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Quantum computers can break the RSA, El Gamal, and elliptiequiblic-key cryptosystems, as they
can efficiently factor integers and extract discrete ldgars. The power of such quantum attacks lies
in quantum Fourier samplingan algorithmic paradigm based on generating and measursed states.
In this article we extend previous negative results of quiarftourier sampling for Graph Isomorphism,
which corresponds to hidden subgroups of order two (8ygtto several cases corresponding to larger
hidden subgroups. For one case, we strengthen some resitsrgie, Pyber, and Shalev on the
Hidden Subgroup Problem over the symmetric group. In anotee,ave show the failure of quantum
Fourier sampling on the Hidden Subgroup Problem over thergelieear groupGL»(Fg). The most
important case corresponds to Code Equivalence, the praifldetermining whether two given linear
codes are equivalent to each other up to a permutation of tirelioates. Our results suggest that for
many codes of interest—includiggneralized Reed Solomon codalsernant codes, and Reed-Muller
codes—solving these instances of Code Equivalence viadtaampling appears to be out of reach
of current families of quantum algorithms.
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1 Introduction

Quantum Fourier Sampling (QFS) is the key ingredient in Iyealt known efficient quantum al-
gorithms for algebraic problems, including Shor’s alduris for factorization and discrete loga-
rithm [30] and Simon'’s algorithm [33]. Shor’s algorithm ied on quantum Fourier sampling over
the cyclic groupZy, while Simon’s algorithm uses quantum Fourier samplingr && In general,
these algorithms solve instances of tieden Subgroup ProbleifiHSP) over a finite grou. Given

a functionf on G whose level sets are left cosets of some unknown subgdfiougs, i.e., such thaf

is constant on each left cosetldfand distinct on different left cosets, they find a set of gatues for
the subgroup.
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The standard approach to this problem trdaas a black box and appliégo a uniform superposi-
tion overG, producing the coset stalieH) = (1//|H]) S hen |ch) for a randont. We then measurieH)
in a Fourier basig|p,i, j)} for the spaceC[G], wherep is an irrefof G andi, j are row and column
indices of a matrixp(g). In theweakform of Fourier sampling, only the representation ngmie
measured, while in thetrongform, both the representation name and the matrix indices@asured,
the latter in a chosen basis. This produces probabilityidigions from which classical information
can be extracted to recover the subgrélipMoreover, sincgcH) is block-diagonal in the Fourier
basis, the optimal measurement of the coset state can abeagsscribed in terms of strong Fourier
sampling.

Understanding the power of Fourier sampling in nonabel@rexts has been an ongoing project,
and a sequence of negative results [10, 22, 11] have suddéstethe approach is inherently limited
when the underlying groups are rich enough. In particularph, Russell, and Schulman [22] showed
that over the symmetric group, even the strong form of Fosaenpling cannot efficiently distinguish
the conjugates of most order-2 subgroups from each otheoor the trivial subgroup. That is, for
any o € &, with large support, and moste S,, if H = {1, m o} then strong Fourier sampling,
and therefore any measurement we can perform on the coset gields a distribution which is
exponentially close to the distribution correspondingHto= {1}. This result implies that Graph
Isomorphism cannot be solved by the naive reduction to gtFamurier sampling. Hallgren et al. [11]
strengthened these results, demonstrating that evengtedameasurements atlogn!) coset states
yield essentially no informationHowever, both the results obtained by Moore et al. [22] fagks-
register Fourier sampling and those obtained by Hallgrah 1] for multi-register Fourier sampling
apply specifically to subgroups of order two.

Kempe and Shalev [15] showed that weak Fourier samplinghgieicoset states i, cannot dis-
tinguish the trivial subgroup from larger subgrowpsvith polynomial size and non-constant minimal
degre€’They conjectured, conversely, that if a subgréiip: S, can be distinguished from the trivial
subgroup by weak Fourier sampling, then the minimal degféemust be constant. Their conjecture
was later proved by Kempe, Pyber, and Shalev [16].

We emphasize that previous results on limitations of stfemgrier sampling did not handle sub-
groups of order more than two. Our major contribution is teali@p some tools to handle these cases.
Additionally, we use these tools to investigate the Hiddehdsoup Problem instances that arise from
Code Equivalence—the problem of deciding whether two giueealr codes are equal up to a fixed
permutation on the codeword coordinates.

Petrank and Roth [26] showed that Code Equivalence is uplicebe NP-complete, but is at
least as hard as Graph Isomorphism. We consider a searébrvefsCode Equivalence: Givenx n
generator matrices (or check matricéyandM’ of two equivalent lineag-ary codes, find a pair of
matrices(S,P), whereSis an invertible square matrix ové&ly andP is a permutation matrix, such
thatM’ = SMP. This search version of Code Equivalence has an immediaseptation as hidden
subgroup problemsuggesting that one might be able to develop an efficienttguaalgorithm for it
via the quantum Fourier transform. In this article, howewer show that for many families of linear
codes, the resulting instance of the hidden subgroup prol#guires entangled measurements of the
coset states and, hence, appears to be beyond the reacheritenethods.

aThroughout the paper, we write “irrep” as short for “irrethle representation.”
bThe minimal degree of a permutation grodfis the minimal number of points moved by a non-identity elemerht of
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1.1 A Sketch of Our Results

To state our results, we say that a subgrélg: G is indistinguishable by strong Fourier sampling
(over G) if the conjugate subgroupg *Hg cannot be distinguished from each other (or from the
trivial subgroup) by measuring the coset state in an aritF@urier basis. A precise definition is
presented in Section 3.2. Since the optimal measurementadet state can always be expressed as
an instance of strong Fourier sampling, these results italyno measurement of a single coset state
yields any useful information abott. Based on the strategy of Moore et al. [22], we first develop
a general framework, formalized in Theorem 1, to determivtistinguishability of a subgroup by
strong Fourier sampling. We emphasize that the results afr®let al. [22] cover the case where the
subgroup has order two. Our principal contribution is tovelhmw to extend their methods to more
general subgroups.

We then apply this general framework to three classes ofggraihe symmetric groug,, the finite
general linear grougL,(Fq), and the wreath produ¢GLy(Fq) x $y)Z,. For the symmetric group,
we extend the results of [22] to larger subgroupS§pfSpecifically, we show that any subgrodp< S,
with minimal degreen > ©(log|H|) + w(logn) is indistinguishable by strong Fourier sampling over
S, This partially extends the results of Kempe et al. [16],ahhpply only to weak Fourier sampling.

For the general linear grouplL,(Fq), we gave the first negative result regarding the power of
strong Fourier sampling ovesL,(IFg). In particular, we show that any subgrobip< GL»(FFg) that
does not contain non-identity scalar matrices and has dktlex q° for somed < 1/2 is indistin-
guishable by strong Fourier sampling. Examples of suchrsuipg are those generated by a constant
number of triangular unipotent matrices.

The casés = (GLi(IFq) x Sh)1Z corresponds to the hidden subgroup problem reduced from the
search version of Code Equivalence as discussed above. MWecap general framework to this class
of wreath products to bound the distinguishability of thed@n subgroufX < G that represents the
Code Equivalence instance given by the n matrix M. Note, here, that matrikl has entries from
a finite fieldF, where/ =1 whenM is a generator matrix of g-ary linear code. Our bound, given
in Corollary 1 of Theorem 4, depends on the column fahkhe matrixM as well as the minimal
degree and the size of tlmitomorphism grougut(M), where AutM) is defined in Subsection 6
as the set of all permutatioison the columns oM such thatVl = SMPfor someS € GLy(Fg). In
particular, the subgrould is indistinguishable by strong Fourier samplingvfhas column rank at
leastk — o(y/n) /¢, and the automorphism group AM) has minimal degre®(n) and size &".

We call a family of linear codes aSP-hard instance of Code Equivaleritéhey have a generator
matrix or check matrix for which the subgroug is indistinguishable. Using the aforementioned
bound on the distinguishability of subgrolp we go on to identify three families of linear codes that
are HSP-hard instances of Code Equivalence, includingralkiGoppa codes (or Generalized Reed
Solomon codes), alternant codes, and Reed-Muller cAdescase of-ary Goppa codes — a subclass
of alternant codes — has been covered in our preliminarytsggil.

1.2 Ramaifications for Code-based Cryptosystems

As typical code-based cryptosystems are directly relaie¢dd Code Equivalence problem, it is inter-
esting to explore what our results imply about the poss$jbif quantum attacks on these cryptosys-
tems.

¢The column rank oM is understood to be over the fid}'g».
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The most popular forms of code-based cryptosystems are loaiseither the McEliece cryptosys-

tem [20] or the Niederreiter cryptosystem [24], and are emtionally built over binary Goppa codes.

The private key of a McEliece (resp., Niederreiter) crygtiem is a triplgS M, P), whereSis an
invertible matrix overfy, P is a permutation matrix, anll is ak x n generator matrix (resp., check
matrix) for ag-ary error-correcting code that permits efficient decodifige public key is the matrix
M’ = SMP. If both M andM’ are known to an adversary, the problem of recoveSrand P (the
remainder of the secret key) is precisely the version of Gegigivalence described above.Mf and
M’ have full rank, which is always the case whghand M’ are generator matrices, then given
we can findS by linear algebra. Thus the potentially hard part of the fgwhbis finding the hidden
permutatiorP.

We call an adversary apprised of bdthandM’ a known-codeadversary. In our previous arti-
cle [7], we noted that our results on Goppa codes imply tranttural quantum attack available to a
known-code adversary yields hard cases of the hidden supgmoblem, and asserted that this should
bolster our confidence in the post-quantum security of thElMce cryptosystem.

