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What is structure?

Structure is that which...

makes data different from noise: makes a network different from a
random graph, or from a null model

helps us compress the data: describe the network succinctly, giving a
human-readable summary of important structures

helps us generalize from data we’ve seen from data we haven’t seen:
e.g. predict missing links from the links we know about

helps us understand what multiple networks have in common:
e.g. structure of food webs, from the Cambrian to today

helps us coarse-grain the dynamics, reducing the number of variables:
e.g. compartmentalized models in epidemiology
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The Bayesian approach

Imagine that the network is created by a generative model, and fit the
parameters of this model to the data

We can gracefully incorporate partial information: e.g. if
attributes of some nodes are known, or known with some confidence
some links are known, others not observed yet (e.g. food webs)

some links might be false positives (e.g. gene regulatory networks,
protein interactions)

Use the inferred model to generalize from what we do know to what we don’t:
label unknown nodes, predict missing links, mark false positives
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Statistical inference

imagine that our graph G is drawn from an ensemble, or “generative model”:
some probability distribution P(G|0) with parameters 6

O can be continuous or discrete: represents the structure of the graph,
properties of nodes and edges, etc.

maximum likelihood: given G, find the 8 that maximizes P(G|0)
Bayes: compute, or sample from, the posterior distribution P(8|G)

if G is partly known, we can infer 6 and use P(G|0) to generate the rest of G:
e.g. infer B from known links, and predict missing links

if some parts of 6 are known, can constrain the search and infer the rest of 0:
e.g. if we know attributes of some nodes, can guess attributes of others
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The Erdos-Renyi model

every pair of vertices j, j is connected independently with the same probability p
degree distribution is Poisson with mean d=np

if d <1, almost all components are trees, and max component has size O(log n)
if d > 1, a unique giant component appears . _— o

at d = In n, completely connected

ring + Erd0s-Renyi = Watts-Strogatz

but still pretends all nodes are the same...

Increasing randomness
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The stochastic block model

nodes have discrete attributes: k types of nodes

each node j has type ti € {1,...,k}, with prior distribution gx,...,g«
kxk matrix p of connection probabilities

if ti=rand tj=s, there is a link i—/ with probability prs

p Is not necessarily symmetric, and we don’t assume that p, > prs

given a graph G, we want to simultaneously...
label the nodes, i.e., infer the type assignment t : V—{1,...,k}

learn how types affect link probabilities, i.e., infer the matrix p

how do we get off the ground?
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Assortative and disassortative

functional groups, not just clumps

food webs: predators and prey

economics: suppliers and customers
word adjacencies: adjectives and nouns

social: leaders and followers
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The likelihood

the probability of G given the types t and parameters 0=(p,q) is a product

PGIt,0)= || pry | | Q=pe)

(i,/)€E (i,/)EE

so (after normalizing) the probability of t given G is

P(t|0)P(G|t,0)

P(t|G,0)=

ooooo

OC]_[%,- l_[ Pt I_[ (I_Pti,tj)

ev (i,j)eE (i,j)¢E
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A little statistical physics

the Boltzmann distribution: thermal equilibrium at temperature T=1/5

each state t is a set of “spins”, or labels in our case

if a state t has energy E(f), then its probability is proportional to
P(t) x e PEW)

so (with 5 =1) the “energy” of a state in the block model is

E(t)=—10gP(G|t,0)= ) logpu.+ Y log1—pss)
(i,j)€E (i,j)EE

like an Ising or Potts model (except non-neighbors also interact, since
non-edges are informative)
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Ground states vs. free energy

the most likely group assignment is a ground state: it maximizes
P(G|t,0)

and —-log P(Gt,0) is the ground state energy

one approach: find the 6=(p,q) that minimizes the ground state energy, i.e.,
maximize P(G|t,0) as a function of t and 0

but this overfits! good ground states even when there no real communities

for instance, random 3-regular graphs have bisections with only about 15% of
the edges crossing from one side to the other

there are communities in the graph but not the model

[Preview: it can be the other way around too!]
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Ground states vs. free energy

better to use the total probability of G given 0, summed over all k" labelings of
the vertices:

P(G|6) = Z P(G,t0)

this is a partition function, and —log P(G|0) is a free energy

goal: find 6=(p,q) that minimizes the free energy, i.e., maximizes P(G|0)
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—Xpectation-Maximization

Gradient ascent (or descent) in parameter space

(E step) given the current B=(p,q), estimate one- and two-point marginals
of the Gibbs distribution

(M step) update B=(p,q) to their most likely values

ul =Prt; =r] " =Pr[t; =rand t; = ]

1 Z“i Z(i,J')GE pors

r Prs = qrquz
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Classifying (softly) by Gibls sampling:

