
Continuous Methods in Computer Science:
from Random Graph Coloring
to Linear Programming

Cristopher Moore
University of New Mexico
and the Santa Fe Institute

Wednesday, April 28, 2010

From discrete to continuous	

• Computer science students get very little training in continuous mathematics

• As a result, they are intimidated by continuous methods, just as students from
other fields are intimidated by discrete math and theoretical computer science

• This is unfortunate—no one should be intimidated by anything

• Moreover, continuous methods (e.g. differential equations) arise in several
ways in computer science:

• As limits of discrete processes, especially in random structures

• As a compelling picture of some of our favorite optimization algorithms

Wednesday, April 28, 2010

Random graphs

• Erdős-Rényi random graph G(n,p): each pair of vertices is independently
connected with probability p

• Sparse case: p=c/n, so the average degree is c

• Emergence of the giant component—a phase transition:

• when c<1, with high probability the largest component has size O(log n),
and all but O(log n) of these components are trees

• when c=1, the largest component has size O(n2/3); power-law distribution
of component sizes

• when c>1, with high probability there is a unique component of size an,
where a=a(c). Other components are mostly trees, like the c<1 case.

Wednesday, April 28, 2010

file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle
file://localhost/Users/crismoore/Desktop/rg1.graffle

Coloring random graphs

• How often is a random graph 3-colorable? Experimental results:

3 4 5 6 7
!

0.0

0.2

0.4

0.6

0.8

1.0

P

n = 10

n = 15

n = 20

n = 30

n = 50

n = 100

c

Wednesday, April 28, 2010

Search times

• The hardest instances (among the random ones) are at the transition:

1 2 3 4 5 6 7 8
!

10
2

10
3

10
4

10
5

10
6

D
P

L
L

 c
a
ll

s

c

Wednesday, April 28, 2010

The colorability conjecture

• There is a constant c* such that

• Known in a “non-uniform” sense [Friedgut]: namely, there is a function c(n)
such that, for all ϵ>0,

• But we don’t know that c(n) converges to a constant.

lim
n→∞

Pr[G(n, p = c/n) is 3-colorable] =

{
1 if c < c!

0 if c > c!

lim
n→∞

Pr[G(n, p = c/n) is 3-colorable] =

{
1 if c < (1− ε)c(n)
0 if c > (1 + ε)c(n)

Wednesday, April 28, 2010

An easy upper bound

• Compute the expected number of colorings, E[X].

• If there are m=cn/2 edges, then

• This is exponentially small when

• Markov’s inequality: Pr[3-colorable] is exponentially small too.

• So . Arguments from physics give .c! ≤ 5.419 c! ≈ 4.69

E[X] ≤ 3n(2/3)m =
(
3(2/3)c/2

)n

c > 2 log3/2 3 ≈ 5.419

Wednesday, April 28, 2010

How to get a lower bound?

• The second moment method: for any random variable X ϵ {0,1,2,...},

• Tricky calculations: we need to compute second moment, i.e., correlations

• Works very well for k-SAT for large k, and q-coloring for large q
[Frieze and Wormald, Achlioptas and {Moore, Peres, Naor}]

• For 3-coloring, best lower bounds are algorithmic

• Algorithm lower bounds are also constructive: a proof that a polynomial-time
algorithm usually works.

Pr[X > 0] ≥ E[X]2

E[X2]

Wednesday, April 28, 2010

A greedy algorithm

• At each point, each vertex has 3, 2, or 1 available colors

• If any vertex has only 0 available colors, give up (no backtracking)

• For what values of c does this algorithm work with probability Ω(1)?

while there are uncolored vertices {
if there are any 1-color vertices
choose one and color it

else if there are any 2-color vertices
choose one, flip a coin, and color it

else choose a random 3-color vertex,
choose a random color, and color it

}

Wednesday, April 28, 2010

The expected effect of each step

• Principle of deferred decisions: we don’t choose the neighbors of each vertex
until we color it ⇒ uncolored part of the graph is uniformly random in G(n,p)

• Let S3 and S2 denote the number of 3-color and 1-or-2-color vertices
(we’ll deal specifically with the 1-color vertices later) and let T denote the
number of steps taken so far

• Each step: from the point of view of other vertices, a random vertex has been
given a random color (symmetry between the colors needs to be proved)

• During the phase where the algorithm colors the giant component, each step
colors a 1- or 2-color vertex

