
Journal of Computer and System Sciences 60, 368�394 (2000)

Circuits and Expressions with
Nonassociative Gates

Cristopher Moore

The Santa Fe Institute, Santa Fe, New Mexico

Denis The� rien

McGill University, Montre� al, Que� bec, Canada

Franc� ois Lemieux

Universite� du Que� bec a� Chicoutimi, Que� bec, Canada

Joshua Berman

State University of New York at Binghamton, New York

and

Arthur Drisko

National Security Agency, Washington, DC

We consider circuits and expressions whose gates carry out multiplication
in a nonassociative groupoid such as a quasigroup or loop. We define a class
we call the polyabelian groupoids, formed by iterated quasidirect products of
Abelian groups. We show that a quasigroup can express arbitrary Boolean
functions if and only if it is not polyabelian, in which case its Expression
Evaluation and Circuits Value problems are NC1-complete and P-complete,
respectively. This is not true for groupoids in general, and we give a counter-
example. We show that Expression Evaluation is also NC1-complete if the
groupoid has a nonsolvable multiplication group or semigroup, but is in TC0

if the groupoid both is polyabelian and has a solvable multiplication semi-
group, e.g., for a nilpotent loop or group. Interestingly, in the nonassociative
case, the criteria for making Circuit Value P-complete and for making
Expression Evaluation NC1-complete��nonpolyabelianness and nonsolvability
of the multiplication group��are different. Thus, earlier results about the role
of solvability in complexity generalize in several different ways. � 2000

Academic Press

doi:10.1006�jcss.1999.1673, available online at http:��www.idealibrary.com on

3680022-0000�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

1. INTRODUCTION: ALGEBRAIC CIRCUITS AND EXPRESSIONS

Boolean expressions and circuits are well-known constructs in logic and com-
puter science. A Boolean expression , either is a variable xi or is formed from
shorter expressions as (,1 7 ,2), (,1 6 ,2), or c,1 . If all the xi have truth values
true or false, then ,'s truth value is determined by interpreting 7, 6, and c as
and, or, and not respectively.

A Boolean circuit is an acyclic directed graph with source nodes (inputs) xi and
a single sink node (output) and three kinds of intermediate nodes: and and or
gates with two inputs and not gates with one input. (Expressions are simply circuits
whose graph is a tree.) Then the truth value of the output is defined in the obvious
way.

Given an expression or circuit and the truth values of its variables or inputs,
determining the truth value of its output is called the Expression Evaluation or
Circuit Value problem, respectively. These problems are deeply related to two
important complexity classes, NC1 and P.

NC1 is the set of problems solvable by uniform1 circuits of polynomial size and
logarithmic depth as a function of length of the input. P is the set of problems
solvable in polynomial time by a deterministic serial computer such as a Turing
machine.

More generally, circuits of polynomial size and polylogarithmic depth (O(logk n)
for inputs of size n) recognize the following complexity classes [14, 24], where the
fan-in is the number of inputs to each gate:

�� NCk if the gates are and's and or's with fan-in 2;

�� ACk if the gates are and's and or's with unbounded fan-in;

�� TCk if the gates are threshold gates with unbounded fan-in, where
%t(x1 , ..., xn)=true iff t or more of the inputs are true;

�� ACCk[p] if the gates are and's, or's, and Modp with unbounded fan-in,
where Modp(x1 , ..., xn)=true iff the number of true inputs is not a multiple of p;

�� ACCk=�p ACCk[p].

The union of any of these families over all k is NC, the class of problems solvable
by parallel circuits of polylogarithmic depth and polynomial width. This is equivalent
to polylogarithmic time on an idealized parallel computer with shared memory,
constant communication delays, and a polynomial number of processors.

Since combinations of threshold gates can compute any function that depends
only on the sum of the inputs, including Modp , and since any threshold gate can
be realized in NC1, we have

NCk�ACk�ACCk�TCk�NCk+1

for all k. The classes we will be interested in are

AC0/ACC1[2]/ACC0�TC0�NC1�ACC1� } } } �NC�P.

369CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

1 For the most part, we will disregard uniformity questions. Interested readers are referred to [28, 5].

It is believed, but not known, that P{NC: in other words, that there are inherently
sequential problems in P that cannot be efficiently parallelized. Some small progress
has been made toward proving this [1, 13, 26, 29]: parity is in ACC0[2] but not
AC0, ACC0[p] and ACC0[q] are incomparable if p and q are distinct primes, and
majority is in TC0 but not ACC0[2]. Thus, the first two inclusions in this series are
proper, but ACC0[6] and P (or even NP) could be identical for all anyone has
been able to prove.

A reduction from a problem A to a problem B is a mapping of instances of A to
instances of B. If the mapping is computationally easy compared to B, then any fast
algorithm for B becomes a fast algorithm for A; thus, B is at least as hard as A.
A problem B is complete for a complexity class if every other problem in that class
can be reduced to it.

For P it is common to use LOGSPACE (O(log n) memory in a Turing machine)
or NC1 reductions; for NC1 we will use NC0 reductions, this being essentially local
replacement rules.

We also have

NC1�DET�NC2,

where DET is the class of problems log-space reducible to calculating the determi-
nant of an integer matrix. DET is not known to be comparable with AC1 or ACC1.

Then we have the classical results that, for Boolean gates, Expression Evaluation
and Circuit Value are NC1-complete and P-complete, respectively, under NC0 and
LOGSPACE reductions [10, 17].

We will consider circuits and expressions where the sole operation is multiplica-
tion in some finite groupoid (A, }), rather than the usual Boolean operations. Thus,
our circuits have one kind of node whose output is the product a } b of its two
inputs, and our expressions are strings like (x1 } x2) } (x2 } x3). For technical reasons,
we allow the presence of blanks in the encoding of an expression: this will be useful
for getting weak reductions from problems in NC1 to the expression evaluation
problem.

Then depending on the algebraic properties of (A, }), such as associativity, com-
mutativity, solvability, and so on, Expression Evaluation and Circuit Value can
have varying complexities. Previous results for the associative case (groups and
semigroups) include the following [3, 7, 22].

Expression evaluation Circuit value

Nonsolvable NC1-complete P-complete

Solvable ACC0 ACC1 & DET

In this paper, we will extend these results to nonassociative groupoids such as
quasigroups and loops and to some extent to groupoids in general. We will show
that the idea of solvability generalizes in two important ways in the nonassociative
case, polyabelianness, the property of being an iterated affine quasidirect product of

370 MOORE ET AL.

Abelian groups, and M-solvability, the property of having a solvable multiplication
group or semigroup.

In addition, the problem of predicting a cellular automaton for a polynomial
number of steps corresponds to a special case of Circuit Value where the circuit has
a periodic structure. Thus, these results will also help us tell when there are fast
algorithms for predicting cellular automata whose rules correspond to certain
groupoids, as in [22, 23].

The paper is structured as follows. In Section 2 we give an introduction to the
algebraic terms and concepts we will use. In Section 3 we define Boolean-complete-
ness, the ability to express arbitrary Boolean functions as circuits or expressions.
We review existing results on solvability in groups and loops and show that in the
nonassociative case, even solvable loops and quasigroups can be Boolean-complete.
Section 4 introduces the notion of polyabelianness, which coincides with solvability
in the case of groups. We show that for quasigroups the Boolean-complete algebras
are precisely the nonpolyabelian ones. In Section 5 we discuss M-solvability, the
property of having a solvable multiplication semigroup, and show that the non-
M-solvable groupoids are precisely those for which Expression Evaluation is
NC1-complete. Finally, in Section 6 we give our conclusions and suggest directions
for further work.

2. ALGEBRAIC PRELIMINARIES

For the theory of quasigroups and loops, the reader is referred to [2, 8, 9, 25].
We will use the following terms.

A groupoid (G, }) is a binary operation f: G_G � G, written f (a, b)=a } b or
simply ab. The order of a groupoid is the number of elements in G, written |G|.
Throughout the paper, we will assume that our groupoids are finite.

A quasigroup is a groupoid whose multiplication table is a Latin square, in which
each symbol occurs once in each row and each column. Equivalently, for every a,
b there are unique elements a�b and a"b such that (a�b) } b=a and a } (a"b)=b;
thus, the left (right) cancellation property holds, where bc=bd (resp. cd=bd)
implies c=d.

An identity is an element 1 such that 1 } a=a } 1 for all a. A loop is a quasigroup
with an identity.

