Finite-Dimensional Analog Computers:
Flows, Maps, and Recurrent Neural Networks

Cristopher Moore

Santa Fe Institute
1399 Hyde Park Road, Santa Fe, New Mexico 87501 USA
moore@santafe.edu

Abstract. A number of authors have explored the computational power
of dynamical systems with a finite number of continuous degrees of free-
dom. We review this work, from the point of view both of physics and
of recurrent neural networks. We state several conjectures limiting the
dimensionality, smoothness, and robustness to noise that these systems
can have and still be computationally powerful. We also explore resource-
bounded and real-time analog computers, review how techniques like VC
dimension can be used to prove lower bounds, and suggest several direc-
tions for further research.

1 Computational Universality

1.1 Maps in R? and Flows in R3

Recall that a Turing machine (TM) [21] consists of a bi-infinite tape, on which
symbols in a finite alphabet (say binary) are written. The machine’s head has a
finite set S of internal states. At each time-step, it examines the symbol at its
location on the tape and its own state. Based on these, it updates its own state,
writes a new symbol at that place on the tape, and then moves one step left or
right. The machine starts in a particular initial state, at the left end of a finite
input word written on the tape, with a marker at the right end of the word. If it
ever enters a particular state gnay € S, it halts and is said to accept the input.

The question of whether a Turing machine M will ever halt on a given input
w is the Halting Problem, and Turing showed that it is unsolvable; unsolvable,
that is, by any Turing machine given both w and a description of M as its input.
This turns out to be closely related to Gddel’s proof that there are unsolvable
truths in any axiomatic system sufficient to express number theory.

In 1990 and in several years following, various authors independently showed
that finite-dimensional piecewise-linear maps and flows can simulate Turing ma-
chines [22,23,28,31,14,1]. The Halting Problem corresponds to questions such
as whether an initial point will ever fall into a given open set A as the map is
iterated. Thus even simple dynamical questions about compact, low-dimensional
systems can be undecidable. Statements such as “z will fall into A an infinite
number of times” can be true but unprovable!

Note that this is qualitatively different from the unpredictability that comes
from “chaos” or sensitive dependence to initial conditions, in which errors in our
knowledge of the initial state are amplified over time. Here, the system’s behavior
as t — oo is unpredictable, even if we know the initial conditions exactly, e.g. if
x’s coordinates are rational.

The construction is so simple that it’s surprising no one noticed it earlier.
For each point (z,y) in the unit square, associate the binary digits of its z and y
coordinates with the left and right halves of a Turing machine’s tape: if the tape
is ---a_sa_jagaias -+, let £ =0.a_1a_5... and y = 0.apaias Then shifting
the tape head right, say, is equivalent to halving z, doubling y, and shifting y’s
most significant digit to x. This is simply the Baker’s Map on the unit square,
well-known in ergodic theory [8] and shown in figure 1.

Fig. 1. The Baker’s Map, equivalent to shifting the tape head to the right: y =
0.apaiaz ... becomes 0.a1az ..., and ¢ = 0.a—1a—2 ... becomes 0.apa—1a-2....

We can write on the tape by adding constants to z and y, and represent
the machine’s internal state either with a finite number of separate squares in
the plane, or by absorbing the machine’s state into the tape and reading several
sites on the tape at once. Either way, any Turing machine can be converted
into a piecewise-linear map of the plane with a finite number of rectangular
components, each one of which is an affine transformation.

Since halting corresponds to falling into a rectangle A representing gnait, the
question of whether a given initial point 2 will fall into a given open set A is
undecidable. By Rice’s Theorem [29], it is also undecidable whether the basin
of attraction of A is dense, of measure 1, of measure greater than a given pu, or
whether it has a non-zero intersection with another open set. In fact, the measure
of A’s basin of attraction will be related to (2, Chaitin’s uncomputable number
[6]. It is also easy to replace halting with returning to the system’s initial state, so
it is undecidable whether z is a periodic point; or we can make halting correspond
to entering a chaotic region of the plane, so that the Lyapunov exponent of the
map is uncomputable, and it is even undecidable whether the map is chaotic or
not [23].