The Karate Club

present

instructor




Method #1:
Markov Chain Monte Carlo

computing P(t|G,0) is hard, but it’s a product of local terms
can compute ratios between P(t|G,0) and P(t"| G,0) if t and t” differ at one node

heat-bath dynamics: choose a random node v, fix types of all other nodes,
update v’s type according to its marginal distribution

pretty good for finding ground states, but can get stuck in local optima
can speed up by introducing a temperature parameter:

simulated annealing

population annealing

parallel tempering

but there’s no free lunch
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Method #2:
Belief propagation (a.k.a. the cavity method)

N

k

i
Qj

each node / sends a “message” to each of its neighbors |, giving /’s marginal
distribution based on its other neighbors k

denote this message u'™/ = estimate of Pr[z; = r] if j were absent

how do we update it?
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Updating the beliefs

%—»@\
conditional independence

\ >
i_)j:Zil—q' ds l_[ Z:ulrc_)iprs X 1_[ Z;Ulrc_)i(l_prs)

k#j T k#j T
(i,k)eE (i,k)¢E

a complete graph of messages—takes O(n?) time to update
can simplify by assuming that ,u'r“_’i :,u’rc for all non-neighbors i/

each node k applies an “external field” Z,u’r“(l — prs) to all vertices of type s
r
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Making belief propagation scalable

i—j

k#j T
(i,k)eE (i,k)¢E

each update now takes O(n+m) time: scalable!
update until the messages reach a fixed point

like Monte Carlo, can get stuck: try different initial messages
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BP converges in a small number of iterations on
many networks: finite correlation length
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[Decelle, Krzakala, Moore, Zdeborova, PRL 2011]
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Selief propagation: scalabllity, learning, marginals,
free energy

total running time is nearly linear: can handle millions of nodes on a laptop

for each setting of the parameters 0, can compute the Bethe free energy:
a good approximation even for graphs with loops

can explore free energy landscape as a function of 6

Expectation-Maximization (EM) algorithm: find 8 that maximizes P(G|0)
(minimizes free energy)

returns marginals, i.e. soft clustering, and two-point correlations
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A phase transition: detectable to undetectable
communities
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when the rows of pj; are different enough, BP can recover the communities
but there is a transition where it can’t — and no algorithm can!
the ensemble of graphs “knows” the communities, but a typical graph doesn’t

[Decelle, Krzakala, Moore, Zdeborova, PRL 2011; Mossel, Neeman, Sly 2012]
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What kind of community do you want??

different models give different answers for the communities
we can compare each one to “ground truth” and judge its accuracy...

...or embrace the fact that they are sensitive to different kinds of structure
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The Karate Club again:

| eaders vs. followers




The Karate Club again:

Two factions




Two local optima Iin free energy
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Degree-corrected block models

the “vanilla” block model expects vertices of the same type to have roughly the
same degree:

account for “intrinsic” degree, or popularity, of nodes [Karrer & Newman, 2010]

each node / has an expected degree d,

for nodes /, j of types r, s, number of edges Aj is Poisson-distributed:

now the degrees are parameters, not data to be explained

can again write down the BP equations, and use them in an EM algorithm
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vanilla block model

5logs

[Karrer & Newman, 2010]
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Blogs: degree-corrected block model
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Model selection

when the “vanilla” stochastic block model disagrees with the degree-corrected
one, which one should we use?

the vanilla model is a special case of the degree-corrected model, so the
degree-corrected model always gets a better fit (higher likelihood)

but is this just overfitting? are the extra parameters worth it?
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Likelihood-based hypothesis testing

when the “vanilla” stochastic block model disagrees with the degree-corrected
one, which one should we use?

likelihood ratio test: how large is

maxg Ppc(G|0)
maxg Pspgm(G|0)

log is difference between two free energies
Q: how large does the difference need to be to justify the fancy model?

A: larger than it would be if G were actually generated by the simple model
(with a small p-value)

only then can we reject the null hypothesis, i.e., the simple model
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Beyond y? and the AIC

classical result: if the fancy model has n more parameters, the log-likelihood
ratio follows a ¥? distribution, with mean n/2

but this relies on a “large data limit”: assumption that the likelihood, and
posterior distribution of parameters, has a Gaussian peak

holds for I.i.d. data, but network data is highly correlated

In the degree-corrected model, degree of each node v is Poisson with mean py
and we get just one observation of this Poisson

if G is dense and py is large, the Poisson distribution looks Gaussian; but for
sparse networks, it has a different shape

do the math!
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Trying It out

Karate club Political blogs
CCDF CCDF
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p=0.15 (bootstrap)

p=0.19 (theory) p=0.0

overwhelming evidence for the blog network; for the Karate Club, less so

[Yan, Jensen, Krzakala, Moore, Shalizi, Zdeborova, Zhang, Zhu 2012]
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Dealing with uncertainty #1:
predicting missing links

for many networks, links are discovered one at a time, using difficult work and
limited resources in the field or laboratory

given the links observed so far, can we predict missing links?
if there are spurious edges (false positives), can we identify them?