In a loop, the left (right) inverse of an element a is a*=1�a (resp. a\=a"1) so
that a* } a=1 (resp. a } a\=1). A loop has the left (right) inverse property if a"b=
a* } b (resp. b�a=b } a\). If a loop has both the left and the right inverse property,
it has the inverse property and a*=a\, in which case we will refer to them both
as a&1.

A groupoid is associative if a } (b } c)=(a } b) } c for all a, b, c. A semigroup is an
associative groupoid, and a monoid is a semigroup with identity. A group is an
associative quasigroup; groups have inverses and an identity.

Two elements a, b commute if a } b=b } a. A groupoid is commutative if all pairs
of elements commute. Commutative groups are also called Abelian. We will use +
instead of } for products in an Abelian group and call the identity 0 instead of 1.

371CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

In a group, the order of an element a is the smallest p>0 such that a p=1 (or
pa=0 in an Abelian group).

A homomorphism is a function , from one groupoid (A, }) to another (B, C) such
that ,(a } b)=,(a) C ,(b). An isomorphism is a one-to-one and onto homomorphism;
we will write A$B if A and B are isomorphic. Homomorphisms and isomorphisms
from a groupoid into itself are called endomorphisms and automorphisms, respectively;
the automorphisms of a groupoid A form a group Aut(A).

A subgroupoid (subquasigroup, subloop, etc.) of G is a subset H�G such that
b1 } b2 # H for all b1 , b2 # H. The subgroupoid generated by a set S, consisting of
all possible products of elements in S, is written (S) .

The left (right) cosets of a subloop H�G are the sets aH=[ah | h # H] and
Ha=[ha | h # H] for each a # G. A subloop H is normal if the following hold for all
a, b # G:

aH=Ha, a(bH)=(ab) H, and (aH) b=a(Hb).

Then the set of cosets of H is the quotient loop or factor G�H; it has identity 1H=H
and is the image of G under the homomorphism ,(a)=aH. Conversely, any
homomorphic image ,(G) of a loop is a quotient G�(ker ,) where the kernel
ker ,=[g # G | ,(g)=1] is a normal subloop of G.

A subloop of G is proper if it is neither [1] nor all of G. A minimal normal sub-
loop of G is one which does not properly contain any proper normal subloops of
G and which is not [1]. A simple loop is one with no proper normal subloops.

The commutator of two elements in a loop is [a, b]=ab�ba, i.e., the unique
element such that ab=[a, b](ba). The associator of three elements is [a, b, c]=
(ab) c�a(bc), i.e, the unique element such that (ab) c=[a, b, c](a(bc)). The subloop
generated by all possible commutators and associators in a loop G is called the
commutator�associator subloop or derived subloop G$. It is normal, and it is the
smallest subloop such that the quotient G�G$ is an Abelian group.

A loop G is solvable if its derived series G=G0 #G1 # } } } , where Gi+1=G$i for
all i, ends in Gk=[1] after a finite number of steps. A groupoid is solvable if it has
no subsets which are nonsolvable groups under the groupoid's operation.

A divisor of a groupoid is a factor of a subgroupoid. Any nonsolvable loop has
a simple non-Abelian divisor. A divisor is not necessarily a subgroupoid, even for
groups.

The center of a loop is the set of elements that associate and commute with every-
thing, Z(G)=[c | cx=xc, c(xy)=(xc) y=x(yc) for all x, y # G]. It is a normal
subloop of G and is always an Abelian group.

The upper central series of a loop is [1]=Z0 /Z1 / } } } where Zi+1 �Zi is the
center of G�Zi . A loop is nilpotent (of class k) if Zk=G for some k. Inductively,
G is nilpotent if it has a nontrivial center Z(G) and if G�Z(G) has a nontrivial center,
and so on until we get an Abelian group H for which Z(H)=H. The nilpotent
loops are a proper subclass of the solvable ones.

A pseudovariety is a class of groupoids V such that subgroups, factors, and finite
direct products of groupoids in V are also in V. Solvable and nilpotent loops both
form pseudovarieties.

372 MOORE ET AL.

In a quasigroup Q, we can define left and right multiplication as functions
La(b)=a } b and Ra(b)=b } a. These are permutations on Q (the rows and columns
of the multiplication table), and the multiplication group M(Q) is the group of
permutations they generate. More generally, any groupoid has a multiplication
semigroup generated by the La and Ra , which are not necessarily one-to-one func-
tions on Q. If we have more than one operation we will refer to Lx

a , M(Q, x), and
so on.

Finally, we refer to the identity function 1(x)=x, the cyclic group Zp=[0, 1, ...,
p&1] with addition mod p, and the groups Sn and An of permutations and even
permutations, respectively, on n elements.

3. SOLVABILITY AND BOOLEAN-COMPLETENESS IN
GROUPS AND LOOPS

Let us define the set of functions that can be expressed as circuits whose gates
carry out multiplication in a groupoid A and whose inputs can be variables or
constant elements of A. This is equivalent to the set of expressions definable in A
with constants and variables, such as ,(x1 , x2 , x3)=(x1(ax2))(x3b), regardless of
their size.

Definition. The closure of a groupoid A is the smallest set P(A) of functions
, on an arbitrary number of variables x1 , ..., xk containing the following:

�� (constants) a for all a # A.

�� (projections) xi for all i.

�� (products) (,1 } ,2) for all ,1 , ,2 # P(A).

We will sometimes refer to the set of functions on k variables as Pk(A). For
instance, P1(A) contains the multiplication semigroup M(A), as well as functions
like ,(x)=xx. (Since P(A) is closed under composition and substitution of one
function for a variable of another, it is a clone in the nomenclature of [31].)

We are interested in whether a groupoid can express arbitrary Boolean functions.
For instance, in the quasigroup

C 1 2 3 4

1 1 3 2 4

2 3 2 4 1

3 2 4 1 3

4 4 1 3 2

if false=1 and true=2, then

a 7 b=(a C b)2 and ca=3 C (1 C a)

are expressions of these Boolean functions as expressions in C. We can combine
these to make any other Boolean function. Formally:

373CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

Definition. A groupoid (A, C) is strongly Boolean-complete if there exist
elements true and false in A and functions , 7 , ,c in P(A), such that ,7(a, b)=
a7 b and ,c(a)=ca whenever a, b # [true, false].

In general, we will allow true and false to be sets, rather than single elements.

Definition. A groupoid (A, C) is Boolean-complete if there exist disjoint subsets
T, F/A of ``true'' and ``false'' elements, respectively, and functions ,7 , ,c in P(A)
such that ,7(a, b)ta 7 b and ,c(a)tca whenever a, b # T _ F, where xty if x
and y are both true or both false.

Then a strongly Boolean-complete groupoid is a Boolean-complete one where T
and F are the singletons [true] and [false].

We will often use the following lemma.

Lemma 1. The set of non-Boolean-complete groupoids forms a pseudovariety.
Therefore, if a divisor of a groupoid G is Boolean-complete, then G is also.

Proof. If a subgroupoid H/G is (strongly) Boolean-complete, then G is also
since P(H)/P(G). If a factor ,(G) is Boolean-complete with T and F, simply let
T $ and F $ in G be the inverse images ,&1(T) and ,&1(F). This shows that non-
Boolean-complete groupoids are closed under division. It remains to prove that
finite direct products of non-Boolean-complete groupoids are non-Boolean-complete.

Let G and H be two non-Boolean-complete groupoids and suppose that G_H
is Boolean-complete. Let T and F be two subsets of G_H containing true and false
values. Since G_H is Boolean-complete but G and H are not, there must exist
elements a, b # G and c, d # H such that either (a, c) # T and (a, d) # F or (a, c) # T
and (b, c) # F. Assume the first case, the other one being symmetric.

Let f (x, y) # P2(G_H) represent the function that computes nand(x, y). By
fixing the first component of x and y to a, we get that the first component of f (x, y)
is fixed to a0 for some a0 # G. Hence, we only have to look at the second compo-
nent to determine if f evaluates to true or false. Observe that we do not have a
contradiction yet, since we can have a situation where (a, c) # T and (a0 , c) # F.

Let g1(x, y)= f (x, y) and, for any k�1, define

gk+1(x, y)= gk(f (f (x, x), f (x, x)), f (f (y, y), f (y, y))).

Then, for any k�1, gk(x, y) computes nand(x, y), since f (f (x, x), f (x, x)) has the
same truth value as x.

