
Universality, Hardness, Engineering, and Messiness

Cristopher Moore
Santa Fe Institute

Monday, May 27, 2013

Do we have to simulate?

Monday, May 27, 2013

Do we have to search?INTRACTABLE ITINERARIES 7

FIGURE 1.6: The first two levels of the search tree for a Hamiltonian path.
Monday, May 27, 2013

Story #1: Worst case vs. average case

Monday, May 27, 2013

P: we can find a solution efficiently

NP: we can check a solution efficiently: tilings, tours, proofs...

Needles in haystacks

Monday, May 27, 2013

NP-complete problems

Some problems are “universal” in that they capture all of NP: any problem in
NP can be converted to them

3-SAT: Boolean variables

Constraints

Is this formula satisfiable? That is, is there a truth assignment for
that satisfies all the constraints?

x1, . . . , xn

(x1 ∨ x3 ∨ x6) ∧ (x3 ∨ x4 ∨ x17) ∧ · · ·

x1, . . . , xn

Monday, May 27, 2013

AND

OR

NOT

AND

x1 x2

z

Any program that tests proposed
solutions can be “compiled” down to a
Boolean circuit, that outputs “true” if
the solution works

We can build a computer out of Boolean gates

Take any problem in NP, like
Hamiltonian Path

Monday, May 27, 2013

The condition that each AND or OR gate
works, and the output is “true,”
can be written as a Boolean formula:

AND

OR

NOT

AND

x1 x2

z

y1

y2

y3

We can build a computer out of SAT clauses

Add variables representing the truth values
of the wires

(x1 ∨ y1) ∧ (x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1)
∧ · · · ∧ z .

This formula is satisfiable if and only if a
solution to the original problem exists

Monday, May 27, 2013

Oh, cruel world!

NP-completeness is a worst-case notion...

We assume that instances are designed by a clever adversary to encode hard
problems

A good assumption in cryptography, but not in most of nature

The scientist is always working to discover the order and organization of the
universe, and is thus playing a game against the arch-enemy, disorganization.
Is this devil Manichaean or Augustinian? Is it a contrary force opposed to order
or is it the very absence of order itself?

— Norbert Wiener, Cybernetics

Monday, May 27, 2013

Alternatives

Probably Approximately Correct [Valiant]

Noise can foil the adversary [Spielman and Teng, smoothed analysis]

Landscapes are not as bumpy as they could be: good solutions are close to
the optimum [Balcan, Blum, and Gupta, clustering]

In nature, problems and algorithms coevolve (e.g. protein folding)

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

384 OPTIMIZATION AND APPROXIMATION

Figure 9.18: The polytope on the left has 200 facets and 396 vertices. On the right, we perturb this polytope
by adding 5% random noise to the right-hand sides of the inequalities, reducing the number of facets and
vertices to 87 and 170. The angles between the facets have become sharper, so the polytopes’ shadows,
i.e., the two-dimensional polygons that form the outlines of these pictures, have fewer sides.

x ′. If you think of x and x ′ as vectors in the space of instances, then x ′ is chosen uniformly from a ball of
radius ε around x . The adversary can decide where this ball is centered, but he cannot control where in
the ball the perturbed instance x ′ will be.

We then define the running time as the average over the perturbed instances, maximized over the
adversary’s original instance:

Tsmoothed =max
x

!
!

x ′:|x ′−x |≤ε
T (x ′)
"

.

If the adversary has to carefully tune the parameters of an instance to make it hard, adding noise upsets
his plans. It smooths out the peaks in the running time, and makes the problem easy on average.

Spielman and Teng considered a particular pivot rule called the shadow vertex rule. It projects a two-
dimensional shadow of the polytope, forming a two-dimensional polygon, and tries to climb up the out-
side of the polygon. This rule performs poorly if the shadow has exponentially many sides, with expo-
nentially small angles between them. They showed that if we add noise to the constraints, perturbing the
entries of A and b, then the angles between the facets—and between the sides of the shadow polygon—
are 1/poly(m) with high probability. In that case, the shadow has poly(m) sides, and the shadow vertex
rule takes polynomial time. We illustrate this in Figure 9.18.

Smoothed analysis provides a sound theoretical explanation for the suprisingly good performance
of the simplex algorithm on real instances of LP. But it still leaves open the question of whether LP is
in P—whether it can can be solved in polynomial time even in the worst case, when the adversary has
the last word. We will answer that question soon. But first we explore a remarkable property of LP that
generalizes the relationship between MAX FLOW and MIN CUT, and which says something about LP’s worst-
case complexity as well.