We can obtain a smoother map. By using base 3, we can place our points
on a Cantor set, like the invariant set of Smale’s Horseshoe Map [32]. We can
then smooth the map in the gaps between components, making it infinitely
differentiable.

Furthermore, using Bennett’s proof [2] that any Turing machine can be sim-
ulated by a reversible one, we can ensure that this map is one-to-one. We can
also make it isotopic to the identity [23]. Then we can embed it in a flow in R?,
as a billiard or optical ray-tracing system [28], or as a point particle moving in
an infinitely differentiable energy potential [22]. A similar map can be embedded
in the dynamics of a recurrent neural network with piecewise-linear activations
[31], or a hybrid system with piecewise-constant derivatives [1].

To what extent can this construction be improved, by reducing the dimen-
sionality or increasing smoothness from infinite differentiability to analyticity?
Three dimensions is minimal for a flow, since flows in a compact subset of R?
must converge either to a fixed point or a limit cycle. However, it turns out that
even in one dimension, iterated maps can be computationally universal.

1.2 Maps in R

The simplest way to do this is to simply take a Turing machine’s dynam-
ics as a function on the set of bi-infinite sequences. If we conjugate it with a
map that folds two-sided sequences into one-sided ones, ---a_sa_japaias -+ —>
apaia—_1asa_o - -+, we get a function which is continuous in the standard metric
on sequences, d(z,y) = Y 1o 27 |z — yil.

Interpreting these sequences as digits in the middle-thirds Cantor set in the
unit interval, and smoothing in the gaps, gives us a function which is continuous
and Lipshitz, i.e. there exists a constant ¢ such that d(f(z), f(y)) < ed(z,y). (It
was erroneously stated in [24] that the resulting function is once-differentiable.)
Then this function simulates a Turing machine in real time — that is, one time-
step per time-step.

Another embedding of universal computation in one dimension, which is an-
alytic but exponentially slow, is given in [15]. Recall the classic “3x + 1 problem”
[18]. If f is the function on the integers

_Jx/2 (z even)
flo) = {3:r+1 (z odd)
then, for all z, does there exist a t such that f!(z) = 1?7 In dynamical terms, is
all of N in the basin of attraction of the periodic orbit {1,4,2}? This remains a
tantalizing unsolved problem.
More generally, let

f(z) = a;x + b; where z =i mod p (1)

for some base p and constants a;, b; for 0 < i < p. We will call any such f a Col-
latz function. J.H. Conway [7] showed that it is undecidable in general whether
ft(z) = 1 for some t. In fact, the record-holding small Turing machines in the
Busy Beaver competition calculate Collatz functions [20], another testament to
their complexity.

Conway does this by simulating Minsky machines, which are finite-state au-
tomata (FSAs) that can increment, decrement, or branch on zero on a finite

number of counters. Minsky showed [21] that two counters suffice to simulate an
arbitrary Turing machine; however, this creates a doubly-exponential slowdown,
so we use three counters instead. Let L and R be integers representing the left
and right halves of the tape and add a work counter W. For a binary alphabet
{1,2} plus a blank represented by 0, we have

L= ZSi_la,i and R = Z 3ia;
=1 =0

These are finite if the tape is blank beyond a finite number of sites.

To read the symbol a¢ at the head’s current location, give the FSA a loop
of 3 states that decrement R, the last one of which also increments W. We will
get to R = 0 in one of these three states. Which one tells us the tape symbol
agp = R mod 3, and leaves us with the remainder of the right half of the tape,
|R/3],in W.

To shift the head right, we read W back into R by decrementing W and
incrementing R until W = 0, multiply L by 3 by incrementing W three times
each time we decrement L until L = 0, and then read the result from W back
into L. Finally, we write the new symbol in the least significant digit of L by
incrementing L once or twice. Shifting the head left is similar. The FSA’s states
keep track of the head’s internal state as well as where we are in this set of loops;
details are given in [15].

Since this counter machine takes O(max(L, R)) steps to simulate a single
step of the Turing machine, and since L and R are O(3') where [is the length
of the tape used by the TM, and since a Turing machine uses at most ¢ tape
sites in ¢t computation steps, we find that ¢ time-steps of a Turing machine can
be simulated by a three-counter in time O(t3?).