If the first component of x and y is a0 , then we can define ai as the first compo-
nent of gi (x, y). Since G and H are both finite, there must exist two integers
0�i< j such that ai=a j . Hence, if we use only true and false values whose first
component is ai , then the first component of gj&i is also ai . Let S=[(ai , c) | c # H].
We have that the sets T $=S & T and F $=S & F are disjoint, and so, H is Boolean-
complete, a contradiction. K

Then our fundamental motivation for this work is the following:

Lemma 2. If a groupoid is Boolean-complete, then its Expression, Evaluation and
Circuit Value problems are NC1-complete and P-complete, under NC0 and NC1

reductions respectively.

374 MOORE ET AL.

Proof. The Boolean Circuit Value problem is reducible to its algebraic counter-
parts, since a local rule can replace and, or, and not gates with ``gadgets'' of
algebraic gates.

The case of Expression Evaluation is slightly more complicated. Actually we can
show that it is complete for NC1 under DLOGTIME-uniform projection (see [5]).

We observe first that the circuits involved in the definition of NC1 can be restricted
to be DLOGTIME-uniform full binary trees with 2k input gates (for some k depending
on the length of the input) and with and�or gates alternating between each level
(see [5]). Moreover, we can replace all and and or gates with nand gates without
loss of generality by using the equalities

and(x, y)=nand(nand(x, y), nand(x, y))

or(s, y)=nand(nand(x, x), nand(y, y)).

Let L # NC1 be a language recognized by such a family of circuits. Given a binary
string w, the reduction from w to the string v corresponding to the 2k input gates
of the circuit can be done in DLOGTIME since the circuits are DLOGTIME
uniform. Hence, w # L if and only if v can be evaluated through a full tree using
only nand gates.

So, we only have to show that evaluating v using a full tree of nand gates is
equivalent to evaluating an expression , over a Boolean complete groupoid and
that each symbol in , can be determined in DLOGTIME.

Let G be a Boolean complete groupoid. Then there exists an expression f # P2(G)
that represents the nand function. Without loss of generality we can assume that
the number M of symbols in f is a power of 2 (pad it with blanks if necessary). Let
f (i) be the expression obtained from f by replacing each symbol s, that is not a
variable, with sBMi&1&1, where B is the blank symbol.

The rest of the idea is similar to that in [6]. We construct an expression for
each gate in the circuit so that , is the expression corresponding to the output gate.
A gate g on level 1 whose inputs are x and y is represented by the expression
,g= f (x, y). A gate g on level i>1 whose inputs are g1 and g2 (which are on level
i&1) is represented by the expression ,g= f (i)(,g1

, ,g2
) whose length is M i. For

any j, the j th symbol of , can be determined simply by looking at the binary expan-
sion of j. Whenever this symbol is a variable, we use the uniformity of the circuits
to determine its position in the input. K

Then we briefly restate a theorem of Barrington [3], with a slightly different
proof. The construction hinges on the fact that the commutator has the character
of an and gate: if false=1, then [a, b] is false if either a or b is, since the identity
commutes with everything.

First we show two useful lemmas:

Lemma 3. If Q is a finite quasigroup, the divisions a�b and a"b are in P2(Q) as
functions of a and b. Therefore, when Q is a loop, functions that yield the com-
mutator, associator, and left and right inverses are in P as well.

375CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

Proof. Recall the definition of La and Ra above. If Q is a quasigroup of order n,
La and Ra are permutations on its elements, and Ln !

a and Rn !
a are the identity 1.

Then aLn !&1
a (b)=Ln !

a (b)=b, so

a"b=Ln !&1
a (b)=a(a(} } } (a

n !&1 times

} b)))

is in P(Q). Similarly, for a�b; then by composition we can define [a, b]=ab�ba,
[a, b, c]=(ab) c�a(bc), a*=1�a, and a"1. K

Lemma 4. If G is a simple loop or group, for any x, y{1 there is a (not
necessarily unique) function ?x � y in P1(G) that sends x to y and keeps the identity
fixed.

Proof. Let U be the set of functions , in P1(G) such that ,(1)=1. For an
element x # G, let U(x)=[,(x) | , # U] be the set of y's that we can send x to,
while fixing 1.

It is easy to see that U is closed under product, since if ,1 and ,2 are in U and
we define ,$=,1 } ,2 , then ,$(1)=,1(1) } ,2(1)=1 } 1=1 and ,$ is in U also. For
the same reason, U(x) is a subloop, since ,$(x)=,1(x) } ,2(x) is in U(x) whenever
,1(x) and ,2(x) are. Moreover, U(x) is a normal subloop, since for any , in U the
following ,$ is also in U:

aU(x)=U(x) a : ,$(x)=a,(x)�a

a(bU(x))=(ab) U(x) : ,$(x)=(ab)"a(b,(x))

a(U(x) b)=(aU(x)) b : ,$(x)=a"(a(,(x) b)�b).

In each case ,$ is in P(G) by Lemma 3 and in U since ,$(1)=1 if and only if
,(1)=1.

If G is simple, then it has no proper normal subloops and U(x)=G for any x{1.
Thus, for any y, there exists , # U such that ,(x)= y; this is our ?x � y . K

Theorem 5 (Barrington). Simple non-Abelian groups are strongly Boolean-com-
plete, and nonsolvable groups are Boolean-complete.

Proof. Let G be simple and non-Abelian, so that G=G$. Then choose any non-
commuting pair of elements x, y with [x, y]{1. Let false=1 and true be any
non identity element t{1, and define

a7 b=?[x, y] � t([?t � x(a), ?t � y(b)]).

This expression evaluates to t if a=b=t and 1 if either a or b is 1; in other words,
it is an and gate. Finally, we can express negation as ca=t } a&1.

So simple non-Abelian groups are strongly Boolean-complete; and since non-
solvable groups have simple non-Abelian divisors, nonsolvable groups are Boolean-
complete by Lemma 1. K

376 MOORE ET AL.

In fact, [3] seems to state that nonsolvable groups are strongly Boolean-com-
plete; we believe this is a slight mistake. A counterexample would be a group such
as SL(2, 5) whose simple divisor PSL(2, 5)$A5 is not a subgroup [33] (recall that
a divisor is not generally a subgroup). In this case, PSL(2, 5) is strongly Boolean-
complete, while SL(2, 5) is not.

By using an associator instead of a commutator, this generalizes to loops
[11, 18]. Like the commutator, the associator [x, y, z] is 1 if any of its arguments
is 1, since the identity associates with everything.

Theorem 6. Simple non-Abelian loops are strongly Boolean-complete, and non-
solvable loops are Boolean-complete.

Proof. Assume without loss of generality that G is simple and nonassociative,
since Theorem 5 treats the associative case. Choose a triplet of nonassociating
elements x, y, z # G with [x, y, z]{1. Let false=1 and true=t{1 as before,
Then we can let

a 7 b=?[x, y, z] � t([?t � x(a), ?t � y(b), z])

and let (say) ca=t�a or t } a\ (note that these are not the same for all a unless the
loop has the right inverse property). So simple non-Abelian loops are strongly
Boolean-complete; and since nonsolvable loops have simple non-Abelian divisors,
they are Boolean-complete by Lemma 1.

In fact, simple non-Abelian groups [20], simple loops [11, 18], and nonaffine
simple quasigroups [21] have a stronger property, that their closure contains all
possible n-ary functions on their elements. This is called functional completeness and
is of interest in the field of multivalued logic [27, 31]. However, Boolean-complete-
ness is sufficient for our purposes.

Since the Circuit Value problem for solvable groups is in NC [7, 22], non-
solvability is both necessary and sufficient for Boolean-completeness in the case of
groups (or semigroups, in fact).

However, a loop can be solvable and still be (strongly) Boolean-complete. Let
(G, }) be

} 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 2 3 4 1 6 7 8 5

3 3 4 1 2 7 8 5 6

4 4 1 2 3 8 5 6 7

5 5 6 7 8 1 3 2 4

6 6 7 8 5 3 2 4 1

7 7 8 5 6 2 4 1 3

8 8 5 6 7 4 1 3 2

377CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

Here G$ is the normal subloop [1, 2, 3, 4]$Z4 . But the lower right-hand block is
the Boolean-complete quasigroup C given above, and C can be expressed in P(G)
as a C b=(5 } a) } (5 } b). Then if false=1 and true=2 as before, we can write
a7 b=[5 } ((5a)(5b))]2 and G is Boolean-complete. We also note that this loop
has a solvable multiplication group, which we will discuss below.