E[∆S3] = −pS3

E[∆S2] = pS3 − 1

Wednesday, April 28, 2010

A differential equation

• Write S3=s3 n, S2=s2 n, T=tn . Then with p=c/n, rescaling turns

into

• Easy to solve: with initial conditions ,

ds3

dt
= −cs3 ,

ds2

dt
= cs3 − 1

E[∆S3] = −pS3 , E[∆S2] = pS3 − 1

s3(t) = e−ct , s2(t) = 1− t− ce−ct

s3(0) = 1, s2(0) = 0

Wednesday, April 28, 2010

Progress over time

• the danger of conflict is greatest when s2(t) is maximized

• s2(t)=0 when we have colored the giant component

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Wednesday, April 28, 2010

When does the algorithm fail?

• The 1-color vertices obey a branching process. Coloring each one generates
λ new ones on average, where

• As long as λ(t) < 1, this branching process is subcritical; integrating over all
steps, we succeed with probability Ω(1)

• If λ > 1, the process explodes, and two 1-color vertices conflict

• Maximizing λ(t) over all t shows that λ < 1 as long as c is less than the root of

• This shows that [Achlioptas and Molloy]

c− ln c = 5/2

c! > 3.847

λ = (2/3)pS2 = (2/3)cs2

Wednesday, April 28, 2010

Probability of success

2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of success without backtracking

T
h

e
 s

u
c

c
e

s
s

 r
a

te

C

Theoretical
Experimental

P = exp
(
−

∫ t0

0
dt

cλ2

2(1− λ)(2 + λ)

)
[Jia and Moore]

Wednesday, April 28, 2010

But does all this make sense?

• Theorem [Wormald]: if we have a Markov process Y(t) such that

for a Lipschitz function f, and if Y(t)=Ω(n) for all t, and there are tail bounds
on , then with high probability for all T,

where y is the solution to the system of differential equations

• Idea: divide up the n steps into, say, n1/2 blocks of n1/2 steps each. In each
block, total change in Yi is within n1/3 of its expectation (Azuma) with high
enough probability that this is true of all blocks (union bound). Then the total
change over Ω(n) steps is within o(n) of what the differential equation predicts.

Y (T) = ny(T/n) + o(n)

dy

dt
= f(y)

∆Y

E[∆Y] = f(Y (T)/n) + o(1)

Wednesday, April 28, 2010

Fancier algorithms, systems of equations

• A greedier algorithm: color high-degree vertices first

• Softer greed: choose vertices of degree i with probability proportional to f(i)
for some smooth function f

• Infinite system of differential equations, keeping track of the degree
distribution (random in the configuration model)

• This gives a lower bound of [Achlioptas and Moore]

• Still the best known lower bound

• We can only handle backtracking-free algorithms, where the rest of the
problem is uniformly random (conditional on degree distributions etc.)

c! > 4.03

Wednesday, April 28, 2010

Linear programming

Wednesday, April 28, 2010

Linear programming

• Optimize a linear function, subject to linear inequalities:

• Max Flow

• Shortest Path

• Min-(or Max)-Weight Perfect Matching

• “relax and round” approximation algorithms, e.g. Vertex Cover

• branch and bound / branch and cut optimization algorithms, including large
instances of Traveling Salesman

max
x

cT x subject to Ax ≤ b

Wednesday, April 28, 2010

Crawling on the surface

• Dantzig, 1947: the simplex algorithm

• Klee-Minty, Jeroslow, 1972: simplex takes
exponential time in the worst case

• Spielman and Teng, 2004: the simplex
algorithm works in polynomial time with high
probability in the smoothed analysis setting—
random perturbations of a worst-case instance

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

JEWELS AND FACETS: LINEAR PROGRAMMING 405

F I G. 8.17. The polytope on the left was designed to have many facets (200)

and many vertices (396). On the right, we have perturbed this polytope by

adding 5% noise to the right-hand sides of the inequalities. The total number

of facets (87) and vertices (170) has dropped considerably. The angles between

the facets have become sharper, and their shadows, i.e., the two-dimensional

polygons that form the outlines of these pictures, have fewer sides.

