, and this
is precisely what the corrected model does.
As a second real-world example we show in Fig. 2 an

application to a network of political blogs assembled by
Adamic and Glance [31]. This network is composed of
blogs (i.e., personal or group web diaries) about US pol-
itics and the web links between them, as captured on
a single day in 2005. The blogs have known political
leanings and were labeled by Adamic and Glance as ei-
ther liberal or conservative in the data set. We consider
the network in undirected form and examine only the
largest connected component, which has 1222 vertices.
Figure 2 shows that, as with the karate club, the uncor-
rected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model
finds a split more aligned with the political division of
the network. While not matching the known labeling ex-
actly, the split generated by the degree-corrected model
has a normalized mutual information of 0.72 with the la-
beling of Adamic and Glance, compared with 0.0001 for
the uncorrected model.

(a) Without degree-correction

(b) With degree-correction

FIG. 2: Divisions of the political blog network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The division in (b) corresponds
roughly to the division between liberal and conservative blogs
given in [31].

(To make sure that these results were not due to a fail-
ure of the heuristic optimization scheme, we also checked
that the group assignments found by the heuristic have a
higher objective score than the known group assignments,
and that using the known assignments as the initial con-
dition for the optimization recovers the same group as-
signments as found with random initial conditions.)

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we
use are themselves generated from the degree-corrected

[Karrer & Newman, 2010]

Tuesday, January 24, 2012

Strengths and weaknesses

degree-corrected models don’t mind inhomogeneous degree distributions

but they also can’t use the degrees to help them label the nodes

on some networks, they perform worse than the vanilla model

yet another model: first generate vertex degrees di according to some
distribution whose parameters depend on ti (e.g. power law)

then generate edges according to the degree-corrected model

for some networks (e.g. large word networks) works better than either vanilla or
degree-corrected model

Tuesday, January 24, 2012

Degree-generated model

100 101 102 10310 5

10 4

10 3

10 2

10 1

100

degree (d)

p(
d)

out degree distribution (Brown words network)

adjective
noun

Tuesday, January 24, 2012

Degree-generated model

100 101 102 10310 5

10 4

10 3

10 2

10 1

100

degree (d)

p(
d)

in degree distribution (Brown words network)

adjective
noun

Tuesday, January 24, 2012

Colorings with permutations

Threshold conjecture for k-colorability:

Achlioptas and Naor determined dk to within O(log k) (and determined k as a
function of d to two integers)

Conjecture: the threshold dk stays the same if we put a random permutation
π∈Sk on each edge, and demand that c(u)≠π(c(v)) instead of c(u)≠c(v)

Justification: correlation decay, reconstruction, survey propagation

Second moment calculations are much easier, letting us bound dc within an
additive constant [Dani, Moore, Olson]: for any ε and sufficiently large k,

2k lnk − ln k −2− � ≤ d k ≤ 2k ln k − ln k −1+ �

lim
n→∞

Pr[G (n , p = d /n) is k -colorable] =

�
1 if d < d k

0 if d > d k

Tuesday, January 24, 2012

Shameless Plug

Oxford University Press,
2011

This book rocks! You somehow manage
to combine the fun of a popular book
with the intellectual heft of a textbook.

— Scott Aaronson

A treasure trove of information on
algorithms and complexity, presented in
the most delightful way.

— Vijay Vazirani

A creative, insightful, and accessible
introduction to the theory of computing,
written with a keen eye toward the
frontiers of the field and a vivid
enthusiasm for the subject matter.

— Jon Kleinberg

Tuesday, January 24, 2012

Acknowledgments

and the McDonnell Foundation

Tuesday, January 24, 2012

