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Structure is that which...

makes data different from noise: makes a network different from a 
random graph, or from a null model

helps us compress the data: describe the network succinctly, giving a 
human-readable summary of important structures

helps us generalize from data we’ve seen from data we haven’t seen:     
e.g. predict missing links from the links we know about

helps us understand what multiple networks have in common:                
e.g. structure of food webs, from the Cambrian to today

helps us coarse-grain the dynamics, reducing the number of variables: 
e.g. compartmentalized models in epidemiology

What is structure?
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The Bayesian approach

Imagine that the network is created by a generative model, and fit the 
parameters of this model to the data

We can gracefully incorporate partial information: e.g. if

attributes of some nodes are known, or known with some confidence

some links are known, others not observed yet (e.g. food webs)

some links might be false positives (e.g. gene regulatory networks, 
protein interactions)

Use the inferred model to generalize from what we do know to what we don’t: 
label unknown nodes, predict missing links, mark false positives
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imagine that our graph G is drawn from an ensemble, or “generative model”: 
some probability distribution P(G|θ) with parameters θ

θ can be continuous or discrete: represents the structure of the graph, 
properties of nodes and edges, etc.

maximum likelihood: given G, find the θ that maximizes P(G|θ)

Bayes: compute, or sample from, the posterior distribution P(θ|G)

if G is partly known, we can infer θ and use P(G|θ) to generate the rest of G:   
e.g. infer θ from known links, and predict missing links

if some parts of θ are known, can constrain the search and infer the rest of θ:            
e.g. if we know attributes of some nodes, can guess attributes of others

Statistical inference
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The Erdős-Renyí model

every pair of vertices i, j is connected independently with the same probability p

degree distribution is Poisson with mean d=np

if d < 1, almost all components are trees, and max component has size O(log n)

if d > 1, a unique giant component appears

at d = ln n, completely connected

ring + Erdős-Renyí = Watts-Strogatz

but still pretends all nodes are the same...
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The stochastic block model

nodes have discrete attributes: k types of nodes

each node i has type ti ∈ {1,...,k}, with prior distribution q1,...,qk

k×k matrix p of connection probabilities

if ti = r and tj = s, there is a link i→j with probability prs

p is not necessarily symmetric, and we don’t assume that prr > prs

given a graph G, we want to simultaneously...

label the nodes, i.e., infer the type assignment t : V→{1,...,k} 

learn how types affect link probabilities, i.e., infer the matrix p

how do we get off the ground?
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functional groups, not just clumps

food webs: predators and prey

economics: suppliers and customers

word adjacencies: adjectives and nouns

social: leaders and followers

Assortative and disassortative
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The likelihood

the probability of G given the types t and parameters θ=(p,q) is a product

so (after normalizing) the probability of t given G is

P(G | t ,θ ) =
�

(i ,j )∈E

pti ,t j

�

(i ,j )/∈E

(1−pti ,t j )

P(t |G ,θ ) =
P(t |θ )P(G | t ,θ )�
t �∈{1,...,k }n P(G | t �,θ )

∝
�

i∈V

qti

�

(i ,j )∈E

pti ,t j

�

(i ,j )/∈E

(1−pti ,t j )
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A little statistical physics

the Boltzmann distribution: thermal equilibrium at temperature T=1/β

each state t is a set of “spins”, or labels in our case

if a state t has energy E(t), then its probability is proportional to

so (with β =1) the “energy” of a state in the block model is

like an Ising or Potts model (except non-neighbors also interact, since         
non-edges are informative)

P(t )∝ e−βE (t )

E (t ) =− logP(G | t ,θ ) =
�

(i ,j )∈E

logpti ,t j +
�

(i ,j )/∈E

log(1−pti ,t j )
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Ground states vs. free energy

the most likely group assignment is a ground state: it maximizes

and –log P(G|t,θ) is the ground state energy

one approach: find the θ=(p,q) that minimizes the ground state energy, i.e., 
maximize P(G|t,θ) as a function of t and θ

but this overfits! good ground states even when there no real communities

for instance, random 3-regular graphs have bisections with only about 15% of 
the edges crossing from one side to the other

there are communities in the graph but not the model

[Preview: it can be the other way around too!]