In worst-case analysis, we propose an algorithm, and then the adversary

chooses an instance. In smoothed analysis, chance steps in, and adds a small

amount of noise, !y, to the adversary’s instance x. You can think of the resulting

instances as being chosen randomly from a ball in parameter space, with center x

and radius ! . The adversary can decide where the ball is centered, but he cannot

control where in the ball the instance will be. We then define the running time as

the average over the ball, maximized over where the adversary centers it:

Tsmoothed = max
x

(

E
y
T (x+ !y)

)

.

If the adversary has to carefully tune the parameters of an instance to make it hard,

adding noise upsets his plans. It smoothes out the peaks in the running time, and

makes the problem easy on average.

Spielman and Teng considered a particular pivot rule called the shadow vertex

rule. It projects a two-dimensional shadow of the polytope, forming a two-

dimensional polygon, and tries to climb up the outside of the polygon. This rule

performs poorly if this polygon has exponentially many sides, with exponentially

small angles between them. They showed that if we add noise to the constraints,

perturbing the entries ofA and b, then the angles between the facets—and between

the sides of the shadow polygon—are 1/poly(m) with high probability. In that

case, the shadow polygon has poly(m) sides, and the shadow vertex rule takes

polynomial time. We illustrate this in Figure 8.17.

Smoothed analysis provides a sound theoretical explanation for the suprisingly

good performance of the simplex algorithm on real instances of LP. But it still

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

JEWELS AND FACETS: LINEAR PROGRAMMING 401

c

F I G. 8.15. The simplex algorithm on its way to the top.

other entries of A and b are nonnegative, the vertex (0, . . . ,0)—a flow with zero

currents—is a fine place to start.

We have seen similar algorithms before. In the Ford-Fulkerson algorithm for

MAX FLOW (see Section 3.6) we increase the flow along some path from the

source to the sink, until the flow on one of the edges reaches its capacity—that is,

until we run into one of the facets of the polytope of feasible flows.

At least for some networks, the Ford-Fulkerson algorithm is just the simplex

algorithm in disguise. Moving along an edge of the feasible polytope corresponds

to increasing the flow along some path—including, if this path includes the reverse

edges defined in Section 3.6, canceling some of the existing flow. Look again at

Fig. 8.12, where we show the flow corresponding to each vertex of the feasible

polytope. The following exercise asks you to find the correspondence between

edges of the polytope and moves of the Ford-Fulkerson algorithm:

Exercise 8.13 For each of the 12 edges of the polytope shown in Fig. 8.12, find

the path along which the flow is being increased (including possibly along reverse

edges of the residual graph). Show that for those edges that increase the value

x1 + x2 + x3, this path leads from the source to the sink. For instance, which edge

of the polytope corresponds to the improvement shown in Fig. 3.19 on page 82?

Exercise 8.14 Find an example of MAX FLOW where some moves of the Ford-

Fulkerson algorithm lead to flows which do not correspond to vertices of the

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

JEWELS AND FACETS: LINEAR PROGRAMMING 403

0

1

0 1

x2

x1

x1
x2

x3

F I G. 8.16. Klee-Minty cubes for ! = 1/3 and d = 2,3. If it starts at the origin,

the simplex algorithm could visit all 2d vertices on its way to the optimum.

We can get around this problem by regarding a “vertex” as a set of d facets, even if

many such sets correspond to the same point x. There are then again just d possible

moves. Some of them don’t actually change x, but they change which facets we

use to define our position. As long as we always “move” in a direction r such that

c
T
r> 0, there is no danger that we will fall into an endless loop.

Since each step is easy, the running time of the simplex algorithm is essentially

the number of vertices it visits. But as its inventor George Dantzig complained, in

high dimensions it can be difficult to understand the possible paths it can take. 8.11

As the following exercise shows, the simplex algorithm can easily handle some

situations where the polytope has an exponential number of vertices:

Exercise 8.16 Suppose the feasible polytope is the d-dimensional hypercube. Show

that the simplex algorithm visits at most d vertices no matter what pivot rule it uses,

as long as it always moves to a better vertex.

However, this is a little too easy. The constraints 0≤ xi ≤ 1 defining the hypercube

are independent of each other, so the feasible polytope is simply the Cartesian

product of d unit intervals.

Things get more interesting when we create some interaction between the vari-

ables. Let ! be a real number such that 0 ≤ ! < 1/2. Consider the d-dimensional

polytope defined by the inequalities

0 ≤ x1 ≤ 1

!x1 ≤ x2 ≤ 1− !x1

...

!xd−1 ≤ xd ≤ 1− !xd−1 .