We now show how to simulate a three-counter Minsky machine with a Collatz
function. If the FSA has k states and is currently in state s where 0 < s < k,
define

r=2305WE 45

Clearly all of our operations can be carried out on z by adding, multiplying, or
dividing by a constant. For instance, to decrement W and update the state from
s to s', we write

fx)y=(x—s)/5+s =z/5+ (s —s/5)

soa=1/5and b =s" —s/5 in equation (1). Branching on zero for each register
can be done by checking x mod p for various p. For instance, R = 0 if and only
if mod 3k # s. Finally, if s = 1 is the halt state, we define a = 0 and b = 1
whenever z mod 30k = 1, so a halting computation ends with the fixed point
=1

Now we note that Collatz functions can be embedded in analytic functions.

Let ,
[sinmz _Jlifzmodp=0 .
h(z) = (pisin %> = { 0if 2 mod p # 0 for integer x

This is everywhere analytic, and the fraction can be resolved using multiple-angle

formulas. Then
p—1

fl@) =" h(z —i)(aix +b;)
i=0
matches equation (1) on the integers.

Thus iterated maps on R, consisting of a sum of a finite number of trigonomet-
ric terms, can simulate Turing machines with an exponential slowdown, making
all dynamical questions stated above undecidable in one dimension. (Using Ro-
gozhin’s 6-state, 4-symbol Turing machine [30] gives a map with at most 2470
trigonometric terms.)

Can this exponential slowdown be removed? This is easily done with an
analytic function in R?, with one integer for each half of the stack [15], but can
we do a faster simulation in one dimension?

Clearly analytic functions on R can simulate Turing machines at any rate
we like, simply because any function on the integers that grows more slowly
than some analytic function can be interpolated with an analytic function. How-
ever, although such a function could be expressed as an infinite sum, it would
not have any convenient finite description. If we limit ourselves to elementary
functions that can be defined in terms of sinz, e*, addition, multiplication and
composition — or even the differentially algebraic functions, which are the solu-
tions to polynomial differential equations — then we conjecture that exponential
slowdown is the best we can do:

Conjecture 1. No elementary or differentially algebraic map on R can simulate
a Turing machine with less than an exponential slowdown.

Any counterexample to this conjecture would have to rely on a very different
construction than the one given here.

1.3 Compactness and Analyticity

We have seen two ways to embed universal computation in low-dimensional
spaces, one which is compact and infinitely differentiable, but not analytic, and
one which is analytic and not compact. Can Turing machines be simulated by
an analytic function on a compact space?

I don’t believe so. However, to make such a claim well-defined, we have to
define how a discrete input is to be encoded into a point in R™, and how the
result of the dynamics is mapped back into “yes” or “no.” After all, even the
identity function is capable of computation if we do all the work in the encoding;:
just send all the “yes” inputs to 1, the “no” inputs to 0, iterate the identity map
a few times,! and ask whether # > 1/2 or not! Clearly such an encoding is
unreasonable; the problem is defining “reasonable” in a sufficiently general way,
which includes the digits of real numbers or integers as we do above, but excludes
absurdities like this one. We return to this question in Section 2.

In any case, we state the following;:

! Three or four should be sufficient.

Conjecture 2. No analytic function on a compact, finite-dimensional space can
simulate a Turing machine through a reasonable input and output encoding.

Note that we are not saying that all questions about the long-term behavior
of compact analytic dynamical systems are decidable! That would be a much
stronger claim.

How might this conjecture be proved? Turing machines generally have a
countably infinite number of fixed points and periodic points of each period,
while compact analytic maps can have only a finite or uncountable number. In
one dimension this creates a contradiction [14], since if f has an infinite number
of periodic points of period ¢, then f! must be the identity. However, no such
contradiction exists in more than one dimension, in which we can easily have a
continuum of fixed points without fixing the rest of the space.

It seems difficult to answer this question without a better understanding of
the dynamics of Turing machines: not just the relationship between their input
and output, but what happens in between; and not just what happens when
we start in a properly initialized state, but their global dynamics on arbitrary
infinite sequences. For instance, Petr Kurka [17] has conjectured the following:

Conjecture 3. Every Turing machine, as a dynamical system on the space of
bi-infinite sequences, has at least one periodic orbit.