However, the classicaupport splitting algorithm(SSA) of Sendrier [28] can efficiently solve
Code Equivalence for the family of linear codes with small,hwhich includes Goppa codes. Thus
for McEliecdNiederreiter cryptosystentmsed on Goppa codes, the known-code adversary is too pow-
erful: it can break the cryptosystem classically. Thereftine hardness of the corresponding instances
of the HSP has little bearing on the post-quantum securitiiese code-based cryptosystems

The situation is similar in many ways to the status of Graghmisrphism. There is a natural
reduction from Graph Isomorphism to the HSP on the symmgtoap, but a series of results (e.g.,
Hallgren et al. [12], Moore et al. [23]) have shown that thsuténg instances of the HSP require
highly-entangled measurements, and that known familissdf measurements cannot succeed. Thus
the miracle of Shor’s algorithms for factoring and disctetg where we can solve these problems sim-
ply by looking at the symmetries of a certain function, doesseem to apply to Graph Isomorphism.
Any efficient quantum algorithm for it would have to involvigsificantly new ideas.

On the other hand, many cases of Graph Isomorphism are eassjczlly, including graphs with
bounded eigenvalue multiplicity [1] and constant degre®.[IMany of these classical algorithms
work by finding acanonical labelingof the graph [2, 3], giving each vertex a unique label based on
local quantities. These labeling schemes use the detaftsecfraph, and not just its symmetries—
precisely what the reduction to the HSP leaves out. Analslgpthe support splitting algorithm
labels each coordinate of the code by the weight enumeratbedwull of the code punctured at that
coordinate. For most codes, including Goppa codes, thaesea labeling that is unique or nearly
unique, allowing us to determine the permutation

There are families of instances of Graph Isomorphism thiaddénown methods, due to the fact
that no local or spectral property appears to distinguishvértices from each other. In particular, no
polynomial-time algorithm is known for isomorphism of sigdy regular graphs. (On the other hand,
these graphs are highly structured, yielding canonidadlag algorithms that, while still exponential,
are faster than those known for general graphs [34].) In &neesvein, we might hope that there are
families of codes where the coordinates are hard to disishguom each other using linear-algebraic
properties. In that case, the corresponding McEliece ogystem might be hard classically even
for known-code adversaries, and the reduction to the HSHdwmei relevant to their post-quantum
security.

Along these lines, Sidelnikov [31] proposed a variant of M&Eliece cryptosystem using binary



264 Limitations of single coset states and quantum algorithonséde equivalence

Reed-Muller codes. Since there is a single Reed-Muller odd@/en rate and block length, the code
M is known to the adversary and the security of the systeméstijrrelated to the Code Equivalence
problem. Additionally, since Reed-Muller codes are seiéd they coincide with their hulls so that
the weight enumerators used by the SSA are exponentiaffg,laraking them a hard case for that
classical algorithm.

As mentioned aboveur results apply directly to Reed-Muller codes, and thustfate the natural
guantum Fourier sampling approach to the correspondinigrines of Code Equivalence. As virtually
all known exponential speed-ups of quantum algorithms ligetaraic problems derive from Fourier
sampling, this suggests that new ideas would be necessarploit quantum computing for break-
ing the Sidelnikov systemNote, however, that this result does not rule out classittatlks on the
Sidelnikov system. In particulaa classical algorithm of Minder and Shokrollahi [21] soltles Code
Equivalence problem for binary Reed-Muller codes in qualgipomial time, at least in the low-rate
setting where Reed-Muller codes have the best performgigtding a direct attack on the Sidelnikov
system.

Recently, Sendrier and Simos [29] considered a generdbver§Code Equivalence, called Linear
Code Equivalence, which is to decide whether two linear sate identical up to a linear isometry
of the Hamming distance. This problem is related to the $gcof code-based cryptosystems in a
general form. They showed then that Linear Code Equivaleanealso be reduced to (Permutation)
Code Equivalence, but the corresponding instance of Cod&/&gnce is a hard case for the classical
algorithm SSA, at least fag-ary codes withg > 5. Additionally, using the results of our preliminary
work, Sendrier and Simos [29] pointed out that the instari€&de Equivalence reduced from Linear
Code Equivalence is also HSP-hard. Based on this hardneSed# Equivalence, they improved
Girault's zero-knowledge protocol, which is also a cantédar post-quantum cryptography.

1.3 Summary of Technical Ideas

Let G be a finite group. We wish to establish general criteria folistinguishability of subgroups
H < G by strong Fourier sampling. We begin with the general sgsatgeveloped in [22], that controls
the resulting probability distributions in terms of the regentation-theoretic properties®f In order

to handle richer subgroups, however, we have to overcome sechnical difficulties. Our principal
contribution here is a “decoupling” lemma that allows us amdile the cross terms arising from pairs
of nontrivial group elements.

Roughly, the approach (presented in Section 3.2) identifiesdisjoint subsets, Small and Large,
of irreps of G. The set Large consists of all irreps whose dimensions aremadler than a certain
thresholdD. While D should be as large as possible, we also need to clives®ll enough so that the
set Large is large. In contrast, the representations inISmadt have small dimension (much smaller
thany/D), and the set Small should be small or contain few irrepsappear in the decomposition of
the tensor product representatjps p* for anyp € Large In addition, any irregp outsideSmallmust
have small normalized charactg, (h)|/d, for any nontrivial elemenh € H. If two such sets exist,
and if |H| is sufficiently small, we establish thét is indistinguishable by strong Fourier sampling
overG.

In the caseG = S, as in [22] we define Small as the s&¢ of all Young diagrams whose top
row or left column has length at leagt — c)n, and define Large by settiry = nd", for appropriate
constants &< ¢,d < 1. We show that any irrep outside Small has large dimensidrttarefore small
normalized characters.
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In the caseG = GL»(Fq), we choose Small as the set of all linear representationssanthe
thresholdD = q— 1. The key lemma we need to prove is then that for any nonlinegrp of GL>(FFg),
the decomposition gb @ p* contains at most two inequivalent linear representatifirmmma 8).

For the cas& = (GLk(IFq) x $h)1Z reduced from Code Equivalence, the normalized characters
on the hidden subgroug depend on the minimal degree of the automorphism grougMuk S,.

If we choose Small as the set of all irreps constructed framde product representatioms< A of
GLk(Fq) x Sy with A € A, then the “small” features ofic will induce the “small” features of this
set Small. Finally,|K| depends onAut(M)| and the column rank ofl. WhenM is a generator
matrix of a rational Goppa code or a canonical parity checkimaf an alternant code, A(it) lies
inside the automorphism group of a rational Goppa code,wtén be controlled using Stichtenoth’s
Theorem [35].

2 Standard Reduction from Code Equivalence to HSP

As mentioned in the introduction, we consider a search errsf Code Equivalence that recovers a
“scrambler”Sand permutatiof® from matricesM andM’. We generalize this search version into the
following problem:

Definition 1 (Scrambler-Permutation Problemiven two kx n matrices M and Mwith entries in
a finite field containingfq such that M= SMP for some & GLy(FFq) and some rx n permutation
matrix P, find such a paifS P).

This problem can be immediately recast as a Hidden SubgroolddPn (described below). We
begin with a presentation of the problem as a Hidden Shifbléro:

Definition 2 (Hidden Shift Problem)Let G be a finite group anH be a finite set. Given two functions
fo: G— Zand f; : G — X with the promise that there is an elemerg & for which f(x) = fo(sX
for all x € G, the problem is to determine such s by making querieg tmd fi. An element s with
this property is called deft shift from fy to f; (or, simply, ashift).

The Scrambler-Permutation Problem can be immediatelycestito the Hidden Shift Problem
over the groupG = GLi(Fq) x S, by defining functionsfg and f; on GLi(Fq) x S, so that for all
(SP) € GLy(Fq) x Sh,

fo(SP)=S'MP,  fi(SP)=SMP. )

Here and from now on, we identify eaohx n permutation matrix with its corresponding permutation
in S,. Evidently, SMP= M’ if and only if (S™%,P) is a shift fromfg to ;.

Next, following the standard approach to developing quanalgorithms for such problems, we
reduce this Hidden Shift Problem on a grdgpo the Hidden Subgroup Problem on the wreath product
G1Zy» = G? x Zy. Given two functionsfg and f; on G, we define the functiori : G1Z, — Z x £ as
follows: for (x,y) € G? andb € Z,

(fo(x), fa(y)) ifb=0

(fi(y), fo(x)) ifb=1 )

f(xy),b) = {

Now we would like to see that the Hidden Shift Problem is egl@nt to determining the subgroup
whose cosets are distinguished by Recall that a functiorf on a groupG distinguishes the right
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cosetf a subgrougH < Gifforall x,y € G, f(x) = f(y) «—= yx1cH.

Definition 3. Let f be a function on a group G. We say that inigctive under right multiplication
if for all x,y € G, f(x) = f(y) <= f(yx!) = f(1). Define the subset|@C G as the level set
containing the identity,

Gt = {geG|f(g)=f(1)}.

Proposition 1. Let f be a function on a group G. If f distinguishes the righsets of a subgroup
H < G, then f must be injective under right multiplication antt & H. Conversely, if f is injective
under right multiplication, then G is a subgroup and f distinguishes the right cosets of the isuipy
Gls.

Hence, the functiori defined in (2) can distinguish the right cosets of some suljgifcand only if it
is injective under right multiplication.

Lemma 1. The function f defined i(R) is injective under right multiplication if and only if (1) s
injective under right multiplication and (2); fx) = fo(sX) for some s.

The proof of this lemma is straightforward, so we omit it here

Proposition 2. Assume dis injective under right multiplication. Letd+= G|, and s be a shift. Then
the function f defined ifR) distinguishes right cosets of the following subgroup o#g

G1Zs|; = ((Ho,s *Ho$),0) U ((Hos,s *Ho), 1),
which has sizQ|Ho|2. The set of all shifts frompfto f; is Hps.

If we can determine the hidden subgrd€p= G:Z;|;, we can find a shift by selecting an element
of the form((g91,02), 1) from K. Theng; must belong tdHps, and so is a shift fronfp to f1.

Application to the Scrambler-Permutation problem. Returning to the Hidden Shift Problem over
G = GLk(Fq) x S, corresponding to the Scrambler-Permutation problem,dtear that the function
fo defined in (1) is injective under right multiplication, aritht

Ho = GLk(Fq) x Shlt, = {(SP) € GLk(Fq) x S| S 'MP=M} .
The automorphism group o is the projection oHp onto §,, i.e.,
Aut(M)={Pe S |3S:SMP=M}.
Note that eacl? € Aut(M) has the same number of preima@es GLi(IFq) in this projection.