Solvable loops with the inverse property can also be Boolean-complete; we
believe the smallest example is

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 1 7 9 10 8 6

3 3 4 5 1 2 8 10 7 6 9

4 4 5 1 2 3 9 8 6 10 7

5 5 1 2 3 4 10 6 9 7 8

6 6 7 8 9 10 1 2 3 4 5

7 7 9 10 8 6 2 4 5 3 1

8 8 10 7 6 9 3 5 2 1 4

9 9 8 6 10 7 4 3 1 5 2

10 10 6 9 7 8 5 1 4 2 3

Here G$=[1, 2, 3, 4, 5]$Z5 , so G is solvable. However, if false=1 and true=2,
we can define a 7 b=[a, b, 6] since [2, 2, 6]=2 (and ca=2�a).

In both these examples, the lower right-hand block can be any quasigroup what-
soever. Clearly the standard definition of solvable for loops is not a very meaningful
constraint for our purposes. In the next section we will show that for loops and
quasigroups, a property slightly more subtle than solvability is the dividing line
between Boolean-completeness and incompleteness.

4. POLYABELIAN GROUPOIDS

4.1. Definition and Properties

The direct product of two groupoids A_B is the set of pairs (a, b) with pairwise
multiplication, (a1 , b1) } (a2 , b2)=(a1 a2 , b1b2). Consider the following generalization.

Definition. A quasidirect product [12] of two groupoids A and B is the set of
pairs (a, b), under an operation of the form

(a1 , b1) } (a2 , b2)=(a1a2 , b1 xa1 , a2
b2),

where each a1 , a2 defines a local operation xa1 , a2
on B. We will denote such a

product A�B.

378 MOORE ET AL.

Observe that the quasidirect product, as defined above, makes no use of the
product in B and so it makes sense to talk of the quasidirect product of A and S
even when S is a set with no underlying operation. In order to take into account
the algebraic structure of B, we have to restrict the local operations.

If the local operations are of the form

b1 xa1 , a2
b2= fa1 , a2

(b1) } ga1 , a2
(b2),

where f and g are functions from B to B, we will call them separable. Furthermore,
if B is an Abelian group and the x's are of the form

b1 xa1 , a2
b2= fa1 , a2

(b1)+ ga1 , a2
(b2)+ha1 , a2

,

where f and g are endomorphisms on B and h is an element of B, depending
arbitrarily on a1 and a2 , then we will call them affine. We will call a quasidirect
product A�B separable or affine on B if all its local operations are.

Lemma 7.1. 1. If a groupoid G is a quasidirect product A�B, then A is a factor
of G.

2. If G is a quasigroup, then A and B are quasigroups and all the x's are quasi-
group operations on B.

3. If G is a quasigroup and is affine on B, then all the f 's and g's are
automorphisms on B.

4. If G is a loop, then A is a loop and B$[1]_B is a normal subloop (where
1 is the identity of A).

5. If G is a loop affine on (B, +), then for all a # A we have fa, 1= g1, a=1 and
ha, 1=h1, a=0 (where we use 1 and 0 for the identities of A and B, respectively). Thus
b1 x1, 1 b2=b1+b2 for b1 , b2 # B, and + and } coincide in B.

Proof. For the most part, we leave this to the reader. For (5), the identity of G
must be (1, b) where 1 is the identity of A and b is some element of B. Without loss
of generality, we can assume that b=0, since otherwise we can redefine the operation
+ by adding a constant. Then (a, b) } (1, 0)=(a, fa, 1(b)+ha, 1) and (1, 0) } (a, b)=
(a, g1, a(b)+h1, a). Setting the B component of both of these equal to b and using
the fact that f and g are endomorphisms yields fa, 1= g1, a=1 and ha, 1=h1, a=0. K

The quasidirect product is a rather general way of extending to a loop from a
normal subloop.

Lemma 8. If a loop G has a normal subloop N, then G is isomorphic to a quasi-
direct product (G�N)�N. Furthermore, all the local operations are expressible in
P(G). If the local operations are separable, then the f 's and g$s are expressible, and
if N is Abelian and G is affine on N, the f 's, g$s, and h's are expressible.

Proof. The first part of the proof comes from [2]. Choose a set T with one
element in each coset of N (such a set is often called a transversal), and define an
operation v on T where t1 vt2 is the element of T in the same coset as t1 } t2 . Then
clearly T$G�N.

379CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

Every element can be uniquely written g=tn where t # T and n # N. Then

(t1n1) } (t2n2)=(t1 vt2) } (n1 xt1 , t2
n2),

where

n1 xt1 , t2
n2=(t1 vt2)"((t1 n1) } (t2n2))

which is in N since N is normal. Thus, G is a quasidirect product T�N, and all
the local operations x are in P(G).

If the x's are separable, then

ft1 , t2
(n)=n xt1 , t2

g&1
t1 , t2

(1),

where 1 is the identity of N. Thus, ft1 , t2
is expressible for each t1 and t2 , and

similarly for gt1 , t2
.

If N is an Abelian group and G is affine on N, then

fa1 , a2
(n)=(n xa1 , a2

0)&(0 xa1 , a2
0)

ga1 , a2
(n)=(0 xa1 , a2

n)&(0 xa1 , a2
0)

ha1 , a2
=(0 xa1 , a2

0),

where we abuse notation by writing + and 0, instead of } and 1, for products
in N. Finally, (N, +) is in P(G) since a x0, 0 b=a+b by Lemma 7. K

Then define the following class of groupoids.

Definition. A groupoid is polyabelian if it is an iterated quasidirect product of
Abelian groups Ai :

((a0 �A1)�A2)� } } } �Ak ,

where all the products are affine.

It is easy to show that subgroupoids, factors, and finite direct products of
polyabelian groupoids are polyabelian, so this class forms a pseudovariety. The
next few lemmas show inclusions between the polyabelian loops and some common
classes of groups and loops.

Lemma 9. Polyabelian loops are solvable.

Proof. Let Hi=(Ai �A i+1)� } } } �Ak with H0=G. Then the reader can show
that all the Hi are normal subloops of G and H i �Hi+1=Ai is Abelian. Therefore,
H$i �Hi+1 and the derived series ends after at most k steps. K

The converse is not true for loops in general (for instance, the solvable Boolean-
complete loops above, since the local operations in their lower right-hand blocks
are not affine) but it is true for groups.

Lemma 10. Solvable groups are polyabelian.

380 MOORE ET AL.

Proof. Any solvable group G has a normal subgroup N which is Abelian,
namely the last nontrivial group in its derived series such that N$=[1]. Since
factors of solvable groups are solvable, G�N is solvable if G is, so we can assume
by induction on smaller groups that G�N is polyabelian. Now express G as a
quasidirect product of G�N and N using Lemma 8, with the local operation

n1 xt1 , t2 n2 =(t1 vt2)&1 t1 n1 t2n2

=((t1 vt2)&1 t1 t2)+(t&1
2 n1 t2)+n2 ,

where we use + for products within N. Thus, G is affine on N where

ft1 , t2
(n)=t&1

2 nt2

gt1 , t2
(n)=n

ht1 , t2
=(t1 vt2)&1 t1 t2 .

Then G�N has an Abelian normal subgroup and so on; by induction G is
polyabelian.

(If t1 vt2=t1 t2 so that h=0, then T is a subgroup of G isomorphic to G�N, the
quasidirect product reduces to the semidirect product on groups, and G is a split
extension of N by T [30]. In [22] we defined polyabelianness with semidirect
products only, in which case any solvable group is a subgroup of a polyabelian
group by a theorem regarding wreath products.) K

Lemma 11. Nilpotent loops are polyabelian.

Proof. Let G be a nilpotent loop with center Z(G). Then the local operation in
G�Z(G)�Z(G) is

n1 xt1 , t2
n2=((t1 vt2)"t1t2)+n1+n2 ,

since n1 and n2 associate and commute with everything. So G is affine on Z(G) with
f =g=1 and h=(t1 vt2)"t1 t2 . Then G�Z(G) has a nontrivial center and so on, by
induction G is polyabelian. K

Thus, polyabelianness coincides with solvability for groups and lies properly
between nilpotence and solvability for loops.

We wish to show that, for purposes of Boolean-completeness, polyabelianness is
the correct generalization of solvability in the nonassociative case; that is, a
groupoid is Boolean-complete if and only if it is not polyabelian. This will turn out
to be true for loops and quasigroups, but not for groupoids in general.

4.2. Polyabelian Groupoids Are Not Boolean-complete

In one direction, we can prove this for all groupoids. In [22] we show that
Circuit Value for polyabelian groupoids is in ACC1, and a simple modification of
the proof for solvable semigroups in [7] shows that it is also in DET. We now

381CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

show directly that polyabelian groupoids cannot express the and function. First,
two lemmas from [31].