(8.11) {eq:klee-minty}

Wednesday, April 28, 2010

Ellipsoid algorithm

• Khachiyan, 1979: first proof that Linear Programming is in P

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

HUNTING WITH EGGSHELLS 423

(1)

r1

(2)

r1
r2

(3)

r2

(4)

r2

r3

F I G. 8.26. The ellipsoid algorithm in action. Dashed lines are separating hyper-

planes—in this case, violated facets of an instance of LINEAR PROGRAMM-

ING. In each step we divide the ellipsoid E into two halves, along the line

through the center r parallel to the separating hyperplane, and then bound the

remaining half in a new ellipsoid E ′.

Moreover, at each step the volume decreases by

volume(E ′)

volume(E)
=

(
d

d+1

)(
d

2

d2 −1

)(d−1)/2

≤ e−1/(2d+2) . (8.34)eq:ellipsoid-volume-ratio}

So we can reduce the volume of the fenced-in area exponentially, say by factor of

2−n, in O(dn) steps.

To start our hunt, we need to fence the entire Sahara—we need an ellipsoid

which is guaranteed to contain the feasible set. For LINEAR PROGRAMMING, we

showed in Problem 8.15 that the coordinates of any vertex are 2O(n) in absolute

value, where n is the total number of bits in the instance. So we can start with a

sphere of radius 2O(n) centered at the origin.

Wednesday, April 28, 2010

Ellipsoid algorithm

• Khachiyan, 1979: first proof that Linear Programming is in P

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

HUNTING WITH EGGSHELLS 423

(1)

r1

(2)

r1
r2

(3)

r2

(4)

r2

r3

F I G. 8.26. The ellipsoid algorithm in action. Dashed lines are separating hyper-

planes—in this case, violated facets of an instance of LINEAR PROGRAMM-

ING. In each step we divide the ellipsoid E into two halves, along the line

through the center r parallel to the separating hyperplane, and then bound the

remaining half in a new ellipsoid E ′.

Moreover, at each step the volume decreases by

volume(E ′)

volume(E)
=

(
d

d+1

)(
d

2

d2 −1

)(d−1)/2

≤ e−1/(2d+2) . (8.34)eq:ellipsoid-volume-ratio}

So we can reduce the volume of the fenced-in area exponentially, say by factor of

2−n, in O(dn) steps.

To start our hunt, we need to fence the entire Sahara—we need an ellipsoid

which is guaranteed to contain the feasible set. For LINEAR PROGRAMMING, we

showed in Problem 8.15 that the coordinates of any vertex are 2O(n) in absolute

value, where n is the total number of bits in the instance. So we can start with a

sphere of radius 2O(n) centered at the origin.

Wednesday, April 28, 2010

Ellipsoid algorithm

• Khachiyan, 1979: first proof that Linear Programming is in P

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

HUNTING WITH EGGSHELLS 423

(1)

r1

(2)

r1
r2

(3)

r2

(4)

r2

r3

F I G. 8.26. The ellipsoid algorithm in action. Dashed lines are separating hyper-

planes—in this case, violated facets of an instance of LINEAR PROGRAMM-

ING. In each step we divide the ellipsoid E into two halves, along the line

through the center r parallel to the separating hyperplane, and then bound the

remaining half in a new ellipsoid E ′.

Moreover, at each step the volume decreases by

volume(E ′)

volume(E)
=

(
d

d+1

)(
d

2

d2 −1

)(d−1)/2

≤ e−1/(2d+2) . (8.34)eq:ellipsoid-volume-ratio}

So we can reduce the volume of the fenced-in area exponentially, say by factor of

2−n, in O(dn) steps.

To start our hunt, we need to fence the entire Sahara—we need an ellipsoid

which is guaranteed to contain the feasible set. For LINEAR PROGRAMMING, we

showed in Problem 8.15 that the coordinates of any vertex are 2O(n) in absolute

value, where n is the total number of bits in the instance. So we can start with a

sphere of radius 2O(n) centered at the origin.

Wednesday, April 28, 2010

• any convex optimization problem with a polynomial-time separation oracle:
either returns “r is feasible” or a separating hyperplane

Ellipsoid algorithm

• Khachiyan, 1979: first proof that Linear Programming is in P

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

HUNTING WITH EGGSHELLS 423

(1)

r1

(2)

r1
r2

(3)

r2

(4)

r2

r3

F I G. 8.26. The ellipsoid algorithm in action. Dashed lines are separating hyper-

planes—in this case, violated facets of an instance of LINEAR PROGRAMM-

ING. In each step we divide the ellipsoid E into two halves, along the line

through the center r parallel to the separating hyperplane, and then bound the

remaining half in a new ellipsoid E ′.