3 Quantum Fourier Sampling (QFS)
3.1 Preliminaries and Notation

Fix a finite groupG, abelian or non-abelian, and IBtdenote the set of irreducible unitary representa-
tions, or “irreps” for short, oz. For each irrep € G, letV, denote a vector space ov&won whichp



H. Dinh, C. Moore, and A. Russell267

acts so thap is a group homomorphism froi@ to the general linear group oviés, and letd, denote
the dimension of/,. For eachp, we fix an orthonormal basB, = {bs,...,bq, } for V. Then we
can represent ea@hg) as ad, x d, unitary matrix whosg™ column is the vectop(g)b;.

Viewing the vector spac@[ ] as the regular representation®f we can decomposg[G| into
irreps as the direct su@ 7% This has a basi§p,i,j):p € G,1<i,j< do }, where{|p,i, j) |
1<i<dp}isabasis for the;th copy ofV,. Up to normalization|p, i, j) corresponds to thiej entry
of the irrepp.

Definition 4. TheQuantum Fourier transformver G is the unitary operator, denoted Rhat trans-
forms a vector ifC[G] fromthe basis{|g) | g € G} into the basis given by the decompositiorCB).
Forallg € G,

Felg) = z 9)ij .1, i),
P

wherep(g);; is the(i, j)-entry of the matn)p(g). Alternatively, we can viewdig) as a block diagonal
matrix consisting of the block/d, /|G| p(g) for eachp € G.

Notation. For each subs&t C G, define|X) = (1/\/|X]) erx |x) which is the uniform superposition
overX. For eachX C G andp € G, define the operatd‘ﬂX = erx p(x), and letX(p) denote the
dp x dp matrix block atp in the quantum Fourier transform ) i.e.,

A def dp dp‘x| P
ne.
\ 161X 2™ x

Fact 1. If X is a subgroup of G, theﬂf( is a projection operator [22].

Quantum Fourier Sampling (QFS) is a standard procedurell@séhe Quantum Fourier Trans-
form to solve the Hidden Subgroup Problem (HSP) (see [17&afsurvey). An instance of the HSP
over G consists of a black-box functiofi: G — {0,1}* such thatf (x) = f(y) if and only if x andy
belong to the same left cosetldfin G, for some subgroupl < G. The problem is to recovet using
the oracleOs : |x,y) — [x,y® f(X)). The general QFS procedure for this is the following:

1. Prepare a 2-register quantum state, the first in a unifaymerposition of the group elements
and the second with the value zetg) = (1/,/6]) Y gec 9) [0) -

2. Queryf, i.e., apply the oracl®s, resulting in the state

f
|W2) = Ot [Yn) = |G| %I \T\ ZF\GHH (a))

whereT is a transversal dfl in G.

3. Measure the second register|gf), resulting in the stateaH) | f(a)) with probability 1/|T]|
for eacha € T. The first register of the resulting state is themd) for some uniformly random
aecG.
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4. Apply the quantum Fourier transform ov@rto the coset stat@H) observed at step 3:

FelaH)= S aH(p)ijlp.i.j)-
peG,1<i,j<dp

5. (Weak) Observe the representation ngméStrong) Observe and matrix indices, |.

6. Classically process the information observed from tlesipus step to determine the subgroup
H.

Probability distributions produced by QFS. For a particular cosetH, the probability of measur-

ing the representation in the staté~g |aH) is

dp[H|
G|

do|H
T (M) M5 = 2lTe ()

Pari(p) = [|[aH(p)||2 = [€

where T(A) denotes the trace of a matex and||A||r := /Tr(ATA) is the Frobenius norm @& The
last equality is due to the fact thaf,, = p(a)M?, and thatlf is an orthogonal projector.

Since there is no point in measuring the rows [10], we are onlycerned with measuring the
columns. As pointed out in [22], the optimal von Neumann meament on a coset state can always
be expressed in this form for some baBjs Conditioned on observing in the stateFg |aH), the
probability of measuring a giveb € By, is ||Eﬁ(p)bH2. Hence the conditional probability that we
observe the vectds, given that we observe the representagioiis then

laH(p)b]® _ INGubI> _ [NEb|>

P ®1P)= "5 o)~ T (nBy T T (n?)

where in the last equality, we use the fact thapés) is unitary, it preserves the norm of the vector
neb.

The coset representatieeis unknown and is uniformly distributed ih. However, both distribu-
tionsPyn (p) andPyn (b | p) are independent af and are the same as those for the Statéd). Thus,
in Step 5 of the QFS procedure above, we obspr\'{eé with probability B4 (p), and conditioned on
this event, we observe € B, with probabilityP4 (b | p).

If the hidden subgroup is triviall = {1}, the conditional probability distribution d8y, is uniform,

IN?ybl? b2 1
Py (b|p) = 4 _ b= _ 1

Tr (n?l}) do  dp

3.2 Distinguishability by QFS

We fix a finite groupG and consider quantum Fourier sampling o@in the basis given byB,}.
For a subgroupl < G and forg € G, let H9 denote the conjugate subgrogptHg. Since Tr(l‘lﬁ) =
Tr (I‘Iﬁg), the probability distributions obtained by QFS for recangithe hidden subgroud9 are

_ Go[H|

rlp b 2

Tr(M7) =Pi(p) and Rua(b|p) = IR
p

As Ryg(p) does not depend ay weak Fourier sampling can not distinguish conjugate sougus.
Our goal is to point out that for certain nontrivial subgrddp< G, strong Fourier sampling can not
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efficiently distinguish the conjugates bf from each other or from the trivial one. Recall that the
distributionPyy, (- | p) obtained by performing strong Fourier sampling on theatiiidden subgroup
is the same as the uniform distributiblgp on the basid,. Thus, our goal can be boiled down to
showing that the probability distributid®e (- | p) is likely to be close to the uniform distributidsi,

in total variation, for a randorg € G and an irregp € G obtained by weak Fourier sampling.

Definition 5. We define thelistinguishabilityof a subgroup H (using strong Fourier sampling over
G), denotedZy, to be the expectation of the squareddistance betweende(- | p) and Us,:

Pn = Epgl|Pus(-| p) —Us,lF] ,

wherep is drawn fromG according to the distribution R p), and g is chosen from G uniformly at
random. We say that the subgroup Hrislistinguishabléf 2 < log~*™ |G|.

Note that ifZy is small, then the total variation distance betw@gs\(- | p) andUBp is small with
high probability due to Markov’s inequality: for agl > 0,

Prg[l[Rus(- | ) —Ug, llew > €/2] = Pry[[|Pua (- | p) — Ug, [If > €] < 7 /€.

In particular, if the subgroupl is indistinguishable by strong Fourier sampling, then fbcanstant
c>0,
[Pa(- | p) —Us, [lt.v. <log™¢|G|

with probability at least 1-log~¢|G| in bothg andp. Our notion of indistinguishability is the direct
analogue of that of Kempe and Shalev [15]. Focusing on weaki€&osampling, they say thét is
indistinguishable if[ P (-) — Py1y (-) [ty < log~“™® [G.
Our main theorem below will serve as a general guideline ambling the distinguishability of
H. For this purpose we define, for eaahe G, themaximal normalized character of on H as
et |Xa(h)]

Yo (H) & LCASUA
XalH) = max 55,

For each subs&c G, let

Xs(H)= maxx,(H) and ds=maxd,.
0eG\S oes

In addition, for each reducible representatmf G, we letl(p) denote the set of irreps @ that
appear in the decomposition pfinto irreps.

Theorem 1. (Main Theorem) Suppose Sis a subsebof et D> dé and L= Lp C G be the set of all
irreps of dimension at least D. Let

A=NAg =max|SNl(p®p*)|. (3)
peL

Then the distinguishability of H is bounded by

@2 |[C|p?
Dy < 2 - A S )
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Intuitively, the setSconsists of irreps of small dimension, abh@donsists of irreps of large dimen-
sion. Moreover, we wish to have that the sizeSaé small while the size ok is large, so that most
irreps are likely inL. In the cases where there are relatively few irreps, @< D and|G| < |G|,
we can simply upper bounti by |S| and upper boun¢L| by \é|.

We discuss the proof of this theorem in Section 4. Applicaiof Theorem 1 will be presented
in Section 5 (for the symmetric group), in Section 7 (for tlemeral linear grougsL,(Fg)), and in
Section 6 (forCode Equivalenge

4 Bounding Distinguishability

We now sketch the proof for the main theorem (Theorem 1).ngix nontrivial subgroupl < G, we
want to upper boun@y. Let us start with bounding the expectation over the randooogelement
g € G, for a fixed irrepp € G:

def

En(p) = Eqg[[|Phs(- | p) —Us, |13] -

Obviously we always haveéy (p) < 4. More interestingly, we have

En(p)

Il
=
«Q
1
o
m
oM

2
< Eg|dp % (PHg(b|p)—d1> ] (by Cauchy-Schwarz)
beB, P
. 1
— dp 3 VarglPa(b|p)]  (sincekglPus(b|p)) =
b<Bp P
d
= =0 Varg[||MEgbl?] . (@)

The equatiorEq[P4s(b | p)] = 1/d, can be shown usin§chur’s lemmas in Proposition 3 below.

Proposition 3. Let H < G and g be chosen from G uniformly at random. Therp‘@{ré andb € Bp,
Eg[Pua(b | p)] =1/dp.