Definition. Let A be an Abelian group. A function ,: An � A is affine if there
exist endomorphisms f1 , ..., fn and an element h such that ,(x1 , ..., xn)=�i fi (xi)+h.

Recall the definition of the closure P(A) from Section 3. The closure of an
Abelian group consists only of affine functions.

Lemma 12. If A is an Abelian group, then any function in P(A) is affine, and the
affine functions are closed under composition.

Proof. Obvious. ,(a, b)=a+b is affine, and if ,1 and ,2 are both affine, then
so are ,1+,2 and ,1 b ,2 . K

Lemma 13. If ,(a, b) is an affine function, then ,(a1 , b1)=,(a1 , b2) if and only
if ,(a2 , b1)=,(a2 , b2) for any four elements a1 , a2 , b1 , b2 .

Proof. We can write ,(a, b)= f (a)+ g(b)+h where f and g are endomorphisms.
Then ,(a1 , b1)=,(a1 , b2) implies that g(b1)= g(b2), which in turn implies that
,(a2 , b1)=,(a2 , b2) for any a2 . K

Theorem 14. Polyabelian groupoids cannot express the and function and so are
not Boolean-complete.

Proof. If G is Boolean-complete, then it can express an n-ary and function for
any n; i.e., ,(a1 , a2 , ..., an) # T if and only if ai # T for all i (assuming that ai # T _ F
for all i). We will show that this is impossible for n sufficiently large.

If G=(A0 �A1)� } } } �Ak , then any x # G has a unique vector of components
(x0 , x1 , ..., xk) where x i # Ai for all i. Call x i the A i -component of x. We will proceed
through the Ai by induction, showing that there are elements of T and F matching on
all their components and therefore equal; then T and F are not disjoint, a contradiction.

Since A is finite, it has a finite number k�|A| |A| of endomorphism.2 Therefore,
if �(a1 , ..., an)=�i g i (ai)+h is an n-ary affine function on an Abelian group A of
order p, and if n is greater than (p&1) k, then at least p of the variables have the
same gi= g. Then if these p variables are all equal, they contribute nothing to �
since pg=0. In particular, if the n& p other variables are true, � has the same value
whether these p variables are true or false. As shorthand for this, we write
�(f ptn& p)=�(tn). Thus, � cannot be an and function.

So assume that there is an n-ary and function , in P(G). To start the induction,
since A0 is a factor of G by Lemma 7, ,'s A0 -component ,0 is a function of the
A0 -components of the ai , expressible in P(A0) and therefore affine by Lemma 12.
Choose t # T and f # F; then for n sufficiently large ,0(f ptn& p)=,0(tn). Let f0=
,(f ptn& p) and t0=,(tn); then t0 # T and f0 # F by hypothesis, and they have the
same A0 -component.

Now suppose that tm # T and fm # F agree on their A j -components for all j�m.
Think of , as a tree where each node corresponds to a subexpression equal to the

382 MOORE ET AL.

2 If A=Zm
p , for instance, k= pm2

since the endomorphisms of A are m_m matrices with entries in Zp .

product of its daughters according to some local product. Then the Aj -components
at each node depend only on the Aj $ -components of its two subexpressions for
j $� j (since A0 � } } } �Aj is a factor of G for all j) and tm and fm have the same
Aj -component for all j�m, so inductively , and each of its subexpressions have
constant Aj-components for j�m when restricted to inputs in [tm , fm].

Furthermore, each node applies an affine local operation on Am+1 , and which
one it applies depends only on its subexpressions' Aj -components for j�m. Since
these are constant in this restriction, each node always applies the same local opera-
tion; the composition of all of these makes ,m+1 an affine function on the Am+1

components of its inputs.
Then if we let fm+1=,(f p

mtn& p
m) # F and tm+1=,(tn

m) # T, we see that fm+1 and
tm+1 agree on their A j -components for all j�m+1. After k steps of this induction,
tk and fk agree on all their components and so are equal; so T and F are not
disjoint.

Thus, by contradiction, G cannot express an n-ary and and is not Boolean-
complete. K

4.3. Nonpolyabelian Loops and Quasigroups Are Boolean-Complete

Theorem 5 and Lemma 10 show that nonpolyabelianness implies Boolean-
completeness in the case of groups; we will now show this for loops and then for
quasigroups, using slightly different techniques.

Theorem 15. Nonpolyabelian loops are Boolean-complete.

Proof. Let H be the smallest nonpolyabelian divisor of G. We will show that H
(which is also a loop) is strongly Boolean-complete.

Assume without loss of generality that H is solvable, since we have already
treated the nonsolvable case with Theorem 6. Then H has a normal subloop K
which is an Abelian group, namely the last nontrivial subloop in its derived series
with K$=[1]. Let N be a minimal normal subloop of H contained in K; then N
is also Abelian. Note that N can be smaller than K. We know that H is not affine
on N; otherwise H�N would be a smaller nonpolyabelian divisor of G.

Recall the definition of U(x) from Lemma 4. Since N is minimal, U(n)#N for
any n # N; otherwise U(n) & N would be a smaller normal subloop since the inter-
section of normal subloops is normal. So for any n1 , n2 # N, there exists a function
?n1 � n2

P(H) that sends n1 to n2 and preserves the identity.
Since H is not affine on N, some local operation x is either not separable or not

affine. Define the separator

Kx(n1 , n2)=(n1 x n2)&(n1 x 0)&(0 x n2)+(0 x 0),

where we use + and & for products in N. If Kx=0, then n1 x n2= f (n1)+ g(n2)
where f (n1)=(n1 x 0) and g(n2)=(0 x n2)&(0 x 0), so x is separable. Conver-
sely, if x is separable, then all the terms cancel and Kx=0. Therefore, if x is not

383CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

separable, then Kx(n1 , n2)=k{0 for some n1 , n2 ; however, Kx(0, n)=Kx(n, 0)
=0 for any n. But this gives us our and gate: let false=0 and choose true=t # N,
and let

a7 b=?k � t(Kx(?t � n1
(a), ?t � n2

(b))).

If all the local operations are separable, then one must not be affine; that is, some
f or g is not an endomorphism of N. Let f (n)=(n x 0)&(0 x 0) as in Lemma 8,
and define the affinator

Lf (n1 , n2)= f (n1+n2)& f (n1)& f (n2).

If f is not a endomorphism, then Lf (n1 , n2)=k{0 for some n1 , n2 ; but Lf (n, 0)=
Lf (0, n)=0 for all n, so

a 7 b=?k � t(Lf (?t � n1
(a), ?t � n2

(b)))

is an and gate. Similarly if some g is not a endomorphism.
So any nonlinearity in the local operations can be used to construct an and gate,

and we can express negation ca=t�a as in Theorem 6. Thus, H is strongly
Boolean-complete, and G is Boolean-complete by Lemma 1. K

This proof fails for the quasigroup case, since there might be no Abelian sub-
quasigroup N to define the separator or affinator over. Instead, we will use some
results from clone theory and the study of multioperation algebras [31], after
giving some new definitions.

Definition. An algebra (A, S), or A for short, is a set A with a set of operations
S of any arity. Its closure P(A) is the set of all functions that can be written with
these operations and constants. For instance, if S=[f, } , g] where f, } , and g are
unary, binary, and ternary, respectively, then ,(x1 , x2)=g(f (x1 } a), x2 , b) is in P(A).

An algebra is functionally complete if P(A) includes all possible functions, of
whatever arity, on A. Clearly a functionally complete algebra with more than one
element is also strongly Boolean-complete.

Definition. An algebra (A, S) is affine if there is some Abelian group +
defined on A such that every operation in S is affine on (A, +).

Definition. A congruence on an algebra (A, S) is an equivalence t on A such
that, for every operation f in S of arity k, if a1 tb1 , a2 tb2 , ..., and ak tbk , then
f (a1 , ..., ak)tf (b1 , ..., bk).

In other words, the equivalence class of f depends only on the equivalence classes
of the ai . Then the map , from A to the set of equivalence classes A�t is a homo-
morphism, i.e., ,(f (a1 , ..., ak))= f (,(a1), ..., ,(ak)) for all f in S. This generalizes the
idea of normality; if A is a loop with a normal subloop N, then the equivalence
classes are simply N's cosets.

A congruence t is proper if it is other than the identity (atb only if a=b)
or all of A(atb for a, b). It is minimal if there is no proper congruence whose

384 MOORE ET AL.

equivalence classes are properly contained in those of t . An algebra is simple if it
has no proper congruences.

Definition. An algebra A is Mal 'cev if P(A) contains a Mal 'cev operation, a
ternary function , such that ,(x, y, y)=,(y, y, x)=x for all x, y # A.