For instance, if we place a Turing machine designed to increment a binary number
at the right end of an infinite string of 1’s, it will endlessly convert them to 0’s,
carrying a 1 forever to the left and making ---111.1000 - - - a fixed point.

Even this minimal conjecture seems very hard to prove. Perhaps the embed-
ding of generalized shifts as maps in the plane can help by re-phrasing it as a
purely geometrical question.

1.4 Genericity and structural stability

These embeddings of universal computation in low-dimensional maps and flows
are certainly interesting. But a physicist might well dismiss them unless they are
likely to actually occur in nature, and an engineer will do the same if they are
so sensitive to noise that they are impossible to build. So we should ask if any
of these systems are generic, i.e. if they have non-zero measure in some space of
maps or flows.

The strongest definition of genericity is structural stability. A map or flow
f is structurally stable if there exists an e such that, for all perturbations g of
norm less than e, the system f + g is topologically equivalent to f; that is, there
is a homeomorphism ¢ such that f +g = ¢~' o f o . Then there is a one-to-one
correspondence between the orbits and periodic points of the original system
and the perturbed system, so the system is surrounded by an open set in the
space of maps which are all equivalent to it.

Among other things, structural stability requires that the system’s Lyapunov
exponents be non-zero, so that nearby initial conditions diverge exponentially
from one another, with distance d; = e*:. In the Baker’s Map, this takes place

by continually stretching in the vertical direction. But this corresponds to a
linear bound on the position of the Turing machine’s head, moving it leftward
(or rightward) at a steady rate.

Turing machines that do a non-trivial computation spend a lot of time re-
visiting the same place on the tape, so that they move away from their initial
positions less than linearly, corresponding to a less-than-exponential divergence
of initial conditions. In [23], examples of generalized shifts are given where d; is
proportional to 2Vt and t™, both less than exponential. So similar to conjecture
3, we state the following:

Conjecture 4. Every Turing machine that accepts a non-reqular language has
trajectories such that the position x; of the Turing machine moves less than
linearly, lims_, oo ¢/t = 0.

This would imply that computationally powerful systems cannot be structurally
stable, at least if the encoding between Turing machines and points in R” is
anything like the Cantor set used above.

Guckenheimer and Holmes [12] point out that structural stability may be too
harsh a requirement for a “natural” system. For instance, it would disqualify the
Lorenz attractor. I still feel that these systems are genuinely fragile, and must
be perfectly tuned, and so are isolated in the space of maps:

Conjecture 5. No finite-dimensional system capable of universal computation
1s stable with respect to perturbations, or gemeric according to any reasonable
definition.

However, even their existence is an important negative result, in that it pre-
cludes any possibility of a complete classification or solution of any class of
low-dimensional maps or flows that includes them.

2 Real-time and resource-bounded computation

2.1 Dynamical recognizers

Undecidability and uncomputability is still an exciting idea to many physicists
and dynamicists. But most computer scientists long ago shifted their attention
from universal computation to feasible computation, where resources such as
time or memory are bounded to some function of the size of the input. Just
because a function is computable doesn’t mean we can compute it during the
lifetime of the universe.

As Papadimitriou points out [26], we have actually become more conservative
in our definition of feasibility as computing technology has improved — from
computability in the 30’s and 40’s, to the Grzegorczyk hierarchy of exponentials
in the 50’s, to polynomial-time computation and NP-completeness in the 60’s
and 70’s, to logarithmic parallel time in the 80’s and 90’s. Since Turing’s work of
1936 was interesting to physicists in 1990, it makes sense to try to import more
recent notions as well.

One of the strictest kinds of resource bound is real time. Here a computing
machine is fed an input from left to right, makes exactly one computation step
per symbol, and then is forced to give an answer immediately, without any
further computation.

This suggests a simple kind of analog computer, called a dynamical recognizer
[27]. For each symbol a in the input alphabet, let f, be a map from R™ to R™.
Then starting with an initial point ¢ € R, apply the maps fy,, fuw,, - - . for each
symbol of the input word w in turn. Using the shorthand fi, = fu | " fws furs
we end up at a point x, = fu(zo), which we think of as the encoding of w in
R™. Then we accept the word if z,, is in a particular subset Hyes C R".