Monday, May 27, 2013

Random problems and phase transitions

What if the constraints are chosen randomly instead?

Inspired by spin glasses, random graphs

As we add more constraints, more contradictions arise

When the density α=(# clauses)/(# variables) crosses a critical threshold, a
sudden drop from satisfiability to unsatisfiability

Like water freezing or iron magnetizing: analogies with statistical physics

Monday, May 27, 2013

Random problems and phase transitions

The probability of satisfiability as a function of density

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

728 WHEN FORMULAS FREEZE

DPLL
input: a SAT formula φ
output: isφ satisfiable?
begin

if φ is empty then return true;
if φ contains an empty clause then return false;
select an unset variable x ;
if DPLL(φ[x =true]) = “yes” then return true;
if DPLL(φ[x =false]) = “yes” then return true;
return false;

end

Figure 14.1: The DPLL backtracking search algorithm.

0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7
α

Pr
[s

at
is

fi
ab

le
]

Figure 14.2: The probability that a random 3-SAT formula F3(n , m) is satisfiable as a function of the clause
density α=m/n , for various values of n . The sample size varies from 106 for n = 10 (light dots) to 104 for
n = 100 (dark dots).

Monday, May 27, 2013

Where the hard problems are

Search times are highest at the transition

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

EXPERIMENTS AND CONJECTURES 729

101

102

103

104

105

1 2 3 4 5 6 7 8
α

D
P

LL
ca

lls

Figure 14.3: Number of recursive calls of DPLL on random 3-SAT formulas as a function of α = m/n .
Here n = 100. Light and dark dots represent satisfiable and unsatisfiable instances. Note that the y -axis
is logarithmic.

14.1.2 Backtracking and Search Times

We can also ask about the running time of DPLL on these random formulas. How long does it take to
either find a satisfying assignment, or confirm that none exists?

DPLL is actually a family of algorithms. Each has a different branching rule that determines which
variable to set next and which truth value to give it first. For instance, if φ contains a unit clause—a
clause with a single variable, (x) or (x)—then we should immediately set x to whichever value this clause
demands. As we saw in Section 4.2.2, this unit clause propagation rule is powerful enough to solve 2-SAT
in polynomial time. In our experiments we use a slight generalization called the short clause rule: choose
a clause c from among the shortest ones, and choose x randomly from c ’s variables.

DPLL’s running time is essentially the number of times it calls itself recursively, or the number of
nodes of the search tree it explores. How does this depend on α? As Figure 14.3 shows, when α is small
enough DPLL finds a satisfying assignment with little or no backtracking. Intuitively, this is because
each clause shares variables with just a few others, so there are few conflicts where satisfying one clause
dissatisfies another one. In this regime, DPLL sets each variable once and only rarely reconsiders its
decisions, and its running time is linear in n .

Monday, May 27, 2013

What makes a problem hard?

At a certain density, solutions break up into clusters

These clusters become “rigid” or “frozen” — many variables take a fixed value

If a search algorithm sets any of these variables wrong, it’s doomed, but it takes
an exponentially long time to realize it

Between αrigid and αc, there are solutions, but (we believe) they are hard to find

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

FROZEN VARIABLES AND HARDNESS 795

αclust αcond αrigid αc

Figure 14.30: A refined phase diagram of random k -SAT. Gray blobs represent frozen clusters, i.e., those
where Θ(n) variables take fixed values. Above αrigid almost all clusters are frozen, and we believe this is
responsible for the average-case hardness of random k -SAT.

clause renders this instance unsatisfiable with finite probability. Therefore we haveαc <α+ε for any ε > 0,
a contradiction.

But even if there are no variables that are frozen in all solutions, we could certainly have variables frozen
within a cluster. Let’s say that a variable xi is frozen in a cluster C if xi takes the same value in every
solution in C , and call a cluster frozen if it has κn frozen variables for some constant κ> 0.

Intuitively, these frozen clusters spell doom for local algorithms. Image aDPLL algorithm descending
into its search tree. With every variable it sets, it contradicts any cluster in which this variable is frozen
with the opposite value. If every cluster is frozen, then it contradicts a constant fraction of them at each
step, until it has excluded every cluster from the branch ahead. This forces it to backtrack, taking expo-
nential time.

It’s also worth noting that if the clusters are a Hamming distance δn apart, then the DPLL algorithm
is limited to a single cluster as soon as it reaches a certain depth in the search tree. Once it has set (1−δ)n
variables, all the assignments on the resulting subtree are within a Hamming distance δn of each other,
so they can overlap with at most one cluster. If any of the variables it has already set are frozen in this
cluster, and if it set any of them wrong, it is already doomed.