P(G | t ,θ )
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Ground states vs. free energy

better to use the total probability of G given θ, summed over all kn labelings of 
the vertices:

this is a partition function, and –log P(G|θ) is a free energy

goal: find θ=(p,q) that minimizes the free energy, i.e., maximizes P(G|θ)

P(G |θ ) =
�

t∈{1,...,k }n
P(G , t |θ )

=
�

t∈{1,...,k }n
P(G | t ,θ )P(t |θ )
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Expectation-Maximization

Gradient ascent (or descent) in parameter space 

(E step) given the current θ=(p,q), estimate one- and two-point marginals 
of the Gibbs distribution

(M step) update θ=(p,q) to their most likely values

qr =
1
N

�

i

µi
r pr s =

�
(i ,j )∈E µ

i j
r s

qr qs N 2

µi
r = Pr[ti = r ] µi j

r s = Pr[ti = r and t j = s ]
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Classifying words with a ground state:
I record that I was born on a Friday
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Classifying (softly) by Gibbs sampling:
The Karate Club
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Method #1: 
Markov Chain Monte Carlo

computing P(t|G,θ) is hard, but it’s a product of local terms

can compute ratios between P(t|G,θ) and P(t´ | G,θ) if t and t´ differ at one node 

heat-bath dynamics: choose a random node v, fix types of all other nodes, 
update v’s type according to its marginal distribution

pretty good for finding ground states, but can get stuck in local optima

can speed up by introducing a temperature parameter:

simulated annealing

population annealing

parallel tempering

but there’s no free lunch
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Method #2: 
Belief propagation (a.k.a. the cavity method)

each node i sends a “message” to each of its neighbors j, giving i’s marginal 
distribution based on its other neighbors k

denote this message

how do we update it?

j

i

k

µi→j
r = estimate of Pr[ti = r ] if j were absent
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a complete graph of messages—takes O(n2) time to update

can simplify by assuming that                   for all non-neighbors i

each node k applies an “external field”                          to all vertices of type s

j

i

k

�

r

µk
r (1−pr s )

µk→i
r =µk

r

Updating the beliefs

µi→j
s =

1
Z i→j qs

�

k �=j
(i ,k )∈E

�

r

µk→i
r pr s ×
�

k �=j
(i ,k )/∈E

�

r

µk→i
r (1−pr s )

conditional independence
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each update now takes O(n+m) time: scalable!

update until the messages reach a fixed point

like Monte Carlo, can get stuck: try different initial messages

j

i

k

µi→j
s =

1
Z i→j qs

�

k �=j
(i ,k )∈E

�

r

µk→i
r pr s ×
�

k

�
r µ

k
r (1−pr s )�

k :(i ,k )∈E

�
r µ

k
r (1−pr s )

Making belief propagation scalable

µi→j
s =

1
Z i→j qs

�

k �=j
(i ,k )∈E

�

r

µk→i
r pr s ×
�

k �=j
(i ,k )/∈E

�

r

µk→i
r (1−pr s )
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BP converges in a small number of iterations on 
many networks: finite correlation length

14
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FIG. 2. (color online): The number of iterations needed for convergence of the BP algorithm for two different sizes. The
convergence time diverges at the critical point εc. The equilibration time of Gibbs sampling (MCMC) has qualitatively the
same behavior, but BP obtains the marginals much more quickly.

so let us first investigate the influence of the perturbation of a single leaf kd, which is connected to k0 by a path
kd, kd−1, . . . , k1, k0. We define a kind of transfer matrix

T a
i ≡

∂ψki
a

∂ψki+1

b

∣

∣

∣

ψt=nt

=

[

ψki
a cab

∑

r carψ
ki+1
r

− ψki
a

∑

s

ψki
s csb

∑

r carψ
ki+1
r

]

∣

∣

∣

ψt=nt

= na

(cab

c
− 1

)

. (40)

where this expression was derived from (26) to leading order in N . The perturbation εk0

t0 on the root due to the

perturbation εkd
td

on the leaf kd can then be written as

εk0

t0 =
∑

{ti}i=1,...,d

[

d−1
∏

i=0

T ti,ti+1

i

]

εkd
td

(41)

We observe in (40) that the matrix T ab
i does not depend on the index i. Hence (41) can be written as εk0 = T dεkd .