Proof: Schur’s lemma asserts thatgfis irreducible, the only matrices which commute wtfg) for
all g are the scalars. Hence,

g,
d dp »
)

Eg[Mfe] = ag;f(g)ﬂﬁp(g) =

which implies that

(M)

Eq[|MRsb[1%] = Eg[(b, Mfiob)] = (b, Eg[MFe] b) = dy
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O

From (4), we are motivated to bound the variancﬁmﬁgbn2 wheng is chosen uniformly at ran-
dom. We provide an upper bound that depends on the projectithe vectorb @ b* onto irreducible
subspaces gb @ p*, and on maximal normalized charactersoobn H for all irrepso appearing in
the decomposition gb ® p*. Recall that the representatipn p* is typically reducible and can be
written as an orthogonal direct sum of irgps p* = @, _g a0 0, Whereas > 0 is the multiplicity of

0. Thenl(p ® p*) consists oo with ag; > 0, and we Ieﬂ’c’f@p* denote the projection operator whose
image isag 0, that is, the subspace spanned by all copies.o©ur upper bound given in Lemma 2
below generalizes the bound given in Lemma 4.3 of [22], wioicly applies to subgrougs of order

2.

Lemma 2. (Decoupling Lemma) Lgt be an irrep of G. Then for any vectore V,,

* 2
Varg IMGubl] < S Xo(H) M5 (beb)
oel(pep*)

Proof of Lemma 2 Fix a vectorb € V,. To simplify notations, we shall writély as shorthand for
I'If,g, and writegb for p(g)b. For anyg € G, we have

IMgb||* = (Mgb,Mgb) = (b, Mgb)

_ ‘%' ((b,b> + <b,glhgb>> .

Let Sg = ZhEH\{l} <b,gflhg)> Then

2] _ 2
Varg | 15b|?) — Y - =6 [Sg]|H12Eg[sgl

hedv {1}

To bound the variance, we upper bm@dor allge G. SinceS;is real, applying Cauchy-Schwarz
inequality, we have

2

(b,g thgb)
heH\{1}

< <|H|—1>< |<b791h9b>|2> :
heH\{1}

As in Lemma 4.2 of [22], one can express the second momenteohtier producl(b,g‘lhgb> in
terms of the projection db ® b* into the irreducible constituents of the tensor productesentation
p ® p*. Specifically, for amyh € G, we have

Xo(h) 2

Eq[|(b.g*hgb) [?] = i

oel(pep*)

Hn’;®ﬂ*(b®b*)

It follows that

H[-1

p 2
Varg[HrngbH ] < |H‘2

Eq||(b,g™*hgb)|”|
heH\{1}
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h 2
SEheH\{l}[ > Xg( )Hl'lﬁgp (b®b*) ]
oel(pzp*) 9
« 2
< Y Xe(H)||nE beb)
o€l (p@p*)

O

Returning to our goal of boundinBy (p) using the bound in Lemma 2, the strategy will be to
separate irreps appearing in the decompositign@fo* into two groups, those with small dimension
and those with large dimension, and treat them differertlyl, is large, we shall rely on bounding
Xo(H). If dg is small, we shall control the projection given 55@@,0* using the following lemma
which was proved implicitly in [22]:

. 2
Lemma 3. For any irrepa, we havey g, HI‘I@W (beb*)|| <dZ.

Proof of Lemma 3 Let L, be the subspace @f @ p* consisting of all copies ofr. SinceB, is
orthonormal, the vector%b ®b*|be Bp} are mutually orthogonal ip ® p*. Thus,

2 .
<dimLg.

b; )]nf;@"*(b@b*)
X

Note that dinly is equal todg times the multiplicity ofo in p ® p*. On the other hand, we have

multiplicity of o in p® p* = (X, XpXp* ) = (Xo Xps Xp* )
= multiplicity of p* ino®p
dim(o®p)
< —_— T
dimp* Ao,
Hence,

2
<d?.

% Hng®p*(b®b*)

bep

The method discussed above for boundiiag p) is culminated into Lemma 4 below.

Lemma4. Letp € G be arbitrary and S G be any subset of irreps that does not confairThen

2
En(p) < 4HP (xs<H>+|sm<p®p*>|jj) |

Proof of Lemma 4 Combining Inequality (4) and Lemmas 2 give

do
Tr(Mg)?

2

En(p) <

X, (H) N2%F" (b b*)
oel(%@p*) ’ b;pH ’
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Now we split additive items in the above upper bound into tnaugs separated by the setFor the

2
S
o< pO'G'(pQQp )

s(H)do.

H) % Hn’?ﬁ’*(b@b*) 2P (b o b |

oeSNGPOP*

<1

IA
|

For the second group (small dimension),

p&p* N _ 5
H) % H”o (babl)l < % Xs(H)dz  (byLemma3)
beBp

genl(pep*)

oesnI(p@p*)

< d5 (sinceX,(H) <1)

(
genl (pep*)
<|sni(p®p")|d2.

Summing the last bounds for the two groups yields

)2<x5 (H)+[snl(p@p")| S)

On the other hand, sindg; (p) < 4, we can assumi?xs(H) < 1, and thusys(H) < ﬁ < a-
Hence, we have

En(p) < (Tr(lflﬁ)

Tr(ny) 1 Xo(h) 1 1
=— |1+ > — — X _
T TG B g B TR TR
where the last inequality is due %, (H ) <Xs(H) < ﬁ This completes the proof. O

To apply this lemma, we should choose the suSsetch thatjé < dp, that is,Sshould consist of
small dimensional irreps. Then applying Lemma 4 for allpge of large dimension, we can prove
our general main theorem straightforwardly.

4.1 Proof of the Main Theorem

We now present the formal proof of the main theorem.
Proof of Theorem 1: SupposeSis a subset 06G. LetD > d, L = Lp C G be the set of all irreps of
dimension at leadd, andA = As| = maxycL ]Sm I(p ®p* ] . Our goal is to show that

2
o< 4P (xer) 1o+ L0 ©)

For anyp € L, sinced, > D > dé, we must have ¢ S. By Lemma 4,
dg
En(p )<4|H2< s(H )+AD> forallpeL.
Combining this with the fact thdy (p) < 4 for all p ¢ L, we obtain

d2
90 = EglEn ()] < 4H P2 (Xs() +0 ) +4Pplp £
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To complete the proof, it remains to bound2r ¢ L]. Since T(MY) < d,, we have

_ Gp[H|

d3|H|

G

Sinced, < D for all p € G\ L, it follows that

[LID?[H| _ [L[D?H[?
PoipgLll=S P(p) < < .

This completes the proof of (5). O

5 Strong Fourier Sampling over§,

We focus now on applying the main theorem to the case wieigthe symmetric groujs,. As
mentioned in the introduction, this case is motivated bywlek of Kempe and Shalev [15] and
Kempe et al. [16], which established similar results retpgyrdhe general hidden subgroup problem
over S,, but with weak Fourier sampling. The basic techniques usétli$ case, which control the
normalized characters and dimensions of representatfaihe @ymmetric group, will be adopted in
the case of Code Equivalence.

Recall that each irrep &, is in one-to-one correspondence to an integer parttion(A1, Az, ..., At)
of n often given by aroung diagranof t rows in which the™ row contains); boxes The conjugate
representation ok is the irrep corresponding to the partitidh = (A1,A5,...,A/), obtained by flip-
ping the Young diagram about the diagonal.

As in [22], we shall apply Roichman’s upper bound [27] on nalized characters:

Theorem 2 (Roichman’s Theorem [27])There exist constant} 0 and0 < q < 1 so that for n> 4,
for everym € S,, and for every irrepA of S,

/ b-supg(m)
s (e )
d, n'n

wheresupf(rr) = #{k € [n] | ri(k) # Kk} is the support oft.

This bound works well for unbalanced Young diagrams. Inipaldr, for a constant & ¢ < 1/4,
let A\; denote the collection of partitions of n with the property that eithe‘%é >1-cor A—ni >1-c,
i.e., the Young diagram contains at leagtl — c)n rows or contains at lea$l — c)n columns. Then,
Roichman'’s upper bound implies that for ever¥ S, andA ¢ A¢, and a universal constaat> 0,

XA (7T) ’ < e—asupn ) ) (6)
d)

On the other hand, bott\:| and the maximal dimension of representationAdrare small, as shown
in the following Lemma of [22].

Lemma 5 (Lemma 6.2 in [22]) Let p(n) denote the number of integer partitions of n. Thag <
2cn-p(cn), and d; < n°" for any u € Ac.
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To give a more concrete bound for the sizé\gf we record the asymptotic formula for the partition
function [8, pg. 45]:p(n) ~ €™V2"3/(4y/3n) = e®VM /nasn — o,
Now we are ready to prove the main result of this section, aficgiion of Theorem 1.

Theorem 3. Let H be a nontrivial subgroup of,Svith minimal degree m, i.e.,

m= min SUpgm).
meH\{1} pF()

Then for sufficiently large nzy < O(|H [2e=9™).

Proof: Let 2c < d < 1/2 be constants. We will apply Theorem 1 by settig A andD = n". By
Lemma 5, we haves < n®". Hence, the condition@< d guarantees thdd > d%. First, we need to
bound the maximal normalized characjgy(H). By (6), we havex,(H) < e ™ for all p € S\S
Hence,xg(H) < e ™. To bound the second term in the upper bound of Theorem A, @S, it
suffices to bound:

2cn

2
S %S <2cn-p(en) g < eV N <2

for sufficiently largen, so long asy < d —2c. Now bounding the last term in the upper bound of
Theorem 1: Sincép| < |S| = p(n) andn! > n"e" by Stirling’s approximation,
T ~1D2 2dn O(v/N) r2dn
|Lp|D - p(n)n <€ n
Ss/ — n = npre"

< eO(n)n(zd—l)n < n—yn/z

for sufficiently largen, so long ag/ < 1— 2d. By Theorem 127y < 4/H[?(e @™ 4-n~"").
O

Theorem 3 generalizes Moore, Russell, and Schulman’strg]lon strong Fourier sampling
over S,, which only applied in the cagél| = 2. To relate our result to the results of Kempe et al.
[16], observe that since 108,| = ©(nlogn), the subgrougH is indistinguishable by strong Fourier
sampling if[H|?e~?™ < (nlogn)~“" or, equivalently, ifm> (2/a)log|H |+ w(logn).