Recent rigorous results strongly suggest that this is exactly what’s going on. In addition to the other
properties of clusters established by Theorem 14.5 at densities above (2k /k) lnk , one can show that al-
most all clusters have κn frozen variables for a constant κ > n . Specifically, if we choose a cluster with
probability proportional to its size, then it has κn frozen variables with high probability. Equivalently, if
we choose a uniformly random satisfying assignment, then with high probability there are κn variables
on which it agrees with every other solution in its cluster.

Conversely, it can be shown that algorithms based on setting one variable at a time using BP messages
fail in this frozen region. But in a recent breakthrough, an algorithm was discovered which works at
densities up to (1− εk)(2k /k) lnk where εk → 0 as k →∞. Thus for large k , it seems that algorithms end
precisely where the frozen phase begins.

For large k , clustering and freezing take place at roughly the same density. In constrast, for small k
they are widely separated, which explains why some algorithms can probe deep into the clustered phase.
Figure 14.30 shows a refined picture of random k -SAT that includes frozen clusters. The freezing transi-
tion is defined by the point αrigid where the number of unfrozen clusters drops to zero.

14.22For finite k we can determine the freezing point αrigid numerically using Survey Propagation. A frozen
variable corresponds to BP messages µi→a (x) = δ(x) or µi→a (x) = δ(1− x), demanding that i take a par-

[Achlioptas, Coja-Oghlan, Krzakala, Mezard, Molloy, Monasson, Montanari, Moore, Ricci-Tersenghi, Zdeborová, Zecchina...]

Monday, May 27, 2013

But physics isn’t everything...

The statistical properties of a problem don’t determine its complexity

Use XOR (addition mod 2) instead of OR:

Random instances have many of the same properties as 3-SAT:
clustering, freezing, and a phase transition to unsatisfiability

But XORSAT is easy! Just linear equations, can solve with Gaussian elimination:

x1 ⊕ x2 ⊕ x3 = 1
x1 ⊕ x2 ⊕ x4 = 0
x2 ⊕ x3 ⊕ x4 = 1




1 1 1 0
1 1 0 1
0 1 1 1



 ·





x1

x2

x3

x4



 =




1
0
1





Monday, May 27, 2013

Story #2: Hard vs. messy

Monday, May 27, 2013

Problems in the gap

To prove that a problem A is hard, we build a computer out of the variables and
constraints of A, showing that A is computationally universal

This is almost the only technique we have...

There are problems that are hard but not universal:
undecidable, but easier than the Halting Problem [Friedberg-Muchnik]
outside P, but not NP-complete [Ladner]

These proofs are nonconstructive; they don’t produce “natural” problems

But there are natural candidates: Factoring, Graph Isomorphism

NP-hard and Turing-universal problems are easy... not to solve, but to engineer

Monday, May 27, 2013

P: can solve in polynomial time — can predict a sandpile by running it

NC: can solve in poly(log n) time with poly(n) processors

NC vs. P: can every polynomial-time algorithm be efficiently parallelized?
Or are there problems that we have to solve step-by-step?

Depth=time, width=# of processors

Can every circuit of polynomial size and depth be compressed to
poly(log n) depth and polynomial width?

If predicting a system is P-complete, this is evidence that it has to be
simulated explicitly—we can’t skip over its history

Do we have to simulate?

Monday, May 27, 2013

Universal cellular automata
COMPUTATION EVERYWHERE 275

FIGURE 7.14: Constructing a Turing machine in the Game of Life. The head with its finite-state control
is on the lower left, and the stack stretches from upper left to lower right. When animated, it is a truly
impressive sight. We magnify one of its components, a glider gun, to give a sense of its scale.

[Rendell]

Monday, May 27, 2013

Universal cellular automata
276 THE GRAND UNIFIED THEORY OF COMPUTATION

FIGURE 7.15: The evolution of elementary CA rule 110 from a random initial state, showing collisions
between several types of gliders and periodic structures. Time increases downward, and each row of the
diagram is a single step.

For instance, suppose that when the Turing machine is in state s and the tape symbol is b , it writes b ′

on the tape, changes its state to s ′, and moves to the right. Then we would write, for any a , c , d ∈ A ,

f
!
a , (b , s), c
"
=b ′ and f
!
(b , s), c , d
"
= (c , s ′) .

We also define f (a ,b , c) = b for any a ,b , c ∈ A , since the tape symbols stay fixed if the head isn’t around
to modify them. Then one step of this CA would look like

· · · a (b , s) c d · · ·
· · · a b ′ (c , s ′) d · · · ,

moving the head to the right and updating the tape. Of course, the parallel nature of a cellular automa-
ton allows us to simulate many Turing machine heads simultaneously. We haven’t specified here what
happens when two heads collide.