Moreover, at each step the volume decreases by

volume(E ′)

volume(E)
=

(
d

d+1

)(
d

2

d2 −1

)(d−1)/2

≤ e−1/(2d+2) . (8.34)eq:ellipsoid-volume-ratio}

So we can reduce the volume of the fenced-in area exponentially, say by factor of

2−n, in O(dn) steps.

To start our hunt, we need to fence the entire Sahara—we need an ellipsoid

which is guaranteed to contain the feasible set. For LINEAR PROGRAMMING, we

showed in Problem 8.15 that the coordinates of any vertex are 2O(n) in absolute

value, where n is the total number of bits in the instance. So we can start with a

sphere of radius 2O(n) centered at the origin.

Wednesday, April 28, 2010

Karmarkar’s algorithm

• 1984: first algorithm for Linear Programming which is both theoretically and
practically efficient

• First rigorously analyzed interior point method

Wednesday, April 28, 2010

Karmarkar’s algorithm

• Take a step in the direction of c

Wednesday, April 28, 2010

Karmarkar’s algorithm

• Take a step in the direction of c

• Project back to the center

Wednesday, April 28, 2010

Karmarkar’s algorithm

• Take a step in the direction of c

• Project back to the center

• Take another step

Wednesday, April 28, 2010

Karmarkar’s algorithm

• Take a step in the direction of c

• Project back to the center

• Take another step

• Project again, and so on

Wednesday, April 28, 2010

Karmarkar’s algorithm

• Take a step in the direction of c

• Project back to the center

• Take another step

• Project again, and so on

• In the original coordinates,
we converge to the optimum

Wednesday, April 28, 2010

A balloon rising in a cathedral

• The balloon’s buoyancy causes it to rise until it meets the facets

• Dual variables = normal forces!

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

408 OPTIMIZATION AND APPROXIMATION

a1

a2

a3

a4

c

c

c

F I G. 8.18. Proof of strong duality by balloon.

The balloon’s position is x, and its buoyancy is c. The facets at which it comes

to rest are the constraints which are tight at the optimum. We will assume that all of

x’s components are positive—that it touches some facets of the “ceiling” formed

by the inequalities Ax≤ b, but none of the “walls” formed by x≥ 0.
Let S⊆ {1, . . . ,m} denote the set of j such that the constraint corresponding to

the jth row of A is tight. If we denote this row aTj , then

S= { j : aTj x= b j} . (8.18){eq:duality-fdef}

The balloon presses against each of these facets with some force. In order to be in

equilibrium, the sum of these forces must exactly equal its buoyancy.

In the absence of friction, the force on each facet is perpendicular to its

surface—that is, along a j, as shown in Fig. 8.18. If we let y j ≥ 0 denote the

magnitude of the force on the jth facet, then we have

!
j∈S
a jy j = c . (8.19){eq:duality-pos}

The balloon can’t push on any facet it isn’t touching, so we set y j = 0 for all j /∈ S.

This defines a vector y ∈ Rm such that

ATy= c . (8.20){eq:duality-proof-0}

Along with the fact that y ≥ 0, this shows that y is a feasible solution of the dual

problem. This is the key to strong duality.

All that remains is to show that the value of y in the dual problem is equal to

the value of x in the primal. Taking the transpose of (8.20) and multiplying it on

Wednesday, April 28, 2010

Potential energy

• A physical force is the gradient of the potential energy:

• The balloon’s buoyancy is driven by

• How do we keep it from bumping it into the facets, and getting stuck in a bad
instance of the simplex algorithm?

F = −∇V (x) or Fi = − ∂V

∂xi

V (x) = −cT x

Wednesday, April 28, 2010

The logarithmic barrier potential

• We want to repel the balloon from each facet,

• Add a potential energy that tends to +∞ as constraints become tight:

• Force diverges as 1/r as we get close to a facet

• To get close to the optimum, make the balloon more buoyant:

{x : aT
j x = bj}

Vfacets(x) = −
m∑

j=1

ln
(
bj − aT

j x
)

V (x) = Vfacets(x)− λcT x

Wednesday, April 28, 2010

The balloon at equilibrium

• The potential energy has a unique minimum xλ in the interior, where

• How does this equilibrium change as λ increases?