When d → ∞, T d will be dominated by T ’s largest eigenvalue λ, so εk0 ≈ λdεkd .
Now let us consider the influence from all cd of the leaves. The mean value of the perturbation on the leaves is

zero, so the mean value of the influence on the root is zero. For the variance, however, we have

〈

(

εk0

t0

)2
〉

≈

〈





cd

∑

k=1

λdεk
t





2
〉

≈ cdλ2d
〈

(

εk
t

)2
〉

. (42)

This gives the following stability criterion,

cλ2 = 1 . (43)

For cλ2 < 1 the perturbation on leaves vanishes as we move up the tree and the factorized fixed point is stable. On
the other hand, if cλ2 > 1 the perturbation is amplified exponentially, the factorized fixed point is unstable, and the
communities are easily detectable.

Consider the case with q groups of equal size, where caa = cin for all a and cab = cout for all a &= b. This includes the
Newman-Girvan benchmarks, as well as planted (noisy) graph coloring and planted graph partitioning. If there are q
groups, then cin +(q−1)cout = qc. The transfer matrix T ab has only two distinct eigenvalues, λ1 = 0 with eigenvector
(1, 1, . . . , 1), and λ2 = (cin − cout)/(qc) with eigenvectors of the form (0, . . . , 0, 1,−1, 0, . . . , 0) and degeneracy q − 1.
The factorized fixed point is then unstable, and communities are easily detectable, if

|cin − cout| > q
√

c . (44)

The stability condition (43) is known in the literature on spin glasses as the de Almeida-Thouless local stability
condition [39], in information science as the Kesten-Stigum bound on reconstruction on trees [40, 41], or the threshold
for census reconstruction [25], or robust reconstruction threshold [42].

[Decelle, Krzakala, Moore, Zdeborová, PRL 2011]
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total running time is nearly linear: can handle millions of nodes on a laptop

for each setting of the parameters θ, can compute the Bethe free energy:          
a good approximation even for graphs with loops 

can explore free energy landscape as a function of θ

Expectation-Maximization (EM) algorithm: find θ that maximizes P(G|θ) 
(minimizes free energy)

returns marginals, i.e. soft clustering, and two-point correlations

j

i

k

Belief propagation: scalability, learning, marginals, 
free energy

Wednesday, April 3, 2013



when the rows of pij are different enough, BP can recover the communities

but there is a transition where it can’t — and no algorithm can!

the ensemble of graphs “knows” the communities, but a typical graph doesn’t

A phase transition: detectable to undetectable 
communities

13

obeying detailed balance with respect to the Hamiltonian (8), starting with a random initial group assignment {qi}.
We see that Q = 0 for cout/cin > εc. In other words, in this region both BP and MCMC converge to the factorized
state, where the marginals contain no information about the original assignment. For cout/cin < εc, however, the
overlap is positive and the factorized fixed point is not the one to which BP or MCMC converge.

In particular the right-hand side of Fig. 1 shows the case of q = 4 groups with average degree c = 16, corresponding
to the benchmark of Newman and Girvan [9]. We show the large N results and also the overlap computed with
MCMC for size N = 128 which is the commonly used size for this benchmark. Again, up to symmetry breaking,
marginalization achieves the best possible overlap that can be inferred from the graph by any algorithm. Therefore,
when algorithms are tested for performance, their results should be compared to Fig. 1 instead of to the common but
wrong expectation that the four groups are detectable for any ε < 1.
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FIG. 1: (color online): The overlap (5) between the original assignment and its best estimate given the structure of the graph,
computed by the marginalization (13). Graphs were generated using N nodes, q groups of the same size, average degree c, and
different ratios ε = cout/cin. Thus ε = 1 gives an Erdős-Rényi random graph, and ε = 0 gives completely separated groups.
Results from belief propagation (26) for large graphs (red line) are compared to Gibbs sampling, i.e., Monte Carlo Markov
chain (MCMC) simulations (data points). The agreement is good, with differences in the low-overlap regime that we attribute
to finite size fluctuations. On the right we also compare to results from the full BP (22) and MCMC for smaller graphs with
N = 128, averaged over 400 samples. The finite size effects are not very strong in this case, and BP is reasonably close to the
exact (MCMC) result even on small graphs that contain many short loops. For N → ∞ and ε > εc = (c−

√
c)/[c+

√
c(q−1)] it

is impossible to find an assignment correlated with the original one based purely on the structure of the graph. For two groups
and average degree c = 3 this means that the density of connections must be ε−1

c (q = 2, c = 3) = 3.73 greater within groups
than between groups to obtain a positive overlap. For Newman and Girvan’s benchmark networks with four groups (right),
this ratio must exceed 2.33.