Any algebra with a quasigroup operation is Mal'cev, since if we define ,(x, y, z)
=(x�x)"((x�y) z), then ,(x, y, y)=(x�x)"x=(x�x)"((x�x) x)=x and ,(y, y, x)=
(y�y)"((y�y) x)=x.

Lemma 1 clearly generalizes to algebras in general; if A�t is Boolean-complete,
then so is A. In addition, Lemma 8 generalizes to quasigroups: if Q has a con-
gruence t , then Q$(Q�t)�N where N is any one of t 's equivalence classes
and the local operations on N are in P(Q). (However, unlike in the loop case, it
is possible that none of t's equivalence classes are subquasigroups.)

Finally, we import the following corollary to Theorem 4.7 and Corollary 4.12
of [31].

Lemma 16. If an algebra is Mal 'cev, simple, and nonaffine, then it is functionally
complete.

This allows us to reach our goal, namely

Theorem 17. Nonpolyabelian quasigroups are Boolean-complete.

Proof. Let Q be nonpolyabelian, and let R be its smallest nonpolyabelian
divisor. As before, we will show R is strongly Boolean-complete.

Lemma 16 takes care of the case when R is simple, since simple and non-
polyabelian implies nonaffine. Thus, we can assume that R has proper congruences;
let t be its minimal congruence and N one of its equivalence classes. We now
consider the multioperation algebra (N, [x]) consisting of all the local operations
on N.

If (N, [x]) is affine on the equivalence classes of t , there is an Abelian group
(N, +) on which all the local operations x are affine. Then the quasidirect product
(R�t)�N is affine, and R�t is a smaller nonpolyabelian divisor of Q. So (N, [x])
is nonaffine.

Similarly, any proper congruence of (N, [x]) is also a proper congruence of
each of the quasigroups (N, x) dividing the equivalence classes of t into smaller
ones. Since t is R's minimal congruence, (N, [x]) is simple.

Then N is functionally complete by Lemma 16, R is strongly Boolean-complete
since P(N)/P(R) by Lemma 8, and A is Boolean-complete by Lemma 1. K

While this proof is quite powerful and includes Theorems 5, 6, and 15 as special
cases, it is considerably less constructive. To actually build an and gate, one can
use Theorem 2.4 of [31], a kind of converse to Lemmas 12 and 13:

Lemma 18. If A is a nonaffine Mal 'cev algebra, then P(A) contains a function ,
such that, for some a1 , a2 , b1 , b2 # A, ,(a1 , b1)=,(a1 , b2) but ,(a2 , b1){,(a2 , b2).

In essence, this shows that a nonlinear function always exists if a Mal'cev algebra
is not affine. We also need the following generalization of Lemma 4.

385CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

Lemma 19. If A is a simple algebra, then for any x, y, z, w with x{z, there
exists a (not necessarily unique) function ?x � y, z � w in P(A) that sends x to y and
z to w.

Proof. Fix z, and let Uz � w be the set of functions , in P(A) such that ,(z)=w.
Then Uz � w(x) is the set of y's that we can send x to, while sending z to w.

Suppose y1 # Uz � w1
(x) and y2 # Uz � w2

(x); that is, suppose there are functions
,1 , ,2 # P(A) such that ,1(x)= y1 , ,1(z)=w1 , ,2(x)= y2 , and ,2(z)=w2 . Then
if ,$(a)=,1(a) } ,2(a), we have ,$(x)= y1 } y2 and ,$(z)=w1 } w2 . Therefore,
,$ # Uz � w1 } w2

and y1 } y2 # Uz � w1 } w2
(x).

Fix x and z. Then the sets Uz � w(x) for different w are equivalence classes of a
congruence. Moreover, each one has more than one element; for instance, w and
(w�z) x are both in Uz � w(x) by the functions ,(a)=w and (w�z) a and are distinct
in a quasigroup if x{z.

Since A is simple, it has no proper congruences, and Uz � w(x)=A; so for every y,
there exists a function , # Uz � w(x) that sends x to y, which is our ?x � y, z � w . K

Since (N, [x]) is simple, we can construct an and gate by choosing an element
x # N and defining

�(a, b)=(x } ,(a, b))�,(a, b1),

where , is the function of Lemma 18. The reader can check that �(a, b)=x for
three out of four combinations of a1 , a2 , b1 , and b2 , all except �(a2 , b2) which is
some y{x. This has the shape of an and gate, and using Lemma 19 we can define

a 7 b=?x � false, y � true(�(?false � a1 , true � a2(a), ?false � b1 , true � b2(b))).

In any case, we have shown the following:

Corollary. The non-Boolean-complete quasigroups and the polyabelian quasi-
groups form the same pseudovariety.

4.4. Groupoids in General

It would be very nice if nonpolyabelianness were the criterion for Boolean-com-
pleteness for groupoids in general (presumably with ``Abelian group'' replaced by
``Abelian semigroup'' in the definition). However, we can give a counterexample.
Let (A, C) be

C 0 1 2 3

0 0 1 2 3

1 1 0 2 3

2 2 2 0 0

3 3 3 0 1

386 MOORE ET AL.

Theorem 20. (A, C) is nonpolyabelian, but cannot express the and function.

Proof. The equivalence classes [0, 1] and [2, 3] form the only proper congruence
t of A. There is no Abelian semigroup on which the lower-right and upper-left local
operations are both affine, so A is not polyabelian.

We could not have true and false in different equivalence classes, since
(A�t)$Z2 . So we will assume first that true, false # [0, 1].

The lower right-hand block looks like an and gate with true=1 and false=0,
in which case we could use the upper left-hand block to say ca=1 C a. But there
is no way to map, say, 0 to 2 and 1 to 3, since a C b=b C a=a whenever a # [2, 3]
and b # [0, 1]; that is, 2 and 3 dominate 0 and 1.

Formally, consider an expression , in P(A). The following rules preserve the
value of , on inputs restricted to [0, 1]:

�� Replace a C , and , C a with a if a # [2, 3] and , contains only elements
of [0, 1], and

�� Replace a C b with the appropriate constant in [0, 1] if a, b # [2, 3].

Applying these rules repeatedly will leave us either with a constant in [2, 3] or
with variables and constants in (0, 1), on which C is a subgroupoid isomorphic
to Z2 . So any function in P(A) is constant or affine when restricted to variables in
[0, 1] and cannot express an and.

Finally, assume that true, false # [2, 3]. Any node whose output is 2 or 3 is
equal to either its left or its right input (whichever one is 2 or 3), which in turn is
equal to one of its inputs, and so on back up to a single constant or variable. Since
t is normal, for inputs in [2, 3] the same subexpressions always have values in
[2, 3], and this path always leads back to the same input or constant. So any func-
tion in P(A) with an output in [2, 3] is either constant or equal to one of its inputs
when restricted to variables in [2, 3] and cannot be an and. K

Note that we have not shown that this groupoid's Expression Evaluation or
Circuit Value problem is in NC, but simply that it is not Boolean-complete.
Perhaps the reader can find some more subtle analog of polyabelianness that works
for all groupoids.

5. M -SOLVABILITY AND EXPRESSION EVALUATION

We now consider the relationship between expressions in a groupoid and words
in that groupoid's multiplication group (or semigroup).

Definition. A groupoid is M-solvable if its multiplication semigroup is
solvable.

For groups, solvability and M-solvability coincide since one can show that M(G)
is isomorphic to (G_G)�Z(G) and is solvable if G is. For loops, M-solvability
implies solvability by a recent result of Vesanen [32], and nilpotent loops are
M-solvable by a theorem of Bruck [8]. Thus, like polyabelianness, M-solvability
is a generalization of solvability which lies properly between nilpotence and
solvability for loops.

387CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

However, the M-solvable loops and polyabelian loops are incomparable. First
we show that M-solvability is related to the solvability of the automorphisms
generated by the f 's and g's in a quasidirect product.

Definition. For an affine quasidirect product A�B, define (fg(B)) as the
subgroup of Aut(B) generated by all the f 's and g's in the local operations; these
are automorphisms by (3) in Lemma 7. Define (fgh(B)) as the group of affine
operations on B generated by all the rows and columns of the local operations.

We need the following definition from [15].

Definition. The wreath product of B by A, written A " B, is a particular kind of
semidirect product A�BA where BA is the set of functions ; from A to B, with
multiplication defined as

(a1 , ;1) } (a2 , ;2)=(a1a2 , ;$)

where ;$(a)=;1(a2 a) } ;2(a).