• Differentiating with respect to λ gives

−∇V (xλ) = −∇Vfacets(xλ) + λc = 0

xλ+dλ = xλ +
dxλ

dλ
dλ

H
dxλ

dλ
= c where Hij =

∂2Vfacets

∂xi ∂xj

Wednesday, April 28, 2010

A differential equation

• The equilibrium xλ obeys

• Explicitly,

• In the nondegenerate case, H is positive definite, and hence invertible

∇Vfacets(x) =
m∑

j=1

aT
j

bj − aT
j x

H(x) =
m∑

j=1

aj ⊗ aT
j

(bj − aT
j x)2

dxλ

dλ
= H−1c

Wednesday, April 28, 2010

Back to Karmarkar

• In the original coordinates, Karmarkar’s algorithm updates x as

...a discrete version of the differential equation [Gill et al.]

• The repulsive force~1/r, so we need λ~1/ϵ to get within ϵ of the optimum

• We get within ϵ=2-n of the optimum when λ~2n

• Each step is large enough to multiply λ by a constant, so poly(n) steps

x→ x + ∆λH−1c

dxλ

dλ
= H−1c

Wednesday, April 28, 2010

Newton’s method

• Use a second-order Taylor series to predict the minimum

Wednesday, April 28, 2010

Newton’s method

• In one dimension, minimizing

gives

• In higher dimensions, minimizing

gives

V (x + δ) ≈ V (x) + V ′δ +
1
2
V ′′δ2

δ = − 1
V ′′ V

′

V (x + δ) ≈ V (x) + (∇V)T δ +
1
2

δT H δ

δ = −H−1∇V

Wednesday, April 28, 2010

The Newton flow

• Every point in the polytope is the equilibrium for some buoyancy,

• Moving away from the minimum of ∇Vfacets gives

which is proportional to our previous differential equation.

• Each trajectory of this reverse Newton flow maximizes cTx for some c.
All that matters are the initial conditions! [Anstreicher]

λc = ∇Vfacets

dx
dt

= −δ = H−1∇Vfacets = λH−1c

Wednesday, April 28, 2010

The Newton flow

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

JEWELS AND FACETS: LINEAR PROGRAMMING 415

c

F I G. 8.20. If we start at x0 and give ourselves a nudge in the right direction, the

reverse Newton flow takes us to the optimal vertex.

In higher dimensions, we have

V (x+!!!)≈V (x)+("V)T!!! +
1

2
!!!
T
H!!! ,

and minimizing the right-hand side (using the fact that the HessianH is symmetric)

gives

!!! =−H−1"V .

In order to push x toward the minimum, we define a flow in the direction of !!! ,

dx

dt
= !!! . (8.28) {eq:newton-flow}

If we integrate (8.28), then x tends towards x0 no matter where it starts in the poly-

tope. Conversely, if we run this process backwards, then x0 becomes an unstable

fixed point, and the flow pushes x out towards the vertices of the polytope. This

gives
dx

dt
=−!!! =H−1"Vfacets . (8.29) {eq:newton-reverse}

We call this the reverse Newton flow, and we illustrate it in Fig. 8.20.

Wednesday, April 28, 2010

Semidefinite programming

• Maximize a linear function of the entries of a matrix A, subject to

• The boundary is the set of singular matrices:

• Add a barrier potential which tends to +∞ as A becomes singular:

• This gives a repulsive force

A ! 0 i.e., vT Av ≥ 0

{A : detA = 0}

V = − ln detA

F = −∇V = (A−1)T

Wednesday, April 28, 2010

Conclusion

• Differential equations help us analyze the performance of algorithms on
random structures, and thus prove things about those structures

• Some of our favorite algorithms are best viewed as discrete versions of
continuous algorithms

• Computer science needs every kind of mathematics:

• Number theory (cryptography)

• Fourier analysis (the PCP theorem)

• Group representations (expanders and derandomization)

• and anything else we can get our hands on

Wednesday, April 28, 2010

Shameless plug

• Oxford University Press,
2010

THE NATURE
of COMPUTATION

Cristopher Moore
Stephan Mertens

Wednesday, April 28, 2010

Acknowledgments

Wednesday, April 28, 2010