Let us now investigate the stability of the factorized fixed point under random perturbations to the messages when
we iterate the BP equations. In the sparse case where cab = O(1), graphs generated by the block model are locally
treelike in the sense that almost all nodes have a neighborhood which is a tree up to distance O(log N), where the
constant hidden in the O depends on the matrix cab. Equivalently, for almost all nodes i, the shortest loop that i
belongs to has length O(log N). Consider such a tree with d levels, in the limit d → ∞. Assume that on the leaves
the factorized fixed point is perturbed as

ψk
t = nt + εk

t , (39)

and let us investigate the influence of this perturbation on the message on the root of the tree, which we denote k0.
There are, on average, cd leaves in the tree where c is the average degree. The influence of each leaf is independent,
so let us first investigate the influence of the perturbation of a single leaf kd, which is connected to k0 by a path
kd, kd−1, . . . , k1, k0. We define a kind of transfer matrix

T a
i ≡

∂ψki
a

∂ψki+1

b

∣

∣

∣

ψt=nt

=

[

ψki
a cab

∑

r carψ
ki+1
r

− ψki
a

∑

s

ψki
s csb

∑

r carψ
ki+1
r

]

∣

∣

∣

ψt=nt

= na

(cab

c
− 1

)

. (40)

where this expression was derived from (26) to leading order in N . The perturbation εk0

t0 on the root due to the

[Decelle, Krzakala, Moore, Zdeborová, PRL 2011; Mossel, Neeman, Sly 2012]
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What kind of community do you want?

different models give different answers for the communities

we can compare each one to “ground truth” and judge its accuracy...

...or embrace the fact that they are sensitive to different kinds of structure
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The Karate Club again: 
Leaders vs. followers 
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The Karate Club again: 
Two factions
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Two local optima in free energy

21

Depending on the initial parameters {na}, {cab}, it converges to one of two attractive fixed points in parameter space:

n(i) =

(

0.525
0.475

)

, c(i) =

(

8.96 1.29
1.29 7.87

)

,

n(ii) =

(

0.854
0.146

)

, c(ii) =

(

16.97 12.7
12.7 1.615

)

. (50)

For comparison, we also performed learning using MCMC for the expectation step; this network is small enough,
with such a small equilibration time, that MCMC is essentially exact. We again found two attractive fixed points in
parameter space, very close to those in (50):

n(i)
MC =

(

0.52
0.48

)

, c(i)
MC =

(

8.85 1.26
1.26 7.97

)

,

n(ii)
MC =

(

0.85
0.15

)

, c(ii)
MC =

(

16.58 12.52
12.52 1.584

)

. (51)

A first observation is that even though Zachary’s karate club is both small and “loopy,” rather than being locally
treelike, the BP algorithm converges to fixed points that are nearly the same as the (in this case exact) MCMC. This
is despite the fact that our analysis of the BP algorithm assumes that there are no small loops in the graph, and
focuses on the thermodynamic limit N → ∞. This suggests that our BP learning algorithm is a useful and robust
heuristic even for real-world networks that have many loops.
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FIG. 7. (color online): (a) The partitioning of Zachary’s karate club found by our inference algorithm using the first fixed point,
(i) in (50). The colors indicate the two groups found by starting with an assortative initial condition, i.e., where c11, c22 > c12.
The shades represent the marginal probabilities: a white node belongs to both groups with equal probability, whereas a node
that is solid red or solid blue belongs to the corresponding group with probability 1. Most of the nodes are strongly biased.
The ×s show the five nodes that are grouped together by the second fixed point, (ii) in (50), which divides the nodes into
high-degree and low-degree groups rather than into the two factions. (b) The negative free energy for parameters interpolating
between the two fixed points, with (i) at t = 0 and (ii) at t = 1. The two fixed points are local maxima, and each one has a
basin of attraction in the learning algorithm. As noted in [8], the high-degree/low-degree fixed point actually has lower free
energy, and hence a higher likelihood, in the space of block models with q = 2. The horizontal lines show the largest values of
the likelihood that we obtained from using more than two groups. Unlike in Fig. 6, the likelihood continues to increase when
more groups are allowed. This is due both to finite-size effects and to the fact that the network is not, in fact, generated by
the block model: in particular, the nodes in each faction have a highly inhomogeneous degree distribution.