In other words, each element of A " B consists of an element of A and a vector ; of |A|
elements of B; the ; 's are multiplied componentwise, but with the components of
;1 permuted by a2 . Thus, the A-component is affected by a # A, while the B-compo-
nent within a block [a]_B is affected by ;(a) # BA.

Then we have the following.

Lemma 21. If G=A�B is a quasigroup, then M(B, x) for every local operation
x is contained in a divisor of M(G). Furthermore, if G is affine on B, the following
are equivalent:

�� G is M-solvable

�� (fg(b)) is solvable

�� (fgh(b)) is solvable.

Proof. Let (G, })=A�B. Let H be the subgroup of M(G) consisting of those
multiplications that preserve each block [a]_B, i.e., that leave the A-component
unchanged; in a loop, for instance, this includes multiplications by elements of B.
Choose an element a0 # A, and let N be the subgroup of H that also fixes the
B-components of elements in [a0]_B. It is easy to see that N is normal in H and
that H�N is isomorphic to the set of permutations of B that can be carried out with
multiplications in G.

Although, unlike the loop case, [a0]_B might not be a subgroupoid, we can
identify b with (a0 , b) and define the local operations as b1 x b2=a"((a1b1)(a2b2))
where a is chosen so that the A-component of b1 x b2 is a0 ; since A is a factor of
G by Lemma 7, a depends only on a1 and a2 .

Then multiplications in x are compositions of multiplications in G, since Lx
b =

L&1
a L(a1b)La2

and Rx
b =L&1

a R(a2b)La1
. So M(B, x)�H�N.

Now suppose G is affine on B. Since the rows and columns of all the x's generate
exactly (fgh(B)) , we have (fgh(B)) =H�N. The subgroup of (fgh(B)) that

388 MOORE ET AL.

preserves the identity of B is simply (fg(B)). Since divisors of solvable groups are
solvable, both these groups are solvable if M(G) is.

Conversely, since elements of M(G) permute the blocks with each other by
elements of A while permuting them internally by the rows and columns of the x's,
M(G) is a subgroup of the wreath product M(A) " (fgh(B)) , and the wreath
product of two solvable groups is solvable.

Finally, since two affine functions ,1(b)= f1(b)+h1 and ,2(b)= f2(b)+h2

compose as

(,1 b ,2)(b)=(f1 b f2)(b)+h1+ f1(h2)

we see that (fgh(B)) is a semidirect product (fg(B)) �B. The semidirect product
of two solvable groups is solvable, and B is Abelian; so (fgh(B)) is solvable if
(fg(B)) is. K

Theorem 22. The classes of polyabelian and M-solvable loops are incomparable.

Proof. First, we construct a polyabelian loop which is not M-solvable. Let B be
an Abelian group with a nonsolvable automorphism group; for instance, if B=Z3

2 ,
its automorphisms can be thought of as invertible 3_3 matrices over Z2 . The
group of these, Aut(Z3

2), is the simple group of order 168, and it is generated by two
elements [33],

0 1 0 0 0 1

f =\0 0 1+ and g=\1 0 0+ .

1 1 0 0 1 0

If we let G=Z2 �Z3
2 where b1 x1, 1 b2= f (b1)+ g(b2), then (fg(B)) =Aut(B) is

nonsolvable and G is not M-solvable by Lemma 21. (This produces a loop of order
16; since Abelian groups smaller than Z3

2 all have solvable automorphism groups,
we believe this is the smallest possible.)

Conversely, the Boolean-complete loop of order S given in Section 3 above is
M-solvable: M(G) consists of those permutations of eight elements which either
preserve or switch the blocks [1, 2, 3, 4] and [5, 6, 7, 8]. This is the wreath product
Z2 " S4 , and its derived subgroup M(G)$ is the subset of S4_S4 consisting of pairs
of permutations whose total parity is even. The rest of the derived series is

M(G)$#A4_A4 #Z4
2 #[1].

Thus, non-polyabelian, and Boolean-complete, loops can be M-solvable. K

We now give a simple result relating expressions in M(G) to expressions in G.

Lemma 23. For any groupoid G, the Expression Evaluation problem of M(G) is
NC0-reducible to that of G.

Proof. Since M(G) is the closure of S=[La , Ra | a # G], there exists an integer
k>0 such that any element P # M(G) can be expressed as P=D1 } } } Dk , where

389CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

Di # S _ [B] and B is the blank symbol. Clearly, words over M(G) can be reduced
to equivalent words over S _ [B] using NC0 circuits.

It remains to show how to reduce words over S _ [B] to expressions over G. Let
w be a word over S _ [B] and let X be a variable. For each prefix v of w we
construct an expression ,v[X]. If v is the empty word then ,v[X]=X. Otherwise,
we can write v=uD, where D # S _ [B] and we define ,v[X]=(D1(,u[X] D2)),
where D1 (resp. D2) is a if D is La (resp. Ra) for some a # G and B otherwise. Then,
evaluating w can be done by evaluating the expressions ,w[g], for all g # G. Since
G is finite, this is easily seen to be an NC0 reduction. K

Then we immediately have the following.

Theorem 24. The Expression Evaluation problem for non-M-solvable groupoids
is NC1-complete under NC0 reductions.

Proof. By Lemma 23 and the fact that Expression Evaluation for nonsolvable
semigroups is NC1-complete under NC0 reductions (actually, DLOGTIME-uniform
projections) [3]. K

No analogue of Lemma 23 seems to exist in the case of circuits; since Circuit
Value is P-complete for nonsolvable groupoids but in ACC1 for non-M-solvable
ones that are polyabelian, circuits over M(G) are not easy to simulate with circuits
over G, or vice versa, unless P=ACC1.

As mentioned above, Expression Evaluation is in ACC0 for solvable groups [3].
In this case, the correct generalization of solvability in the nonassociative case
consists of being both polyabelian and M-solvable, but the need to convert the
expression into a tree of subexpressions makes the problem somewhat harder.
Define the subexpression tree of an expression as a tree with one node for each
subexpression, whose daughters are its subsubexpressions and which is labeled with
the left�right path that reaches it from the root. Then,

Theorem 25. For a groupoid which is both polyabelian and M-solvable, Expres-
sion Evaluation is in TC0 or in ACC0 if its subexpression tree is already known.

Proof. Consider a polyabelian groupoid A=(A0 �A1)� } } } �Ak . An expres-
sion such as ,=(x1 } (x2 } x3)) } x4 on variables x1 , ..., xn can be inductively
calculated in the following way (similar to the algorithm in [22] for Circuit Value):
the A0-component is just a sum in an Abelian group and the Am+1 component is
an expression with affine local operations x i ,

(x1 x1(x2 x2 x3)) x3 x4 ,

where the xi are determined by the Am -components of the subexpressions to their
left and right.

If a x i b= fi (a)+ gi (b)+hi for all i, this is a sum

:
n

i=1

Fi (x i)+ :
n&1

j=1

Gj (h j),

390 MOORE ET AL.

where the Fi and Gj are endomorphisms of Am+1 composed of less than n of the
f 's and g's. In this case, the reader can verify that

F1 = f3 f1 G1 = f3

F2= f3 g1 f2 G2= f3 g1

F3= f3 g1 g2 G3=1

F4= g3

Each one of these is a word in (fg(Am+1)); by Lemma 21 this is solvable if A is
M-solvable. Since Expression Evaluation is in ACC0 for solvable groups [3], these
words and sums can be evaluated in ACC0. We can calculate all of ,'s components
with k induction steps, and we are done.

However, how the f 's and g's contribute to the F 's and G 's depends on the sub-
expression tree. For each subexpression (, xk ,$) that x i is contained in, F i gains
an fk or gk depending on whether xi is to the left or right of xk . Similarly, Gi gains
an fk or gk for each subexpression (, xk ,$) that xi 's subexpression is contained in.
Thus, the left�right paths in the subexpression tree determine the F 's and G 's.

The set of well-formed expressions is a structured context-free language [16].
Threshold circuits of constant depth can count the ascent of a string in the parse
tree [4], defined as the number of)'s minus the number of ('s: then x is in the sub-
expression to the left of x if the ascent of the string between them is at least as
great as the ascent of any of its initial substrings. Thus, we can convert the expres-
sion into its subexpression tree in TC0, and then compute the F 's and G 's, and
so ,, by calculating the above sum with k levels of ACC0 circuits.

(Since we only need to find the subexpression tree once, the majority-depth of the
circuit, defined as the maximum number of threshold gates that any path traverses,
is constant for all groupoids. Thus, this problem is in TC@ 0

k for some small k as
defined in [19].) K

Since nilpotent loops are both polyabelian (by Lemma 11) and M-solvable [8],
we have the following corollary.