test the algorithm by hiding a random subset of edges from it, and ask it to rank
possible missing links according to probability

can use the accuracy of prediction as another method of model selection

let’s try a particular model...
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Clustering: one level
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Hierarchy: many levels
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A probabilistic model

probability p;

~
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Likelihood

For each internal node i, let
L; and R; = # of descendants
E; = # of edges between them

Likelihood these edges exist, and not others, is

Lo = p (1 - po) R

Overall likelihood is a product: L(T') = H L;

()
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Maximum likelihood trees




A Markov chain that explores the space of trees

update the tree T with rotations, like in balanced tree data structures

2N AL QN
AN ANVANWANAN

Metropolis Monte Carlo: move with probability 1 if Alog £ > 0
and probability exp(Aln L) = Lypew/Lolqa otherwise

|Clauset, Moore, Newman, Nature 2008]
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Functional roles in a food web

herbivore

/

plant

parasite

AN

a7/

Grassland species
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Functional roles in a food web
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Predicting missing links:
comparison with simple heuristics

AUC: probably a random true positive is ranked above a random true negative

Grassland species network
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Dealing with uncertainty #2:
active learning of hidden node attributes

suppose we can learn a node’s attributes, but at a cost

we want to make good guesses about most of the nodes, after querying just a
few of them — but which which ones?

query the node with the largest mutual information between it and the others:

I(v,G—v)=H(v)—-H(v|G—-7v)
=—HG—-v)—-H(G—-v|v)

average amount of information we learn about G-v we learn by querying v

high when we’re uncertain about v, and when v is highly correlated with others

[IMoore, Yan, Zhu, Rouquier, Lane KDD 2011]
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Learning factions in the Karate Club
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Which vertices do we query first?




An antarctic food web
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The story so far

Statistical inference using generative models of networks lets us detect
communities, classify nodes, and predict missing links

Functional groups of nodes, not just assortative “clumps”

Belief propagation and expectation-maximization algorithms let us identify
these groups, and learn model parameters, often in linear time: scalable!

We can elaborate these models by adding discrete or continuous attributes:
degree distributions, edge types, social status or niche positions, overlapping
communities, hierarchy, signed edges, document content...

For instance, we can classify documents using their content and the links
between them better than with content or links alone [Zhu, Yan, Getoor, Moore]

But a cautionary note...
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A real cascade of line and generator failures

Sequence of outages in Western blackout, July 2 1996

- N

from NERC 1996 blackout report
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Rich dynamics of coupled, nonlinear oscillators

Sequence of Events

Measurement at BPA Dittmer Control Center 15:48-51
1500 - Vancouver, WA Out-of-Step separation B
15:42:03
; _ Keeler-Allston line trips _15:47:36
s Ross-Lexington line trips/
McNary generation drops off
3 1400
IE
©
‘E - 0.270 Hz,
7.0% damping

g (noise estimate)

1300 -
= 0.276 Hz
= (ringing) 0.252 Hz,
= - 1.2% damping
g (noise estimate)
(14 0.264 Hz,

L 1200 — 3.46% damping
é (transient)
tEU (see detail)
Reference time = 15:35:30 PDT jfh
1100 | 1 1 1
200 300 400 500 600 700 800
Time in Seconds since 10-Aug-1996 22:35:30.000 —

Pacific Northwest
NATIONAL LABORATORY
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Beyond topology

We need a new network theory that doesn’t focus on topology alone

Nodes and edges have rich attributes:

power grid: generators have nonlinear dynamics at many time scales,
transmission lines have capacities, users have fluctuating demands...

cybersecurity: multiple types of links between computers (web fetches,
SSH links) with timing, duration, packet size... and many links are unigque

food webs: species have populations, links have nutrient flows....
dynamic response to climate change, species loss, invasive species

Networks are rich, dynamic data sets, not just lists of nodes and edges
Extending Bayesian inference to richer data is possible, but challenging

We need to be agnostic about what types of structure are important
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Shameless Plug

OXFORD

THE NATURE of
COMPUTATION

Cristopher Moore ¢ Stephan Mertens

www.nature-of-computation.org
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To put it bluntly: this book rocks! It somehow manages to combine
the fun of a popular book with the intellectual heft of a textbook.
Scott Aaronson, MIT

A creative, insightful, and accessible introduction to the theory of
computing, written with a keen eye toward the frontiers of the field
and a vivid enthusiasm for the subject matter.

Jon Kleinberg, Cornell

A treasure trove of ideas, concepts and information on algorithms
and complexity theory. Serious material presented in the most
delightful manner!

Vijay Vazirani, Georgia Tech

A fantastic and unique book, a must-have guide to the theory of
computation, for physicists and everyone else.
Riccardo Zecchina, Politecnico de Torino

This is the best-written book on the theory of computation | have
ever read; and one of the best-written mathematical books | have
ever read, period.

Cosma Shalizi, Carnegie Mellon


http://www.nature-of-computation.org
http://www.nature-of-computation.org
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