Fig. 7 shows the marginalized group assignments for the division into two groups corresponding to these two fixed

points. Fixed point (i) corresponds to the actual division into two factions, and c(i)
ab has assortative structure, with

larger affinities on the diagonal. In contrast, fixed point (ii) divides the nodes according to their degree, placing
high-degree nodes in one group, including both the president and the instructor, and the low-degree nodes in the
other group. Of course, this second division is not wrong; rather, it focuses on a different kind of classification, into
“leaders” on the one hand and “students/followers” on the other. In Fig. 7(b) we plot the negative free energy (32)

achieved by interpolating between the two fixed points according to a parameter t, with cab(t) = (1− t)c(i)
ab + tc(ii)

ab and
similarly for na. We see that the two fixed points correspond to two local maxima, the second (ii) being the global

high/lowleft/right
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Degree-corrected block models

the “vanilla” block model expects vertices of the same type to have roughly the 
same degree: 

account for “intrinsic” degree, or popularity, of nodes [Karrer & Newman, 2010] 

each node i has an expected degree di

for nodes i, j of types r, s, number of edges Aij is Poisson-distributed:

now the degrees are parameters, not data to be explained

can again write down the BP equations, and use them in an EM algorithm

Ai j ∼ Poi(d i d j wr s )
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Blogs: vanilla block model
7

ing corrected and uncorrected blockmodels with K = 2,
we find the results shown in Fig. 1. As pointed out also
by other authors [11, 30], the non-degree-corrected block-
model fails to split the network into the known factions
(indicated by the dashed line in the figure), instead split-
ting it into a group composed of high-degree vertices and
another of low. The degree-corrected model, on the other
hand, splits the vertices according to the known commu-
nities, except for the misidentification of one vertex on
the boundary of the two groups. (The same vertex is also
misplaced by a number of other commonly used commu-
nity detection algorithms.)
The failure of the uncorrected model in this context

is precisely because it does not take the degree sequence
into account. The a priori probability of an edge be-
tween two vertices varies as the product of their degrees,
a variation that can be fit by the uncorrected blockmodel
if we divide the network into high- and low-degree groups.
Given that we have only one set of groups to assign, how-
ever, we are obliged to choose between this fit and the
true community structure. In the present case it turns
out that the division into high and low degrees gives the
higher likelihood and so it is this division that the algo-
rithm returns. In the degree-corrected blockmodel, by
contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood,
which frees up the block structure for fitting to the true
communities.
Moreover it is apparent that this behavior is not lim-

ited to the case K = 2. For K = 3, the ordinary
stochastic blockmodel will, for sufficiently heterogeneous
degrees, be biased towards splitting into three groups by
degree—high, medium, and low—and similarly for higher
values of K. It is of course possible that the true com-
munity structure itself corresponds entirely or mainly to
groups of high and low degree, but we only want our
model to find this structure if it is still statistically sur-
prising once we know about the degree sequence, and this
is precisely what the corrected model does.
As a second real-world example we show in Fig. 2 an

application to a network of political blogs assembled by
Adamic and Glance [31]. This network is composed of
blogs (i.e., personal or group web diaries) about US pol-
itics and the web links between them, as captured on
a single day in 2005. The blogs have known political
leanings and were labeled by Adamic and Glance as ei-
ther liberal or conservative in the data set. We consider
the network in undirected form and examine only the
largest connected component, which has 1222 vertices.
Figure 2 shows that, as with the karate club, the uncor-
rected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model
finds a split more aligned with the political division of
the network. While not matching the known labeling ex-
actly, the split generated by the degree-corrected model
has a normalized mutual information of 0.72 with the la-
beling of Adamic and Glance, compared with 0.0001 for
the uncorrected model.