6 Applications to Code Equivalence

Our main application of Theorem 1 is to show the limitatiofstoong Fourier sampling in solving
Code EquivalenceThroughout this section, we fixkax n matrix M, which can be a generator matrix
or a parity check matrix of g-ary linear code used in some code-based cryptosystem. thitéhe
entries ofM are in a finite fieIleq( O Fq (whenM is a generator matrix of g-ary linear code, we
must have = 1).

Recall that the Code Equivalence instance with ifutan be reduced to the HSP over the wreath
product groug GLk(Fq) % ) 1 Z; the hidden subgroup in this case is

K = ((Ho,S "Hos),0) U ((Hos.s *Ho), 1) ™
for some hidden elemestc GLy(IFq) x §,. Here,Hg is a subgroup o6Li(Fq) x S, given by

Ho=Ho(M) £ {(AP) € GLk(Fq) x Sy |A*MP=M} . (8)
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To understand the structure of the subgrélgM), we define the@utomorphism groupf M as
Aut(M) £ {P€ S, | SMP=M for someSe GLk(Fq)} .

Note that AufM) is a subgroup of the symmetric gro® and that each elemef, P) € Hp must
haveP € Aut(M). This structure allows us to control the maximal normaligedracters oK through
the minimal degree of AUM).

6.1 Controlling Normalized Characters

In this part, we will discuss how to control the maximal nolimed characters on the subgrolp
defined in (7), which is necessary in order to apply the masoitém.

6.1.1 Normalized Characters for @,
Firstly, we consider the wreath produgt Z,, for a general groufs, and a subgroup of the form
K = ((Ho,5*Hos),0) U ((Hos, s Ho), 1) < GiZ»

for some subgrouply < G and some elemerg€ G. The irreducible characters @:Z, can be
naturally constructed as induced characters:

1. Each unordered pair of two non-isomorphic irrepgp € G gives rise to an irrep o5 Zo,
denoted{p, o}, with character given by:

Xip.o1 (%), b) = {g(p(X)xa(w +Xp(¥)Xo (X) I; Ez (1).

The dimension of representati¢p, o'} is equal tox;, 43((1,1),0) = 2dyds.

2. Eachirrepp € G gives rise to two irreps o1 Zy, denoted{p} and{p}’, with characters given
by:

X

X

o
o

ifb=0

Xioy (%.Y).D) = {{ﬁ:gf;’)(” Y

Both representation§o} and{p}’ have the same dimension eqdél

X{p}((X,y),b):{ EX)Xp(y) if b=0

Xy) ifb=1

Clearly, the number of irreps @7 is equal t0/G|?/2+ 3|G|/2, which is no more thaiG|2 as
long asG has at least three irreps. Now it is easy to determine them@bxiormalized characters on
subgroupK.

Proposition 4. For non-isomorphic irrepp, o € G,
X{pp}(K) < Yp(HO)XU(HO) :
Forirrep p € G,
X (0} (K) = X oy (K) = max{yp(Ho)z,l/dp} .

Hence, to bound the maximal normalized characteis ome can turn to bounding the normalized
characters on the subgrotig and the dimension of an irrep &.
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6.1.2 Normalized Characters fGLy(Fq) x Sh)1Z>
Recall that for the HSP case reduced fr@mde Equivalenceve haveG = GLy(Fq) x S, and every
element(A,P) € Hp hasP € Aut(M).

Fort e GL/k(Fq) and €S, letT x A denote the tensor product as a representati@ipffg) x S.
Those tensor product representationsA are all irreps olGLy(Fg) x S,.

Forall (A, P) € GLk(Fq) x Sy, sincex; ., (A,P) =X (A)X, (P) andx,(A) <1, we have(,,, (A,P) <
X (P). If (A,P) € Ho thenP € Aut(M). Hence,

Xrxa (Ho) < X5 (Aut(M)).

As in the treatment for the symmetric group, we can bound tlagimmal normalized character
X (Aut(M)) based on the minimum support of non-identity elements in( Myt for anyA € S\ Ac.
To complete bounding the maximal normalized characterbesubgrouf, it remains to bound
the dimension of a representatiorx A of the groupGLy(Fq) x Sy with A € S\ Ac. Since the dimen-
sion of T x A is
drx)\ = drd)\ > dA )

we prove the following lower bound fat; .

Lemma 6. Let0 < ¢ < 1/6 be a constant. Then there is a constnt- 0 depending only on c such
that for sufficiently large n and fok € §;\ A,

d, > €.

Proof of Lemma 6 Consider an integer partition of A = (A, ...,A¢), with bothA; andt less than
(1—c)n. LetA" = (A1,...,A; ) be the conjugate of, wheret =A; > A; > ... > A} andy;A/ =n.
WLOG, assume\] < A1. We label all the cells of the Young diagram of shapasc;,...,cy such
thatc; is thei™ cell from the left of the first row, for X i < A1 (see Figure 1 below for an example).

Ci|C|C| C ‘
Cs | G | C7
Cs

Fig. 1. Young diagram = (4,3,1), where hookc;) = 6, hookcz) = 4, hookcz) = 3, hooKcs) = 1.

The dimension o is determined by thbook length formulg8, p.50]:

dy = I-Iocr)]l!<(}\)’ Hook(A) = iElhook(ci),

where hookc) is the number of cells appearing in either the same columhessame row as the cell
ci, excluding those that are above or to the leftjofin particular,
hook(ci) = Ay —i+ A/ for1<i<Aj.

If A1 <cn, we have hoofci) <t+A; <2cnforall 1 <i<n,thus

nl n" 3\"
> > > (2] >ePn
th = (2cn)™ — e(2cn)" — (e> 2",
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wheref is any constant such thatQf <In3—1.

Now we consider the casm < A1 < (1—c)n. LetA = (A2,...,At), this is an integer partition of
n— A1 whose Young diagram is obtained by removing the first row ofApplying the hook length
formula forA and the fact thadl; > 1 gives us:

(n—)\l)!

Hook(f\) S
A

< (n=A)!.
Then we have

Hook(A Hook rlhook(c.

<(n- AD'[VAl_I+A)

A1)!A . Al
==A)NM! T 1+
( 1) li|_l< +/\;|_—I—|—:|.>

/

A T |
< (n=A1)!'A1lex - since 14+ x < & for all x).
< (=2 p<iz\7\1l+1) ( 4+ X < )

To upper bound the exponent in the last equation, we use Gheb¢ sum inequality, which states
that for any increasing sequerge> a, > ... > ax and any decreasing sequeliige< by < ... < by of
real numbers, we havesk | aibi < (3%, &) (3£, bi). Since the sequend@/ — 1}, is decreasing
and the sequendel/ (A1 —i+ 1)}{\:1l is increasing, we get

aON- MN-y (B _n-M g1
Zl)\l—l—f—l A1 i;/\l—i—Fl A1 iZli '

For any integeN > 0 we have

iil: (szil>+( % Il) < [\FNJQ\'_\%NJQW.
= = i=|

VN |+1

Hence,

Hook(A) < (n— Al)')\llexp(m\/r/\l)) .
1

It follows that

n!

(n—)\l)!)\llexp(z(”\/)\ill))
() eo(- 73 +2v)

() ool 3020

dx

%
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> <1>A1exp<—zn +2\/)T> (sinceA; < (1—c)n)
=1 N 1 1
> (110) exp(—2\/n/c+2\ﬁ:) (sinceAy >cn).

Choosing any constaft such that 6< 8 < cIn l—fc we haved, > eP" for sufficiently largen. [

Remark The lower bound in Lemma 6 is essentially tight. To see thossaer the hook of width
(1—c)n and of depthcn. This hook has dimension roughly equel (), which is no more than

(e/c)en.
6.2 Applying the Main Theorem

Now applying Theorem 1, we show that

Theorem 4. Assume 62 < n?" for some constan® < a < 1/4. Let m be the minimal degree of
the automorphism grouput(M). Then for sufficiently large n, the subgroup K defined@nhas
Pk < O(|K|?e~9M) , whered > Qs a constant.

The proof of Theorem 4 follows the technical ideas discusseide introductionusing the afore-
mentioned tools for controlling the maximal normalized rettéers ork.
Proof of Theorem 4 To apply Theorem 1, let& c < min{1/6,1/4 — a} be a constant ar8be the set
of irreps of (GLk(Fq) x Sh)1Z2 of the forms{T x A,n x u}, {Tx A}, {tx A} with 1,n € Gm)
andA, u € A¢, where/\¢ is mentioned in Section 5. Firstly, we need upper boundg oK), |, and
ds.

Since AutM) has minimal degrem, by Inequality (6) in Section 5, we have for alle SAn\/\c,

X, (Aut(M)) < e @M.
Combining with Lemma 6 yields
Xs(K) < max{efzam,e*ﬁ”} <eom
for some constand > 0 (we can sed = min{2a,}).
Since’GL/k(Fq)’ < |GLk(Fqg)| < ¢ and by Lemma 5, we have
S < ’GL/k@)‘ZV\C\quZkZeO(ﬁ)-

To boundds, we start with bounding the dimension of each represematids. A representation
{T xA,n x u}in Shas dimension

20y, Oy = 2y dpdy < 20 dy N2 < 20K 02N,
where the first inequality follows Lemma 5. The last ineqydiiolds because for anye Gfk@),

dF< Y d5=I[GLk(Fq).
pEGLk(Fq)
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Similarly, a representatiofit x A} or {T x A} in Shas dimensionl? , < qn?en. Hence, the maxi-
mal dimension of a representation in the Sét

ds < quz n2en
Let da+4c < d < 1 be a constant and Igt be any constant such thak0y; < d —4c— 4a. Now we
set the dimension thresholi= n?". From the upper bounds ¢8 andds, we get

d? 2
S Es < 4 O p(de-dn

< 4PV p(4a+ac—dn (sinceqk2 < @)

<n A" for sufficiently largen.

Let L be the set of all irreps dfGLy(Fq) x $) 1 Z2 of dimension at leadd. Bounding|L| by the
number of irreps of GLk(IFq) x $) 1 Z2, which is no more than square of the number of irreps of
GLk(Fq) x S, we have

IL| < \Gﬂ@)\z\é\z < |GLk(Fq) > p(n)2.