Corollary. Expression Evaluation is in TC0, or ACC0 if the expression's
subexpression tree is already known, for nilpotent loops.

Cases where the subexpression tree is already known could include uniform
families of expressions, one of each length. For instance, the problem of predicting
a cellular automaton amounts to evaluating a uniform family of circuits, one of
each size. This uniformity can significantly simplify the Circuit Value problem as in
[22], where cellular automata based on nilpotent groups are shown to be predict-
able in ACC0.

6. CONCLUSION AND DIRECTIONS FOR FURTHER WORK

We have shown that the relationship between solvability and circuit complexity
generalizes in nontrivial ways in the nonassociative case: solvability becomes

391CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

polyabelianness for Boolean-completeness and Circuit Value and a combination of
polyabelianness and M-solvability for Expression Evaluation. The table given in
the Introduction becomes the following in the case of quasigroups or loops:

Expression evaluation Circuit value

Nonpolyabelian NC1-complete P-complete

Polyabelian but NC1-complete ACC1 & DET
not M-solvable

Polyabelian and TC0 ACC1 & DET
M-solvable
(including nilpotent)

For groupoids in general, nonpolyabelianness needs to be replaced with some
further generalization as the necessary and sufficient condition for Boolean-com-
pleteness. However, the second and third rows of this table hold for all groupoids.
It is also interesting to note that our investigations provide examples of groupoids
which are not Boolean-complete, while their Expression Evaluation is still NC1-
complete; this may point to a potential source of difficulty in the question of
separating ACC0 from NC1, since one may have intuitively believed that solvable
monoids, which correspond to ACC0, could not possibly handle NC1 computa-
tions, since a solvable group cannot be Boolean-complete. The final answer will
have to be more subtle than that.

These results also have a language-theoretic interpretation. A regular language
can be characterized by its syntactic monoid, the semigroup of allowed transitions
of its finite-state machine. Thus, the regular languages that are NC1-complete are
exactly those whose syntactic monoid is nonsolvable. Similarly, the set of expres-
sions in a nonassociative groupoid that evaluate to a particular element is a
structured context-free language, generated by the productions a � (bc) for all b, c
such that b } c=a. Thus, it seems that we may be close to showing exactly which
(structured) context-free languages are NC1-complete.

Overall, the fact that groupoids with differing properties have Expression Evalua-
tion and Circuit Value problems with (probably) differing circuit complexities may
help us learn more about the internal structure of NC and hopefully make some
progress toward proving that ACCk, TCk, and NCk form rich, distinct hierarchies
within P, rather than all being equal to it.

ACKNOWLEDGMENTS

We are thankful to Agnes Szendrei for helping us complete the proof of Theorem 17 and to an
anonymous referee for improving Lemmas 1 and 8. D. T. and F. L. acknowledge support from NSERC
and FCAR. J. B. assisted with this work as an intern at the Santa Fe Institute, funded by the Research
Experience for Undergraduates program of the National Science Foundation. A. D. is grateful to the
Santa Fe Institute for an enjoyable visit. C. M. is grateful to McGill University for their hospitality and
to Claire Riley for spicing the visit up a bit.

392 MOORE ET AL.

REFERENCES

1. M. Ajtai, 71
1 formulae on finite structures, Ann. Pure Appl. Logic 24 (1983), 1�48.

2. A. A. Albert, Quasigroups I, Trans. Amer. Math. Soc. 54 (1943), 507�519; Quasigroups II, Trans.
Amer. Math. Soc. 55 (1944), 401�419.

3. D. A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1, J. Comput. System Sci. 38 (1989), 150�164.

4. D. A. Mix and J. Corbett, On the relative complexity of some languages in NC1, Info. Proc. Lett.
32 (1989), 251�256.

5. D. M. Barrington, N. Immerman, and H. Straubing, On uniformity within NC1, J. Comput. System
Sci. 41 (1990), 274�306.

6. F. Be� dard, F. Lemieux, and P. McKenzie, Extension to Barrington's M-program model, Theoret.
Comput. Sci. 107 (1993), 31�61.

7. M. Beaudry, P. McKenzie, P. Pe� ladeau, and D. The� rien, Circuits with monoidal gates, in ``Proc.
STACS, 1993,'' pp. 555�565, Springer-Verlag, Berlin.

8. R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245�
354.

9. R. H. Bruck, ``A Survey of Binary Systems,'' Springer-Verlag, Berlin�New York, 1966.

10. S. R. Buss, The Boolean formula value problem is in ALOGTIME, in ``Proc. 18th ACM Symp. on
the Theory of Computing, 1987,'' pp. 123�131.

11. H. Caussinus and F. Lemieux, The complexity of computing over quasigroups, in ``Proc. 14th annual
FST6TCS, 1994,'' pp. 36�47.

12. O. Chein, H. O. Pflugfelder, and J. D. H. Smith, (Eds.) ``Quasigroups and Loops: Theory and
Applications,'' Heldermann-Verlag, Berlin, 1990.

13. M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierarchy, Math.
System Theory 17 (1984), 13�27.

14. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, ``Limits to Parallel Computation: P-Completeness
Theory,'' Oxford University Press, Oxford, 1995.

15. M. Hall, ``The Theory of Groups,'' Chelsea, New York, 1976.

16. O. H. Ibarra, T. Jiang, and B. Ravikumar, Some subclasses of context-free languages in NC1, Info.
Process. Lett. 29 (1988), 111�117.

17. R. E. Ladner, The circuit value problem is LOGSPACE-complete for P, SIGACT News 7 (1975),
18�20.

18. F. Lemieux, ``Finite Groupoids and Their Applications to Computational Complexity,'' Ph.D. thesis,
School of Computer Science, McGill University, Montre� al, 1996.

19. A. Maciel and D. The� rien, ``Threshold Circuits of Small Majority-Depth,'' Technical Report
SOCS-95.5, School of Computer Science, McGill University, Montre� al, 1995.

20. W. D. Maurer and J. L. Rhodes, A property of finite simple non-Abelian groups, Proc. Amer. Math.
Soc. 16 (1965), 552�554.

21. R. McKenzie, On minimal, locally finite varieties with permuting congruence relations, preprint,
1976.

22. C. Moore, Predicting non-linear cellular automata quickly by decomposing them into linear ones,
Physica D 111 (1998), 27�41.

23. C. Moore, Quasi-linear cellular automata, in ``Proceedings of the International Workshop on Lattice
Dynamics,'' Physica D, Vol. 103, pp. 100�132, 1997.

24. C. H. Papadimitriou, ``Computational Complexity,'' Addison�Wesley, Reading, MA, 1994.

25. H. O. Pflugfelder, ``Quasigroups and Loops: An Introduction,'' Heldermann-Verlag, Berlin,
1990.

26. A. A. Razborov, Lower bounds for the size of circuits of bounded depth with basis [6, �], Math.
Notes Acad. Sci. USSR 41 (1987), 333�338.

393CIRCUITS AND EXPRESSIONS WITH NONASSOCIATIVE GATES

27. I. G. Rosenberg, Completeness properties of multiple-valued logic algebras, in ``Computer Science
and Multiple-Valued Logic: Theory and Application'' (D. C. Rhine, Ed.), pp. 144�186, North-
Holland, Amsterdam, 1977.

28. W. L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci. 22 (1981), 365�383.

29. R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, in
``Proc. 19th ACM Symposium on the Theory of Computing, 1987,'' pp. 77�82.

30. M. Suzuki, ``Group Theory I,'' Springer-Verlag, Berlin�New York, 1982.

31. A. Szendrei, ``Clones in Universal Algebra,'' Les Presses de L'Universite� de Montre� al, Montre� al,
1986.

32. A. Vesanen, Solvable groups and loops, J. Algebra 180 (1996), 862�876.

33. M. Weinstein, ``Examples of Groups and loops,'' Polygonal, Passaic, NJ, 1977.

394 MOORE ET AL.

	1. INTRODUCTION: ALGEBRAIC CIRCUITS AND EXPRESSIONS
	2. ALGEBRAIC PRELIMINARIES
	3. SOLVABILITY AND BOOLEAN-COMPLETENESS IN GROUPS AND LOOPS
	4. POLYABELIAN GROUPOIDS
	5. ...-SOLVABILITY AND EXPRESSION EVALUATION
	6. CONCLUSION AND DIRECTIONS FOR FURTHER WORK
	ACKNOWLEDGMENTS
	REFERENCES