(a) Without degree-correction

(b) With degree-correction

FIG. 2: Divisions of the political blog network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The division in (b) corresponds
roughly to the division between liberal and conservative blogs
given in [31].

(To make sure that these results were not due to a fail-
ure of the heuristic optimization scheme, we also checked
that the group assignments found by the heuristic have a
higher objective score than the known group assignments,
and that using the known assignments as the initial con-
dition for the optimization recovers the same group as-
signments as found with random initial conditions.)

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we
use are themselves generated from the degree-corrected

[Karrer & Newman, 2010]
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Blogs: degree-corrected block model

7

ing corrected and uncorrected blockmodels with K = 2,
we find the results shown in Fig. 1. As pointed out also
by other authors [11, 30], the non-degree-corrected block-
model fails to split the network into the known factions
(indicated by the dashed line in the figure), instead split-
ting it into a group composed of high-degree vertices and
another of low. The degree-corrected model, on the other
hand, splits the vertices according to the known commu-
nities, except for the misidentification of one vertex on
the boundary of the two groups. (The same vertex is also
misplaced by a number of other commonly used commu-
nity detection algorithms.)
The failure of the uncorrected model in this context

is precisely because it does not take the degree sequence
into account. The a priori probability of an edge be-
tween two vertices varies as the product of their degrees,
a variation that can be fit by the uncorrected blockmodel
if we divide the network into high- and low-degree groups.
Given that we have only one set of groups to assign, how-
ever, we are obliged to choose between this fit and the
true community structure. In the present case it turns
out that the division into high and low degrees gives the
higher likelihood and so it is this division that the algo-
rithm returns. In the degree-corrected blockmodel, by
contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood,
which frees up the block structure for fitting to the true
communities.
Moreover it is apparent that this behavior is not lim-

ited to the case K = 2. For K = 3, the ordinary
stochastic blockmodel will, for sufficiently heterogeneous
degrees, be biased towards splitting into three groups by
degree—high, medium, and low—and similarly for higher
values of K. It is of course possible that the true com-
munity structure itself corresponds entirely or mainly to
groups of high and low degree, but we only want our
model to find this structure if it is still statistically sur-
prising once we know about the degree sequence, and this
is precisely what the corrected model does.
As a second real-world example we show in Fig. 2 an

application to a network of political blogs assembled by
Adamic and Glance [31]. This network is composed of
blogs (i.e., personal or group web diaries) about US pol-
itics and the web links between them, as captured on
a single day in 2005. The blogs have known political
leanings and were labeled by Adamic and Glance as ei-
ther liberal or conservative in the data set. We consider
the network in undirected form and examine only the
largest connected component, which has 1222 vertices.
Figure 2 shows that, as with the karate club, the uncor-
rected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model
finds a split more aligned with the political division of
the network. While not matching the known labeling ex-
actly, the split generated by the degree-corrected model
has a normalized mutual information of 0.72 with the la-
beling of Adamic and Glance, compared with 0.0001 for
the uncorrected model.

(a) Without degree-correction

(b) With degree-correction

FIG. 2: Divisions of the political blog network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The division in (b) corresponds
roughly to the division between liberal and conservative blogs
given in [31].

(To make sure that these results were not due to a fail-
ure of the heuristic optimization scheme, we also checked
that the group assignments found by the heuristic have a
higher objective score than the known group assignments,
and that using the known assignments as the initial con-
dition for the optimization recovers the same group as-
signments as found with random initial conditions.)

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we
use are themselves generated from the degree-corrected

[Karrer & Newman, 2010]
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Model selection

when the “vanilla” stochastic block model disagrees with the degree-corrected 
one, which one should we use?

the vanilla model is a special case of the degree-corrected model, so the 
degree-corrected model always gets a better fit (higher likelihood) 

but is this just overfitting?  are the extra parameters worth it?
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Likelihood-based hypothesis testing

when the “vanilla” stochastic block model disagrees with the degree-corrected 
one, which one should we use?

likelihood ratio test: how large is

log is difference between two free energies

Q: how large does the difference need to be to justify the fancy model?