We can define various classes of dynamical recognizers by restricting the maps
fa to a given class of functions, and requiring that Hyes be defined with inequal-
ities in the same class; for instance, Lin, PieceLin, Poly and Elem for lin-
ear, piecewise-linear, polynomial, and elementary (exponential and trigonomet-
ric) functions. We can also define non-deterministic classes NLin, NPieceLin,
NPoly and NElem where there are several choices of function f, for each sym-
bol, and we accept a word if a set of choices exists such that z,, lands in Hy.s.
We explore these classes in [25].

Dynamical recognizers are capable of many simple kinds of encoding. For
instance, if xg = 1/2, fo(z) = /2 and f,(z) = /2 + 1/2, then z,, is the point
in the center of the gap of the middle-thirds Cantor set corresponding to the
binary word w. Alternately, if zo = 0, fi(z) =3z + 1 and fo2(z) = 3z + 2, then
Ty 1S w written as an integer in base 3, which we write w. Thus both kinds of
encoding used in the computationally universal systems above can be expressed
this way. If we take this as our definition of “reasonable” encoding, then different
classes of dynamical recognizers represent encodings of varying power.

A dynamical recognizer in R" could also represent a synchronous, recurrent
neural network with n neurons. Such neural networks are being studied as models
of language recognition for regular [10], context-free [34], and context-sensitive
[33] languages, as well as fragments of natural language [9]; in [25], we show that
piecewise-linear and polynomial dynamical recognizers can have both stack-like
(last-in, first-out) and queue-like (first-in, first-out) memories. This suggests that
language might actually be understood in a dynamical, rather than grammatical
way. In this context, different classes of dynamical recognizers correspond to
different kinds of activation functions (piecewise-linear, quadratic, sigmoidal,
etc.) in the recurrent neural network.

3 Using VC dimension to prove lower bounds

Upper bounds on a problem’s complexity can be gotten simply by showing that
it can be solved with an algorithm in a given class. Lower bounds, on the other
hand, are few and far between in computer science; we have to somehow prove
that no algorithm in a given class will succeed in solving the problem. In this
section, we show one technique for proving such lower bounds.

Consider the language
L = {widwa¢- - - ¢wn$v | v = w; for some i}

where v and the w; are words over a binary alphabet {0,1}. This represents
a simple memory task: given a list of words w; and a word v, determine if v
was in the list. We will show that L is not in Poly or PieceLin, nor can it be
recognized in real time by a recurrent neural network with sigmoid or threshold
activations.

Note that L can be “programmed” to recognize any finite language. If u =
wy fwad - - - ¢w,, $ where wy, ..., w,, are all the words in a finite language L,,, then
uwv € L if and only if v € L,. Therefore, any recognizer for L contains recognizers
for all possible finite languages in its state space, in that it recognizes L, if we
use 1z, instead of x(as our initial point.

£OH

£y f C_I(Hyes)

Fig. 2. The family of sets f, *(Hyes) over all finite words v is independent.

A family of sets S = {S1, ..., Sp} is independent if all 2" possible intersections
of the S; and their complements are non-empty; in other words, if the S; overlap
in a Venn diagram. But since f,(z,) € Hyes if and only if v € Ly, 2, is in the
following intersection of sets:

Ty S (ﬂ fvl(Hyes)> N ﬂ fv_l(HyeS)

VELy V&L,

For instance, if a, b and c are binary words, then z,ug is in [(Hyes) and
£ (Hyes), but not in f,!(Hyes) as shown in figure 2. Since any such intersection
is therefore non-empty, the family of sets f,!(Hyes) is independent, where v
ranges over any finite set of words.

The Vapnik-Chervonenkis (VC) dimension of a family S of sets is the size of
its largest independent sub-family. Alternately, it is the size of the largest set X

of points which are shattered by S, meaning that for every subset Y C X, there
is some S € S such that X NS =Y. Thus a dynamical recognizer for L has to
achieve a VC dimension of 2" in n time-steps, since the sets f, ' (Hyes) for the
2™ different v of length n are all independent.

