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From discrete to continuous

e Computer science students get very little training in continuous mathematics

e As a result, they are intimidated by continuous methods, just as students from
other fields are intimidated by discrete math and theoretical computer science

e This is unfortunate—no one should be intimidated by anything

e Moreover, continuous methods (e.g. differential equations) arise in several
ways in computer science:

e As limits of discrete processes, especially in random structures

¢ As a compelling picture of some of our favorite optimization algorithms
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Random graphs

e Erdos-Rényi random graph G(n,p): each pair of vertices is independently

connected with probabillity p O
e Sparse case: p=c/n, so the average degree is ¢
e Emergence of the giant component—a phase transition: {

e when c<1, with high probability the largest component has size O(log n),
and all but O(log n) of these components are trees

e when c=1, the largest component has size O(n?/3); power-law distribution
of component sizes

e when c¢>1, with high probability there is a unigue component of size an,
where a=a(c). Other components are mostly trees, like the c<1 case.
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Coloring random graphs

e How often is a random graph 3-colorable? Experimental results:
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Search times

e The hardest instances (among the random ones) are at the transition:
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The colorabllity conjecture

e There is a constant ¢* such that
, 1 ife<c”
lim Pr|G(n,p = c/n) is 3-colorable| = |
n—> 00 0 ifec>c”

e Known in a “non-uniform” sense [Friedgut]: namely, there is a function c(n)
such that, for all €>0,

lim Pr|G(n,p = c/n) is 3-colorable| =

n—aoo

1 ifc< (1—¢€)c(n)
0 ifec> (14 ¢€)c(n)

e But we don’t know that ¢(n) converges to a constant.
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An easy upper bound

e Compute the expected number of colorings, E[X].

e |f there are m=cn/2 edges, then

U[X] < 37(2/3)™ = (3(2/3)%)"
e This is exponentially small when

c > 2logg /93 =~ 5.419
e Markov’s inequality: Pr[3-colorable] is exponentially small too.

e So ¢* <5.419 . Arguments from physics give ¢* = 4.69 .
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How to get a lower bound”?

e The second moment method: for any random variable X € {0,1,2,...},

B[ X]?
L[ X 2]

Pr|X > 0] >

e Tricky calculations: we need to compute second moment, i.e., correlations

e \Works very well for k-SAT for large k, and g-coloring for large g
[Frieze and Wormald, Achlioptas and {Moore, Peres, Naor}]

® For 3-coloring, best lower bounds are algorithmic

¢ Algorithm lower bounds are also constructive: a proof that a polynomial-time
algorithm usually works.
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A greedy algorithm

e At each point, each vertex has 3, 2, or 1 available colors

e |f any vertex has only O available colors, give up (no backtracking)

while there are uncolored vertices {
1f there are any l-color vertices
choose one and color 1t
else 1f there are any 2-color vertices
choose one, flip a coin, and color 1t
else choose a random 3-color vertex,
choose a random color, and color 1t

e For what values of ¢ does this algorithm work with probability €(1)?
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The expected effect of each step

* Principle of deferred decisions: we don’t choose the neighbors of each vertex
until we color it = uncolored part of the graph is uniformly random in G(n,p)

e | et S3 and S»> denote the number of 3-color and 1-or-2-color vertices

(we’ll deal specifically with the 1-color vertices later) and let T denote the
number of steps taken so far

e Each step: from the point of view of other vertices, a random vertex has been
given a random color (symmetry between the colors needs to be proved)

e During the phase where the algorithm colors the giant component, each step
colors a 1- or 2-color vertex

“3:/\53: — —pS;g
43:/\32: — pS;; — 1
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A differential equation

o Write Sz=s3n, Seo=s2n, T=tn . Then with p=c/n, rescaling turns

*‘:[/\Sg] = —pS§3 ; “1[AS2] — pS;g — 1
into
d83 dSQ

— = —cS3, — =c83— 1

dt

® Easy to solve: with initial conditions s3(0) = 1,s2(0) =0,

s3s(t)=e ", so(t)=1—t—ce
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2rogress over time

e the danger of conflict is greatest when ss(t) is maximized

e so(f)=0 when we have colored the giant component
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When does the algorithm fail”

e The 1-color vertices obey a branching process. Coloring each one generates
A new ones on average, where

A= (2/3)pSe = (2/3)css

e As long as A(t) < 1, this branching process is subcritical; integrating over all
steps, we succeed with probability Q(1)

e [f A > 1, the process explodes, and two 1-color vertices conflict
e Maximizing A(f) over all t shows that A < 1 as long as c is less than the root of
c—Inc=5/2

e This shows that ¢* > 3.847 [Achlioptas and Molloy]
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Probabllity of success

Probability of success without backtracking
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But does all this make sense?

e Theorem [Wormald]: if we have a Markov process Y{(t) such that
EAY] = f(Y(T)/n) + o(1)

for a Lipschitz function f, and if Y(t)=€2(n) for all t, and there are tail bounds
on AY, then with high probability for all T,

Y(T) = ny(T/n) + o(n)

where y is the solution to the system of differential equations

dy
ET f(y)
e |dea: divide up the n steps into, say, n'? blocks of n'/? steps each. In each
block, total change in Yiis within n'/? of its expectation (Azuma) with high
enough probability that this is true of all blocks (union bound). Then the total

change over Q(n) steps is within o(n) of what the differential equation predicts.
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Fancier algorithms, systems of equations

e A greedier algorithm: color high-degree vertices first

e Softer greed: choose vertices of degree i with probability proportional to f())
for some smooth function f

¢ Infinite system of differential equations, keeping track of the degree
distribution (random in the configuration model)

e This gives a lower bound of ¢* > 4.03 [Achlioptas and Moore]
e Still the best known lower bound

¢ \We can only handle backtracking-free algorithms, where the rest of the
problem is uniformly random (conditional on degree distributions etc.)
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Linear programming

MAXIMIZATION OF A LINEAR FUNCTION OF VARIABLES
SUBJECT TO LINEAR INEQUALITIES !