A: larger than it would be if G were actually generated by the simple model 
(with a small p-value)

only then can we reject the null hypothesis, i.e., the simple model

maxθ PDC(G |θ )
maxθ PSBM(G |θ )
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Beyond χ2 and the AIC

classical result: if the fancy model has n more parameters, the log-likelihood 
ratio follows a χ2 distribution, with mean n/2

but this relies on a “large data limit”: assumption that the likelihood, and 
posterior distribution of parameters, has a Gaussian peak

holds for i.i.d. data, but network data is highly correlated

in the degree-corrected model, degree of each node v is Poisson with mean µv  
and we get just one observation of this Poisson

if G is dense and µv is large, the Poisson distribution looks Gaussian; but for 
sparse networks, it has a different shape

do the math!
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overwhelming evidence for the blog network; for the Karate Club, less so

Trying it out
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Figure 3: Hypothesis testing of real world networks. (a): Zachary’s karate club [31], where n = 34. The CCDF (com-

plementary cumulative distribution) of the log-likelihood ratio Λ under the null model is estimated using bootstrapping

(shaded), and is fit reasonably well by the CCDF of a Gaussian (curve) with our theoretically predicted mean and vari-

ance. The observed Λ = 20.7 (marked with the red line) has p-values of 0.15 and 0.19 according to the bootstrap and

theoretical distributions respectively. (b): A network of political blogs [1] where n = 1222. The bootstrap distribution

(shaded) is very well fit by a Gaussian (curve) with our predicted mean and variance. The actual log-likelihood ratio

is so far in the tail (see inset) that its p-value is effectively zero. Thus for the blog network, we can decisively reject

the ordinary block model in favor of the degree-corrected model, while for the karate club, the evidence is less clear.

5.2 Political blogs

The second example is a network of political blogs in the US assembled by Adamic and Glance [1]. As in [16], we

focus on the giant component, which consists of 1222 blogs and 19087 links between them, as captured on a single

day in 2005. The blogs have known political leanings, and were labeled as either liberal or conservative. The network

is assortative and has a highly right-skewed degree distribution within each block.

In its agreement with ground truth, DC substantially outperforms SBM, as observed in [16]. This time around, our

hypothesis testing procedure completely agrees with their choice of model. As shown in Fig. 3(b), the bootstrap

distribution of Λ is very well fit by a Gaussian with our theoretical prediction of the mean and variance. The observed

log-likelihood ratio Λ = 8883 is 330 standard deviations above the mean. It is essentially impossible to produce such

extreme results through mere fluctuations under the null model. Thus, for this network, introducing n extra parameters

to capture the degree heterogeneity, and rejecting SBM in favor of DC, is fully justified.

6 Conclusion

We have presented a mathematically principled procedure for determining whether the degree-corrected block model is

justified over the ordinary stochastic block model. We found that for sparse networks, the distribution of log-likelihood

ratios differs significantly from the naive χ2
analysis, and showed how to compute its mean and variance exactly in

the large-n limit where node degrees are essentially independent and Poisson. We confirmed our calculations with

experiments on synthetic networks, and applied our procedure to two real-world networks; one where the ordinary

block model can be decisively rejected, and another where the evidence is less clear. We hope that similar approaches

will let us choose between competing generative models for network data, and in particular between other variants of

the block model such as those in [32].
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p=0.15 (bootstrap)
p=0.19 (theory)

p=0.0

[Yan, Jensen, Krzakala, Moore, Shalizi, Zdeborová, Zhang, Zhu 2012]
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Dealing with uncertainty #1: 
predicting missing links

for many networks, links are discovered one at a time, using difficult work and 
limited resources in the field or laboratory

given the links observed so far, can we predict missing links?

if there are spurious edges (false positives), can we identify them?

test the algorithm by hiding a random subset of edges from it, and ask it to rank 
possible missing links according to probability

can use the accuracy of prediction as another method of model selection

let’s try a particular model...
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Clustering: one level
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Hierarchy: many levels
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→
probability pi

A probabilistic model

Wednesday, April 3, 2013



For each internal node i, let

Li and Ri = # of descendants

Ei = # of edges between them

Likelihood these edges exist, and not others, is

Overall likelihood is a product: 
 R
i
 

p
i

L
i

E
i

Likelihood

L(T ) =
�

i

Li

Li = pEi
i (1− pi)LiRi−Ei
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L =

(

1

9

) (

8

9

)8

= 0.0433

L =

[

(

1

3

)(

2

3

)2
]