If we start with a small universal Turing machine, i.e., one with a small number of states and symbols,
this construction gives a universal CA with a fairly small number of states. But what is more surprising is
that even “elementary” CAs—those with just two states and nearest-neighbor interactions—are capable
of universal computation. Consider the following rule:

111 110 101 100 011 010 001 000
0 1 1 0 1 1 1 0

[Cook & Wolfram, Neary & Woods]

Monday, May 27, 2013

Easy cellular automata

Monday, May 27, 2013

Messy cellular automata

[Jen]

Monday, May 27, 2013

Messy cellular automata

a b c

a ⊕ (b ∨ c)

Monday, May 27, 2013

Partly messy

[Griffeath, Moore]

Monday, May 27, 2013

Partly messy

[Griffeath & Moore]

Monday, May 27, 2013

Sandpiles

3 2 1 0

0 4 3 0

2 3 2 3

3 1 0 1

Monday, May 27, 2013

Sandpiles

3 3 1 0

1 0 4 0

2 4 2 3

3 1 0 1

Monday, May 27, 2013

Sandpiles

3 3 2 0

1 2 0 1

3 0 4 3

3 2 0 1

Monday, May 27, 2013

Sandpiles

3 3 2 0

1 2 1 1

3 1 0 4

3 2 1 1

Monday, May 27, 2013

Sandpiles

3 3 2 0

1 2 1 2

3 1 1 0

3 2 1 2

Monday, May 27, 2013

Avalanche size distribution

Monday, May 27, 2013

The mysterious mandala

Monday, May 27, 2013

The amazing identity

Monday, May 27, 2013

Wires (or “fuses”) connected by AND and OR junctions

Circuits made of sand

[Moore & Nilsson]

1 0 4 3 3 3

3

2 3 3 3

3

1 1

11

1

1

1

3

33 3 3

3

2 3 3AND

3

3

3

3

3

OR

3

Monday, May 27, 2013

These circuits are monotone — AND and OR but no NOT

Evaluating monotone Boolean circuits is P-complete...

...but not in the planar case!

If wires intersect, then signals propagate messily

In d≥3, predicting sandpiles is P-complete

In d=1, it’s in NC

In d=2, unknown; perhaps in the gap between NC and P-complete

The complexity of sandpiles

[Moore & Nilsson]

Monday, May 27, 2013

Building a computer out of low-dimensional
dynamical systems

282 THE GRAND UNIFIED THEORY OF COMPUTATION

FIGURE 7.20: The Baker’s Map f on the unit square. It doubles y , halves x , and moves y ’s most significant
bit to x . We can think of the coordinates (x , y) as a tape full of bits, . . .y3y2y1.x1x2x3 . . ., where 0.x1x2x3 . . .
and y = 0.y1y2y3 . . . are the binary expansions of x and y respectively. Then f moves the decimal point,
representing the head of a Turing machine, one step to the left.

This makes the Baker’s Map a classic example of a chaotic dynamical system. It quickly magnifies any
perturbations or uncertainties in its initial conditions, until it becomes completely unpredictable. If we
only know the initial conditions to t bits of accuracy, we cannot predict the state of the system more than
t steps in the future.

Exercise 7.29 Show that the Baker’s Map has two unique fixed points and a unique period-2 orbit, i.e.,
a pair of points (x , y) and (x ′, y ′) such that f (x , y) = (x ′, y ′) and f (x ′, y ′) = (x , y). What are their digit
sequences, and where are they in the unit square? How many period-3 orbits are there? What can you say
about period-t orbits for larger t ?

How can maps like this simulate Turing machines? If we write the bits of y in reverse, we can think of
(x , y) as an infinite tape whose tape symbols are 0 and 1,

. . . y3y2y1.x1x2x3 . . . ,

where the decimal point represents the machine’s head. In that case, we have

f (. . .y3y2y1.x1x2x3 . . .) = f (. . .y3y2.y1x1x2x3 . . .) ,

so f moves the head one step to the left. Note the similarity to the arithmetization of the Turing machine
on page 262, where we treated each half of the tape as the bit sequence of an integer. Both there and here,
we move the machine’s head by halving one of these numbers and doubling the other.

. . . y3y2y1 .x1x2x3 . . .
⇓

. . . y3y2 . y1x1x2x3 . . .