By GeorGe B. DanTzIG

The general problem indicated in the title is easily transformed, by any
one of several methods, to one which maximizes a linear form of non-
negative variables subject to a system of linear equalities. For exam-
ple, consider the linear inequality az + by 4+ ¢ > 0. The linear in-
equality can be replaced by a linear equality in nonnegative variables
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Linear programming

e Optimize a linear function, subject to linear inequalities:

maxclx subject to Ax <Db

X

e Max Flow

e Shortest Path

e Min-(or Max)-Weight Perfect Matching

e “relax and round” approximation algorithms, e.g. Vertex Cover

e pbranch and bound / branch and cut optimization algorithms, including large
instances of Traveling Salesman
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Crawling on the surface

e Dantzig, 1947: the simplex algorithm

o Klee-Minty, Jeroslow, 1972: simplex takes
exponential time in the worst case

e Spielman and Teng, 2004: the simplex
algorithm works in polynomial time with high
probability in the smoothed analysis setting—
random perturbations of a worst-case instance
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Ellipsoid algorithm

e Khachiyan, 1979: first proof that Linear Programming is in P
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—llipsoid algorithm

e Khachiyan, 1979: first proof that Linear Programming is in P

* any convex optimization problem with a polynomial-time separation oracle:
either returns “r is feasible” or a separating hyperplane
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Karmarkar’'s algorithm

e 1984. first algorithm for Linear Programming which is both theoretically and
practically efficient

* First rigorously analyzed interior point method
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Karmarkar’'s algorithm

e Take a step in the direction of ¢
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Karmarkar’'s algorithm

e Take a step in the direction of ¢

* Project back to the center
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Karmarkar’'s algorithm

e Take a step in the direction of ¢
¢ Project back to the center

e Take another step
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Karmarkar’'s algorithm

e Take a step in the direction of ¢
e Project back to the center
e Take another step

® Project again, and so on o
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Karmarkar’'s algorithm

e Take a step in the direction of ¢

¢ Project back to the center

e Take another step AN

N N\ -
1 _______.-(-—“' ’

I

'
. N '
N N '

® Project again, and so on

* |In the original coordinates,
we converge to the optimum :
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A balloon rising in a cathedral

e The balloon’s buoyancy causes it to rise until it meets the facets

e Dual variables = normal forces!
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Potential energy

e A physical force is the gradient of the potential energy:

oV
8377;

F=-VV(x) or F;,=
e The balloon’s buoyancy is driven by
Viz)=—c'x

e How do we keep it from bumping it into the facets, and getting stuck in a bad
instance of the simplex algorithm?
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The logarithmic barrier potential

¢ \We want to repel the balloon from each facet,
cal v 1.
'{ﬁ)(: o 'E]:j :)(: — l)j':}

e Add a potential energy that tends to +« as constraints become tight:

‘/facets Z ln — a X)

e Force diverges as 1/r as we get close to a facet

¢ [0 get close to the optimum, make the balloon more buoyant:

V(x) = Viacets(X) — Aelx
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The balloon at equilibrium

e The potential energy has a unigue minimum X in the interior, where
_VV(X)\) — _v‘/facets(x)\) +Ac =0

e How does this equilibrium change as A increases?

dx
XA+d) = X g )\A dA

e Differentiating with respect to A gives

iy
dA

= c where H;; =

Wednesday, April 28, 2010



A differential equation

e The equilibrium x» obeys

dA
o Explicitly,

* In the nondegenerate case, H is positive definite, and hence invertible
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Back to Karmarkar

* In the original coordinates, Karmarkar’s algorithm updates x as

x - x4+ ANH ¢

...a discrete version of the differential equation [Gill et al.]

A H
a\ ¢

e The repulsive force~1/r, so we need A~1/€ to get within € of the optimum

e We get within €é=2" of the optimum when A~2"

e Each step is large enough to multiply A by a constant, so poly(n) steps
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Newton’s method

e Use a second-order Taylor series to predict the minimum
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Newton’s method

* In one dimension, minimizing

1
Vie+6)~V(x)+V'o+ §V”62
gives |
0 = V//V’

* |In higher dimensions, minimizing

1
xdx+®and@+wvvﬁé+§&%ﬂs

gives

§=-H'VV
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The Newton flow

e Every point in the polytope is the equilibrium for some buoyancy,
AC = v‘/faLc:ets

e Moving away from the minimum of VViacets gives

((11_1( = —0 = H_lv‘/facets — AH_lC

which is proportional to our previous differential equation.

e Each trajectory of this reverse Newton flow maximizes ¢'x for some c.
All that matters are the initial conditions! [Anstreicher]
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The Newton flow
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Semidefinite programming

e Maximize a linear function of the entries of a matrix A, subject to
A>=0 ie., viAv > 0
e The boundary is the set of singular matrices:
{A:det A =0}

e Add a barrier potential which tends to +e as A becomes singular:

V = —Indet A

e This gives a repulsive force

F=-VV=(4"h"
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Conclusion

e Differential equations help us analyze the performance of algorithms on
random structures, and thus prove things about those structures

e Some of our favorite algorithms are best viewed as discrete versions of
continuous algorithms

e Computer science needs every kind of mathematics:
e Number theory (cryptography)
e Fourier analysis (the PCP theorem)
e Group representations (expanders and derandomization)

e and anything else we can get our hands on
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