·

[

(

2

8

)2 (

6

8

)6
]

= 0.0016

Maximum likelihood trees
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update the tree T with rotations, like in balanced tree data structures

Metropolis Monte Carlo: move with probability 1 if                                                       
and probability                                            otherwise

ba

c

b a

b

cc

a

A Markov chain that explores the space of trees

∆ logL ≥ 0
exp(∆ lnL) = Lnew/Lold

[Clauset, Moore, Newman, Nature 2008]
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Grassland species

plant→

→herbivore

→parasite

Functional roles in a food web
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Functional roles in a food web
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Dealing with uncertainty #2: 
active learning of hidden node attributes

suppose we can learn a node’s attributes, but at a cost

we want to make good guesses about most of the nodes, after querying just a 
few of them — but which which ones?

query the node with the largest mutual information between it and the others: 

average amount of information we learn about G–v we learn by querying v

high when we’re uncertain about v, and when v is highly correlated with others

I (v,G −v ) =H (v )−H (v |G −v )
=H (G −v )−H (G −v | v )

[Moore, Yan, Zhu, Rouquier, Lane KDD 2011]
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Which vertices do we query first?
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An antarctic food web 
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The story so far

Statistical inference using generative models of networks lets us detect 
communities, classify nodes, and predict missing links

Functional groups of nodes, not just assortative “clumps”

Belief propagation and expectation-maximization algorithms let us identify 
these groups, and learn model parameters, often in linear time: scalable!

We can elaborate these models by adding discrete or continuous attributes: 
degree distributions, edge types, social status or niche positions, overlapping 
communities, hierarchy, signed edges, document content...

For instance, we can classify documents using their content and the links 
between them better than with content or links alone [Zhu, Yan, Getoor, Moore]

But a cautionary note...
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Sequence of outages in Western blackout, July 2 1996!

System Disturbances — 1996 
 

NERC 26 

 
 
 
Figure 1 
 

from NERC 1996 blackout report!

A real cascade of line and generator failures 
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Rich dynamics of coupled, nonlinear oscillators

Sequence of Events 
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1500 
Measurement at BPA Dittmer Control Center 
Vancouver, WA 

(see detail) 
0.264 Hz, 
3.46% damping 
(transient) 
 

0.252 Hz, 0.276 Hz 
(ringing) 

15:42:03 
Keeler-Allston line trips 

15:48:51 
Out-of-Step separation 

15:47:36 
Ross-Lexington line trips/ 
McNary generation drops off 

Reference time = 15:35:30 PDT 
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0.270 Hz, 
7.0% damping 
(noise estimate) 

1.2% damping 
(noise estimate) 

jfh 

Time in Seconds since 10-Aug-1996 22:35:30.000 
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Beyond topology

We need a new network theory that doesn’t focus on topology alone

Nodes and edges have rich attributes: 

power grid: generators have nonlinear dynamics at many time scales, 
transmission lines have capacities, users have fluctuating demands...

cybersecurity: multiple types of links between computers (web fetches, 
SSH links) with timing, duration, packet size... and many links are unique

food webs: species have populations, links have nutrient flows.... 
dynamic response to climate change, species loss, invasive species

Networks are rich, dynamic data sets, not just lists of nodes and edges

Extending Bayesian inference to richer data is possible, but challenging

We need to be agnostic about what types of structure are important
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Shameless Plug	

To put it bluntly: this book rocks! It somehow manages to combine 
the fun of a popular book with the intellectual heft of a textbook.

Scott Aaronson, MIT

A creative, insightful, and accessible introduction to the theory of 
computing, written with a keen eye toward the frontiers of the field 
and a vivid enthusiasm for the subject matter.

Jon Kleinberg, Cornell

A treasure trove of ideas, concepts and information on algorithms 
and complexity theory. Serious material presented in the most 
delightful manner!

Vijay Vazirani, Georgia Tech

A fantastic and unique book, a must-have guide to the theory of 
computation, for physicists and everyone else.

Riccardo Zecchina, Politecnico de Torino

This is the best-written book on the theory of computation I have 
ever read; and one of the best-written mathematical books I have 
ever read, period.

Cosma Shalizi, Carnegie Mellonwww.nature-of-computation.org
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