Hence, for sufficiently large,

2
|L|D2 _ ‘GLK(]Fq)| p(n)2n2dn _ p(n)ZnZdn
|(GLK(Fq) X S0 Z2| ~  2|(GLi(Fq)|* [ 2(n!)2
eO(ﬁ)nZdn
- 2n2ne72n

< ePMp2d-1n < %" solong agp < 2(1—d).
By Theorem 1, we have
T < AKX (€70 n ANy ) < 41K 2(e O™ 4 n ),

for some constant > 0. This completes the proof.
O

As ¢ < n®" we have lod(GLk(Fq) x Sh)1Z2| = O(logn! + logg<’) = O(nlogn) . Hence, the
subgroupK is indistinguishable ifK|?e~%™ < (nlogn)~®1). The size of the subgroug is given by
|K| = 2|Ho|?, and|Ho| = |Aut(M)| x |Fix(M)]|, where

Fix(M) £ {Se€ GLy(Fq) | SM=M}

is the set of scramblers fixing. To bound the size of F{}M), we record an easy fact which can be
obtained by the orbit-stabilizer formula:

Fact 2. Let r be the column rank of M. ThéRix(M)| < gk

Proof: WLOG, assume the first columns ofM areIFqg—IinearIy independent, and each remaining
columniis arﬁ‘qg—linear combination of the firgstcolumns. LeiN be thek x r matrix consisting of the
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firstr columns ofM. Then we can decompo#¢ asM = (N | NA), whereA is anr x (n—r) matrix
with entries inF . Clearly, FiXM) = Fix(N). Consider the action o&Lk(F) on the set ok x r
matrices ovef . Under this action, the stabilizer bf contains FiXN), and the orbit of the matrik,
denoted OrtN), consists of alk x r matrices ovelf, whose columns arg-linearly independent.

Thus,|Orb(N)| = (g% — 1)(g™ — q) ... (g™ — g’"~1)). By the orbit-stabilizer formula, we have

< GLe(Fq)l (g™ ~1)(a™~qf)... (@™ —g V)
~ |Orb(N )| (@ -1 ). (g - Y)
(q/k q[r)(q/k qE(H»l)) . (qfk _ qf(kfl)) < qék(kfr) )

|Fix(N)

Corollary 1. Assume bz < n%2" and the automorphism groukut(M) has minimal degre@(n). Let
r be the column rank of M. Then the subgroup K definefV)rhas Zx < |Aut(M)[*g* k-2
In particular, the subgroup K is indistinguishable if, fbetr, |[Aut(M)| < €™ and r> k—o(y/n) /.

The constrainqk2 < n%2"implies log|GLk(Fq)| = O(nlogn), so Alice only needs to fli®(nlogn)
bits to pick a randon® from GLk(Fq). Thus she needs onif@(nlogn) coin flips overall to generate
her private key.

6.3 HSP-hard Instances of Code Equivalence

Definition 6. If M is a generator matrix or parity matrix of linear code C, dithe subgroup K defined
in (7) is indistinguishable, then we say that the code C i$i&P-hard instance of Code Equivalence
or HSP-hardor short.

In other words, we say a linear co@as HSP-hardif strong quantum Fourier sampling, or more
generally any measurement of a coset state, reveals r#gligiformation about the permutation
betweerC and any code equivalent @ Our results above suggest that the HSP-hardness of a linear
codeC may be related to its (permutation) automorphism group. akerthis precise, let us recall
some definitions.

Definition 7. Let C be a g-aryn,k]-linear code. Theutomorphism groupf C, denotedAut(C), is
the set of n< n monomial matrice® overFq such that SGQ= G for some generator matrix G of C
and some k k invertible matrix S oveFq [19, pg. 238]. Thepermutation automorphism grous
C, denotedPAut(C), is the subgroup ofut(C) consisting of all permutation matrices Aut(C), i.e.,
PAUt(C) = Aut(C)N'S,.

We remark that if the cod€ is binary, i.e.,g = 2, its permutation automorphism group coincides
with its automorphism group. Moreover, the notion of permutaiatomorphism group agrees with
the notion of automorphism group used by van Lint [36, pgdsild Stichtenoth [35].

Observe that in the case the mathikis a generator matrix of the cod&z we have AufM) =
PAut(C) andM has full rank. Thus, Corollary 1 immediately gives us:
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Corollary 2. Let C be a g-aryn, K-linear code such that'g < n®2". If |PAutC)| < "™ and the
minimal degree oPAut(C) is Q(n), then C is HSP-hard.

In the remaining part of this section, we will present a fewdfic cases of linear codes that are
HSP-hard. Most of these cases have been used or could benusadetbased cryptosystems.

6.3.1 Rational Goppa Codes (or Generalized Reed-Solomdes}o

The first case of an HSP-hard linear code is rational Goppas;@lso known as Generalized Reed-
Solomon (GRS) codes described in Subsection 6.3.2. Outdaiow the HSP-hardness of rational
Goppa codes is due to a theorem of Stichtenoth [35].

Theorem 5. [Stichtenoth [35]] Supposg < k < n— 2. Then the (permutation) automorphism group
of any rational Goppdn, k]-code over a field F is isomorphic to a subgrougPéfL,(F ), the projective
linear group over F.

In particular, we will use Stichtenoth [35]'s theorem to trohthe permutation automorphism
group of a rational Goppa code as follows.

Lemma 7. Suppos@ < k < n—2. Let C be a rational Goppa code of length n and dimension k over
a field F, therPAut(C) < |F|® and PAut(C) has minimal degree at leastn2.

Proof: By Theorem 5, we have PA(@) C PGLy(F). Thus,
IPAUL(C)| < |PGLo(F)| < |FJ3.

The lower bound oh— 2 on the minimal degree of PA@) is obtained by the observation that any
transformation ifPGLy(F) that fixes at least three distinct projective lines must leddlentity. O

The following theorem, which shows the HSP-hardness admatiGoppa codes, follows immedi-
ately from Corollary 2 and Lemma 7.

Theorem 6. Let C be a g-ary rational Goppa code of length n and dimensisadh that !:’12 < n%2n,
Then C is an HSP-hard instance of Code Equivalence.

Rational Goppa codes were proposed to be used in a variahed¥itEliece cryptosystem by
Janwa and Moreno [14]. However, this McEliece variant iskbroby Sidelnikov and Shestakov
[32]'s structural attackTherefore, the HSP-hardness of rational Goppa codes Hadbkiaring on the
post-quantum security of such a code-based cryptosystem.

6.3.2 Alternant Codes

Recall that alternant codes are subfield subcodes of theajeeel Reed-Solomon (GRS) codes. For-
mally, letv = (vi,...,Vn), wherev’s are nonzero elements of the fi@‘q;, and leta = (as,...,0n),
wherea;’s are distinct elements (']qu;‘. For each integeko < n, the GRS cod&RSy, (a,v) over the
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field F, is defined as follows®
GRSy, (a,v) := {(vlf(al),...,vnf(an)) | £(X) € Fg[X], degf < ko} .
Then thealternant codea(a,V) is theg-ary code consisting of all codewords fro&RS,(a,V)
with components . In other words, (a, V) is the intersection 0&RSy, (o, v) andFg. Readers

can see [19, Ch.12] for backgrounds on alternant codes.

Fact 3. GRSy, (a, V) has kg x n generator matrices over a finite fielt, of the following form:

vlfl(al) szl(az) anl(an)
vifa(ar) vafa(on) -+ vafa(on)

My (@, V) = : : N : )
Vifig(ae) Vafig(az) - Vafig(an)

where {,..., fy, are F-linearly independent polynomials iy [X] of degree less tharpk

Fact 4. The dual code 0&RSy,(a,V) is GRSy_i,(a,V).

It follows that GRSy, (a,v), and therefore,(a,v), has an(n— ko) x n parity check matrix of
the formM,_i, (a,Vv). With this fact and using the result of Stichtenoth [35] agaie can show the
HSP-hardness of alternant codes as follows.

Theorem 7. Suppose §0)* < n%2" and ¢ < ™. Then the alternant code, (a, V) is HSP-hard.

Proof: Letk = n—kp and consider the case where khen matrixM is of the formM,_,(a,v). Thus,
M is a parity check matrix of the codei, (a,v).

On the other hanaVl is also a generator matrix of the coG&S,_,(a, V), which implies thai
has full rank and that AGM) = PAut(GRS,_,(a,V)). SinceGRS,_i,(a,V) is a rational Goppa code
overFy, by Lemma 7, we have PAUERS,_,(a,V)) has size at mosf and has minimal degree at
leastn — 2.

The proof is then completed by applying Corollary 1. |

Note that ifM is a parity check matrix of the form,_y,, a parity check matri¥ over the subfield
Fq for <%, (a,v) can be obtained by replacing each elemenmimwith the corresponding column
vector in[Fé. Thus,M has?(n—kg) rows, which implies that#, (o, v) has dimensiok’ > n—/{(n—ko)
(alsok’ < ko) [19, pg. 334]. The sufficient condition specified in Theorgfor <, (a,v) to be HSP-
hard requireg(n— ko) to be small, and thus, the dimension@f,(a,v) to be large.

In code-based cryptography, many subclasses of alterodessctave been proposed to be used.
One important subclass is binary Goppa codes, which is usEidEliece and Niederreiter cryptosys-
tems. Others subclasses generalized Srivastava codfb], quasi-monoidic alternant codgs],
quasi-cyclic alternant code@ subclass of these codes, namely quasi-cyclic Goppa chdsdeen
proposed for use to reduce key sizes [6, 9, 4]). Technicsilhge alternant codes have an efficient

dMore preciselya; can bew, in which casef (a;) is evaluated by the conventiofi(c) is the X~ 1-coefficient of f (X).
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decoding algorithms [19, §9], any alternant code can be tsdulild a code-based cryptosystem.
Theorem 7 suggests that a cryptosystem using alternans caith appropriate parameters, can resist
guantum attacks that use the standard QFS method to recaret permutations. Of course, such

a cryptosystem is still subject to other quantum (or cladpiattacks. Therefore, the HSP-hardness

of alternant codes does not guarantee that any cryptosystérg an alternant code, including the

McEliece and Niederreiter systems, are secure againstiquaand classical adversaries.