Monday, May 27, 2013

COMPUTATION EVERYWHERE 283

A
T

Γ
∆

ZE
H

Θ I
K Λ

Φ
Ξ O

P
ΣB

BA Γ∆
E

Z H Θ

I

K

ΛΦΞ

O

P
Σ

T

F s1 s2 s3 s4 s5 s6

0 0, s1, L 0, s6, L 0, s2, R 1, s5, R 1, s4, L 1, s1, L
1 1, s2, L 0, s3, L 1, s3, L 0, s6, R 1, s4, R 0, s4, R

FIGURE 7.21: Above, an iterated map f on the rectangle [0, 6]× [0, 1] equivalent to a universal Turing ma-
chine with 6 states and 2 symbols. Each large square corresponds to one of the machine’s states, and the
current tape symbol is the most significant bit of y . Stretching vertically or squashing horizontally corre-
sponds to moving the machine’s head left or right on the tape. Below, the machine’s transition function.
Each triplet gives the new symbol, the new state, and whether the head moves left or right.

To complete the simulation, let’s say that the tape symbol at the machine’s current location is y1, which
is 0 or 1 if we are in the lower or upper half of the square respectively. At each step, we can change y1 by
shifting up or down by 1/2. We then move the head left or right on the tape by stretching vertically or
squashing horizontally.

Finally, we define our function on a set of unit squares, one for each of the machine’s internal states,
and update the state by mapping pieces of one square to another. If the machine has s states, and we put
these squares next to each other, we get a piecewise-continuous function f from the rectangle [0, s]×[0, 1]
to itself. This function divides this rectangle into a finite number of pieces, stretches or squashes each one,
and maps it back somewhere inside the rectangle.

In Figure 7.21, we carry out this construction for a universal Turing machine with 6 states and 2 tape
symbols. This machine simulates cellular automaton rule 110, so the question of whether a particular
finite string of bits will ever appear on its tape, at its head’s current location, is undecidable. In our map,
this corresponds to x and y lying in a pair of finite intervals, where their binary expansions start out with
particular finite strings. Thus, given an initial point (x , y), the question of whether it will ever land in a
particular rectangle is undecidable.

As we discussed at the end of Section 7.6.4, the initial tape of this Turing machine is filled with periodic
patterns to the left and right of its input. Such a tape corresponds to an initial point (x , y) with rational
coordinates, since a real number is rational if and only if its binary expansion becomes periodic after a

[Moore, Siegelmann & Sontag, Reif...]

Building a computer out of low-dimensional
dynamical systems

Virtually any question about long-term dynamics is undecidable

Monday, May 27, 2013

Fragile vs. robust analog computation

This construction packs an arbitrary number of bits into just two real numbers

Small perturbations seem to destroy all but a few of these bits

Real analog computation encodes digital information in more robust ways:
many particles, many voltages, many genes...

But the computational complexity of many low-dimensional dynamical systems
remains open

Monday, May 27, 2013

Chaos vs. computation

pt+1 = pt +K sinθt

θt+1 = θt +pt+1

Monday, May 27, 2013

Julia sets

For a given c, Jc is the set of complex numbers z
such that iterating

doesn’t cause z to fly off to infinity

Braverman & Yampolsky: there are
computable c such that computing Jc
is as hard as the Halting Problem!

f (z) = z 2+ c

Monday, May 27, 2013

How generic is computation?

We can build computers out of gears and cams, or semiconductors, or DNA
and enzymes, or pipes and water

What about just water? Or just gravity? Or just plasma?

Can we prove that messy systems are hard, even if we can’t build computers
out of them?

Monday, May 27, 2013

Wild problems

Monday, May 27, 2013

Shameless Plug	

To put it bluntly: this book rocks! It somehow manages to combine
the fun of a popular book with the intellectual heft of a textbook.

Scott Aaronson, MIT

A creative, insightful, and accessible introduction to the theory of
computing, written with a keen eye toward the frontiers of the field
and a vivid enthusiasm for the subject matter.

Jon Kleinberg, Cornell

A treasure trove of ideas, concepts and information on algorithms
and complexity theory. Serious material presented in the most
delightful manner!

Vijay Vazirani, Georgia Tech

A fantastic and unique book, a must-have guide to the theory of
computation, for physicists and everyone else.

Riccardo Zecchina, Politecnico de Torino

This is the best-written book on the theory of computation I have
ever read; and one of the best-written mathematical books I have
ever read, period.

Cosma Shalizi, Carnegie Mellonwww.nature-of-computation.org

Monday, May 27, 2013

http://www.nature-of-computation.org
http://www.nature-of-computation.org

Acknowledgments

and NSF, DARPA/AFOSR, ARO, and NIST

Monday, May 27, 2013