6.3.3 Reed-Muller Codes

We now consider binary Reed-Muller codes, which are usedhénSidelnikov cryptosystem [31].
Let m andr be positive integers withh < m, and letn = 2™. Fix an ordered lis{as,...,an) of
all 2™ binary vectors of lengtm, i.e., F?' = {a1,...,an}. Ther®-order binary Reed-Muller code
of lengthn, denotedRM(r,m), consists of codewords of the forff(a1),..., f(an)), wheref €
F2[X1,...,Xm| ranges over all binary polynomials an variables of degree at most The code
RM(r,m) has dimension equal to the number of monomials of degree sttrmo

T /m
=2 (7)
To apply Corollary 2, we first need to choassuch thak? < 0.2m2™. If r < 0.1mthenk < r(O'T <
r2047mM andk? < 0.2m2™ for sufficiently largem.

Next, we examine the permutation automorphism group of gedRMuller codes. Recall that for
any binary code, the permutation automorphism group co@ssvith the automorphism group. Let
GLm(F2) denote the set of invertible x m matrices oveff,. It is known [31, 19] that AUtRM(r,m))
coincides with the general affine group of the sp&geIn other words, AUtRM(r,m)) consists of all
affine permutations of the formi, g(x) = Ax+- B whereA € GLy(IF2) andf < 5. Hence the size of
Aut(RM(r,m)) is

IAUL(RM (r,m))| = |GLm(F2)]| - [F] < 27+M — 20(logn) < go(n),

Finally, we compute the minimal degree of ARM(r,m)) as follows.

Proposition 5. The minimal degree gkut(RM(r,m)) is exactly2™ 1 = n/2.

Proof: The minimal degree is at most'21, since there is an affine transformation with supp8rt2
For example, leA be them x m binary matrix with 1s on the diagonal and tfie m)-entry and Os
elsewhere. Themp g fixes the subspace spanned by the first 1 standard basis vectors. Its support
is the complement of this subspace, which has sfzé 2

Conversely, ifoa g fixes a seBthat span&?3', theno, g must be the identity. To see this, lete S
and consider the translated &t S— Xo. ThenAy =y for anyy € S, since

Y+Xo = Opp(Y+Xo) = Ay+ 0p g (X0) = Ay+Xo.

If SspansFy' then so does, in which caseA = 1. Thenf = 0, since otherwise; 3 doesn't fix
anything, and g is the identity.

Moreover, any sebof size greater than™ 1 spansFy'. To see this, leB be a maximal subset &
consisting of linearly independent vectors. SiBcgpansS, we have S < 2B, Thus if|§ > 2™ we
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have|B| = m, soB and therefores spanF3'. Thus no nonidentity affine transformation can fix more
than 2"~ points, and the minimal degree is at lea8t2 O

We have proved the following:
Theorem 8. Reed-Muller codeBM(r,m) with r < 0.1m and m sufficiently large are HSP-hard.

In the original proposal of Sidelnikov [31},is taken to be a small constant, where the Reed-Muller
codes have low rate. It is worth noting that the attack of Minahd Shokrollahi [21] becomes infeasi-
ble in the high-rate case wherés large, due to the difficulty of finding minimum-weight codeards,
while Theorem 8 continues to apply. However, as those asifhaint out, taking large degrades the
performance of Reed-Muller codes, and presumably openSittenikov system to other classical
attacks.

7 Strong Fourier Sampling over GLy(Fq)

Now we supplement applications of the main theorem (Thedrewith the case of the finite general
linear groupG = GL»(IFq), whose structure and irreps are well known [8, §5QLr lower bounds
complement previous work of lvanyos [13] on the hidden sabgmproblem over general linear groups.
We remark also that our negative results may also have apiplis to quantum-resistant cryptosys-
tems: In a talk [37] at MIT in 2007, Umesh Vazirani outlined meeway function whose security is
related to solving the hidden subgroup problem over themgétieear group.

7.1 Irreducible Representations of GLy(Fq)

We will first present preliminary background on the struetaf GL,(Fq) followed by description of
its irreps. We refer readers to [8, §5.2] for the missing técdl details in this part.

Viewing GL»(IFq) as the group of alFy-linear invertible endomorphisms of the quadratic extemsi
Fg of Fg, we have a large subgroup Gt (Fq) that is isomorphic tdF‘:;12 via the identification:

fe|EcFL LTy, fro &
{relgery}=r,

wherefg 1 Fo — Fgp is theFg-linear map given byfs (v) = &v forall v € Fp.
To turn each mag; into a matrix form, we fix a basigl, y} of F 2 as a vector space ovEy. For
each¢ € Fo, writing & = éxy = X+ yy for somex,y € Fq, then the maff corresponds to the matrix

(X y) , sincefs (1) =x+yyandfg(y) = y2y+ yx. Hence, we can rewrite the above identification

Yy X
S
X " X
{<y Xy)IXJGFq,X#OOW#O}: @ (y Xy)HEXAy:X‘f‘W-

For example, ifg is odd, choose a generaterof g, thene must be non-square ifly, which
implies that{1,/€} form a basis off > as a vector space ové. In such a case, we can define

€x7y =X+ y/E.

Conjugacy classes. The groupGLz(Fq) has four types of conjugacy classes in Table 1, with repre-
sentatives described as follows:

e (é 2) b= (é >1<> Cry = (é 8) Gy = (; Xy)- (10)
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Table 1. Conjugacy classes 6t ,(Fq), where[g] denotes the class of representative

class [ax] [by] [Cyl = [Cyx] [Oxy] = [dy—y]
XeFy | XeFg | XyeFg.X#Yy | XxeFq,y € Fy

class size 1 -1 c+q d—q

number of classes q—1 | q—1 &z(qu) @

There areg? — 1 conjugacy classes, hence there are exaptly 1 irreps ofGLo(Fq). We shall
briefly describe below how to construct all those represims.

Linear representations. For each character : Fy — C* of the cyclic groupFy;, we have a one-
dimensional representatiaf, of GLy(IFq) defined by:

Ua(g) =a(detg))  vgeGL(2,0).
To computeJq (dyy), we shall use the following fact:
X
det<y xy) = NormJFqz Jiq(Exy) = Exy - &N = E)(g;l'

Recall that there arg— 1 characters of ; = (&) corresponding tq — 1 places where the generator
can be sent to. The linear representatiby, whereag is the character sendirgto 1, is indeed the
trivial representation, denotésl.

Irreducible representations by action onP*(Fq). GL,(Fq) acts transitively on the projective line
P(Fq) in the natural way:

<‘2 g).[x:y]:@ 3) m:[ax+by:cx+dy],

in which the stabilizer of the infinite poirit : 0] is the Borel subgroup:

a b X
Bz{(o d) |a,deIF,beIE‘q}.

The permutation representation Gk, (Fq) given by this action orPl(IFq) has dimensiom+ 1
and decomposes into the trivial representatioand ag-dimensional representatiéh The character
of V is given as follows:

xv(ax) =q xv(bx) =0 xv(cxy)=1 xv(dxy)=—-1.

By checking{xv, xv) = 1, we see tha¥ is irreducible. Hence, for each of tlye- 1 charactersr of
]F’a we have aj-dimensional irrep/y, =V ®Uq. Note thatv =V @ U.

Irreducible representations induced from Borel subgroupB. For each pair of charactees 3 of
[, there is a character of the subgrdsip

@up:B—C" by (g g) — a(a)B(d).

In other wordsg, g is a one-dimensional representation of subgiupet\W, g be the representation
of GL2(FFq) induced byg, g. By computing characters, we have
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* Wap =Wp.a
* Wy,a =Uq © Vg, and

* W, g is irreducible fora # B. Each of these representations has dimension equal the afide
Bin GLy(FFg), i.e.,[GL(2,0) : B]=q+1.

There arg((q—1)2— (q—1))/2 = (q— 1)(q— 2)/2 distinct irreps of this type.

Irreducible representations by characters ofIFaz. Let ¢ : F;z — C* be a character of the cyclic
groupFaz. SinceIFz12 can be viewed as a subgroup®if»(Fq), we have the induced representation
Ind¢, which is not irreducible. However, it gives ug@— 1)-dimensional irrep with character given
by
Xo = XveWy 1 — Xwg 1 — Xindg  if @[y = a.

Note that Ing ~ Ind¢9, thusXy ~ Xsa. So, the characterg of ng with ¢ # ¢9 give a rise to the
%q(q —1) remaining irreps oLy (Fy).

A summary of all irreducible characters 6E»(Fq) is given in Table 2 below.

Table 2. Character table @Ly(Fq), wherea, 3 are characters df; (a # B), and¢ is a character o]t"(*12 with
9 # ¢; ax, by, cxy, dxy are elements &L (Fq) defined in (10), and, = xp(a1) is the dimension op.

Irrepp | do | Xp(a) Xo(Bx) | Xo(Cxy) Xp(dxy)

Ug 1 a (x?) a(x?) a(xy) a(ENh

Ve qa | qa(d 0 a(xy) —a(&h)

Wopg | 9+1] (@+D)a(X)B(X) | a(X¥)B(X) | aX)By) +a(y)B(x) | 0

Xp q-1] (9-1)¢(x) —¢(X) 0 —(&y) — 9 (&)

From the character table 6iL,(IFy), we can easily draw the following facts:

Fact 5. Leto be an irrep ofGL,(Fg). Then
 Forallg € GLo(Fg),

Xo(9)] = dg if g is a scalar matrix, andxs(9)| < 2 otherwise.

e Ifdg > 1 theng-1<ds <q+1

7.2 Applying the Main Theorem to GLy(Fq)

Let H be a subgroup oGL,(Fg). If H contains a non-identity scalar matrix, we hgyg(H) =1
for all o, making it impossible to find a set of irreps whose maximahmalized characters dd are
small enough to apply our general main theorem (Theoremdr)this reason, we shall assume that
H does not contain scalar matrices except for the identityexample of such a subgrottp is any
group lying inside the subgroup of triangular unipotentninas{T(b) |be Fq}, where

T(b) = (é 'i) .

From Fact 5, itis natural to choose the Sét Theorem 1 to be the set of linear (i.e., 1-dimensional)
representations, and choose the dimensional thre§hmdbeq— 1. However, sinc&L(2,q) hasq—1



288 Limitations of single coset states and quantum algorithonséde equivalence

linear representations, i.eé§ = D, we can't upper bound by |S. We prove the following lemma to
provide a strong upper bound dnwhich is, in this case, the maximal number of linear repnteons
appearing in the decomposition pf p*, for any nonlinear irre.

Lemma 8. Let p be an irrep ofGL(2,q). Then at most two linear representations appear in the
decomposition op @ p*.

To prove this lemma, we observe thaipifis a linear irrep ofGL(2,q) thenp @ p* is the trivial
representation. Therefore, we shall only consider thescaberep is non-linear.
Recall that the multiplicity ot in p ® p* is given by

1
<XP®P 7XUa |G| §|Xp XUa g @(A(p,a)—f—B(pJY)+C(p,o{)+D(p,a)),

whereA(p, a),B(p,a),C(p,a),D(p,a)) are thesumsof |x,(g)|2xu, (9) over allelementsy in the
conjugacy classes with representatives of the fagy, ¢y anddyy, respectively. That is, from the
description of conjugacy classes in Table 1, we have

Alp,a) =5 |Xp(@0)[*Xua (8)

xeFa

B(p.a) = (" ~1) Y IXp(bx)*Xua (bx)

%
XE]Fq

1
Clp.a)=5(@+a) > [Xo(Cey)l*Xua(Oxy)
XYelg xAy

1
D(p,a)=5(a=0a) 5  [Xo(chky)*Xuq (y)-
X.y€lq,y#0

Our goal below will be to show tha(txp®p*7)(ua> = 0 for all but two linear representatiokk;,
and for all non-lineairrepsp of GL>(Fq). We begin with the following lemma.

Lemma 9. Let F be a finite field ang : F* — C* be a non-trivial character of the cyclic group’®
i.e., @(x) # 1 for some X. Thely g~ @(x) = 0.

Proof: Letn be the order oF * and lett be a generator df *. Thent" = 1 which impliesg(1)" =
Sinceg is non-trivial, we must have(1) # 1. Hence,

k_(P(T)n_]-:
2.¢ Z“’ =27 -1 =

XeF*

O

Note that for any character of F;, the mapa? : Fy; — C* defined bya?(x) = a(x?) is also a
character offy. Hence, we have the following direct corollaries of Lemma 9.

Corollary 3. Leta be a character of such thata? is non-trivial. Thenzxe]pa a(x?) =0.
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Corollary 4. Letp be an irrep ofGL>(Fq) and leta be a character of such thata? is non-trivial.
Then we always have(p,a) =B(p,a) =0.

Proof: Observe thaltx, (ax)| and| x, (bx)| do not depend ok, andxuy, (ax) = Xu, (bx) = a(x?). Hence,
to showA(p,a) = B(p,a) = 0, it suffices to use the fact thg@Fa a(x?) =0. O

Remark There are at most two charactersf I such thar? is trivial. They are the trivial one, and

the one that maps— w7 if gis odd, wherev = e% is a primitive(q— 1) root of unity, ance is a

chosen generator of the cyclic grolifp To see this, SUppoSE(€) = w, for someke {0,1,...,q—2}.

If a(g)? =1, thenw? = 1, which impliesg— 1 | 2k becausev has ordeq— 1. Hence R € {0,q— 1}.
With this remark, Lemma 8 immediately follows Lemma 10 below

Lemma 10. Let p be a non-linear irrep ofGL2(Fq) and leta be a character offg such thata? is
trivial. Then U, does not appear in the decompositiorpab p*.

Proof: We will prove case by case pfthatC(p,a) = D(p,a) = 0, which, together with Corollary 4,
will complete the proof for the lemma.

Casep =Wp g For this case, axw; ,, (dxy)| = 0, we only need to sho®(Wp g/, ar) = 0. Consid-
eringx,y € Fg with x# y and lettingz = x~ly+# 1, we have

| Xw g (Cxy) 2= (BB (Y)+BWB XIBX B (y 1) +By HB (x 1)
=2+Bxy HB (yx H+Byx HB (xy )
=2+B(z YR (29 +B (2B ().

This meansxuw, , (Cxy)|? only depends oa= x"'y. Now lety(z) = | xw, , (Cxy)|*a(2), we have
| Xw g (Cxy)PXua (Cxy) = | Xwy g (cey)Pa(¥2) = Y(2)a ().
Hence,

[Xo(Cxy) P Xua (Cxy) = > v(@)a ()
XYyeFg XAy x,zelFq,z#1

— (g*a(xz)) ( F*Z#V(Z)) =0

by Corollary 3, completing the proof for the case=\Wg g

Casep = V. Since|xy, (Cxy)| = 1 andxu, (cxy) = a(xy) = a(x)a(y),

2
X)yeé#ywvﬁ (Cxy)[*Xuq (Cxy) = XAyegaﬁx#ya(x)a (y) = (Xga a(x)) . Xga a(®) =0
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by Lemma 9 and Corollary 3. This shoW$Vg, a) = 0.
Now we are going to show th&(Vg,a) =0, or equivalently,zx7y€]Fq7y¢oa(Excf;l) = 0. We have

1 1 +1 1
af*H = 5 aEEH+ Y alghh= Y alEdh.
4 EFZz xyelg,y#0 xeFy x,yeliqy-0

where in the last equality, we apply Corollary 3 and the fbatf)ggl =Xl = x?forallx e Fyg-

Consider the map: Faz — C* given by@(&) = a(E9Y). Clearly,@is a character dFaz. Since
a?is non-trivial anda?(x) = a (x?) = a (x4™) = @(x) for all x € F;, the mapp is also non-trivial. By
Lemma 9, we havgferz a(E971) =0, which impliesD(Vg, a) = 0.

Casep = Xp. As itis clear from the character table 6L (Fq) thatC(Xy,a) = 0, it remains to
showD(Xy.a) =0, or equivalentlyDo = 5y cr, v20l® (&xy) + ¢ (&) [2a(&5T) = 0. We have

Do= 5 [6(E)+@(ENa(ET™) = 5 [9(&0)+ (&) Pa(&ish) .

% %
I3 eJFqZ xely

Dy D2

Foré e IF;z, we have

6(8)+@(ENP=($(&) +BEDNS(E) T+ (ED ) =2+9(E )+ (1.

Hence, sinced 1 =1 forallx € [y and by Corollary 3,

Do= Y 2+¢0F )+ (- Na(x*) =3 § a(¥)=0.
>(€]F’{1 XE]F’{1
The last thing we want to show is thBy = 0. Consider the map : IF:;Z — C* given by (&) =
¢ (£ H)a(£9t1), which is apparently a character Bf,. We shall see that it is non-trivial. Let be
a generator off. Sincew? ! = 1, we havep(w®1) = a(w@V?) = a(w?@+)) = a2(wtl).
On the other handwt?! is a generator foif%, becausew (@D with k = 0,1,...,q— 2 are dis-
tinct, andw(@ V@Y = 1. Hence, ifp(w?™?) = 1, thena?(x) = 1 for all x € F. But sincea? is
non-trivial, we must havep(w%!) # 1, which meansp is non-trivial. Applying Lemma 9, we get
Yeer, $(ETH)a(E4) = 0. Similarly, we also havg ¢ g, ¢ (&1 9)a(E9+1) = 0. Combining with
q q
the fact thaty s -, a (&%) = 0, which has been proved in the previous case, we have sBawn0,
q

completing the proof.
O

Now applying Theorem 1 witls being the set of linear representations, &neing the set of
non-linear irreps otL,(Fq), we have:

Corollary 5. Let H be a subgroup d&L>(IFq) that does not contain any scalar matrix other than the
identity. ThernzZy < 28H|2/q.
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Proof of Corollary 5 Let Sbe the set of linear representationsGi (Fq) and letD = q— 1. Thenin
this casel p is the set of all non-linear irreps @L>(Fq).
Sincex,(H) <2/(q—1) for all nonlinear irrepo, we have

Xs(H) <2/(q—1) <0.5/|H|.

To bound the second term in the bound of 1, we have2 by Lemma 8 andis = 1, thus

2
2% <o/a-1 <30

As |G| = (q—1)%q(g+1) and|Lp| = |§ = q— 1, we have

o> (@-1°  g-1 <1/q
IG|  (a—-1)2%q(g+1) q(q+1)
By Theorem 124 < 4|H[?(7/q) . -

In particular,H is indistinguishable by strong Fourier sampling oGép (Fq) if [H| < q? for some
5 < 1/2, because in that case we haxig < 28¢?°~ <log¢|GL(Fq)| for all constant > 0.

Examples of indistinguishable subgroups oGL>(Fq). As a specific example, consider a cyclic

subgrouHy, generated by a triangular unipotent mafFigb) for anyb # 0. SinceT (b)X = T (kb) for

any integek > 0, the order oHy, is the least positive integ&rsuch thakb= 0. In particular, the order

of Hy equals the characteristic of the finite fidlg. Supposey = p" for some prime numbep and

n > 2. ThenFq has characteristip, and hencelH,| = p. By Corollary 5, we havezy, < O(p>").
Similarly, consider a subgroud,, generated by two distinct non-identity elemeiit&) and

T(b). Since elements dfl,, are of the formT (ka+ ¢b) fork,¢ € {0,1,...,p—1}, we haveH,p| <

p?. Thus, the distinguishability Of,p using strong Fourier sampling ov&lLy(Fyn) is o(p*™).

Clearly, bothH, andH,, are indistinguishable, far sufficiently large. More generally, any subgroup

generated by a constant number of triangular unipotenticeatis indistinguishable.
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