Goldberg [11] has shown that the VC dimension of a dynamical recognizer
whose maps are polynomials of any degree can only grow linearly with time, and
a similar argument works for piecewise-linear maps. So L is not in PieceLin or
Poly. Koiran and Sontag [16] have shown linear and quadratic upper bounds
on the VC dimension of recurrent neural networks with threshold and sigmoidal
activations respectively, so such networks also cannot recognize L in real time;
in fact, all of these would need exponential time to do so.

On the other hand, L is easily seen to be in NLin. As each w; comes in, we
choose whether to encode it into an integer w; as above, or ignore it; we then
encode v into an integer v and check that 7 = w;. As a corollary, Lin, PieceLin
and Poly are all properly contained in their non-deterministic counterparts [25].

L is also in the class Elem. By encoding words into integers w; and letting
f¢(x) =z + 2", we can encode the entire list into one huge integer z =), 2™
by the time we reach the §. Then the 2V digit of z is 1 if v = w; and 0 otherwise,
so we let Hyes require that sinw(z/2%) < 0 or cosw(z/2%) = —1, i.e. /27 €
[2k + 1,2k + 2) for some integer k. Here we’re using the fact that all the sets
S; = {z|sin2/z < 0} for j =0,1,2,... are independent, so the family {S;} has
infinite VC dimension.

In [25] we also show that a unary version of L

Lunary = {aP*¢aP?¢ - - - ¢aPm$a? | ¢ = p; for some i}

is in PieceLin and Poly but not Lin, since its VC dimension grows linearly.

Unfortunately, VC dimension arguments seem rather limited in their scope.
They cannot distinguish between polynomial maps of different degree, even
though there is strong evidence [25] that the classes Poly, of dynamical rec-
ognizers of degree k form a distinct hierarchy. Neither do they help us show that
a language is not in NLin or any other non-deterministic class.

3.1 Robustness to noise

If we push n binary symbols onto a stack represented by the digits of a real
number in the unit interval, then any perturbation greater than 27" in size
will destroy them. Thus although dynamical recognizers can in principle store
arbitrary stacks or queues of information, these are very fragile. In fact, using
different models of noisy recognition, Maass and Orponen [19] and Casey [5]
have shown that no compact dynamical recognizer can recognize arbitrarily long
strings of a non-regular language in the presence of non-zero noise.

However, we can ask how quickly the computation goes wrong; that is, to
what length we can correctly recognize a non-regular language in the presence
of a given amount of noise. Let DIGITS be the maximum number of digits in
a recognizer’s variables as a function of the input length n. If our variables are

rational and confined to the unit cube, and the system is exposed to noise of
size €, then words in a language in DIGITS(f(n)) will be correctly recognized
up to length n ~ f~(loge1).

The class LOGDIGITS = DIGITS(logn) is a good definition of robust
computation, analogous to the class LOGSPACE of languages recognizable by a
Turing machine with O(logn) memory. Its relationship between noise and length
is a power law, so we can double the length by dividing the noise by a constant.
It’s easy to show that n ~ e~ is the best that a d-dimensional recognizer can do,
so DIGITS(f(n)) contains only the regular languages if lim,,_, o, f(n)/logn =
0. Thus LOGDIGITS is the most robust class with interesting behavior.

In analogy to the space hierarchy theorem for Turing machines [13], we sug-
gest the following:

Conjecture 6. DIGITS(f(n)) is properly contained in DIGITS(g(n)) if
lim, o f(n)/g(n) =0 and if f(n) > clogn for some c.

It would also be nice (as always) to be able to prove lower bounds on DIGITS
for a given language.

3.2 Bounding the number of variables

The main difference between dynamical recognizers and the Blum-Shub-Smale
model of analog computation [3] is that their model can access an arbitrary
number of real variables, growing linearly with time, while dynamical recognizers
and recurrent neural networks have a fixed dimensionality.

This suggests using the number of variables as a resource bound. LOGVARS,
for example, would be the class of languages recognizable by an analog computer
whose dimensionality grows logarithmically with the input length. We could com-
bine this with time bounds as well, or restrict ourselves to the real-time case. I
think this is likely to be an interesting class.

4 Acknowledgements

I thank Cristian Calude and John Casti for inviting me to UMC ’98, Michael Din-
neen for his patience, and Spootie the Cat for her companionship, even though
her incessant washing made it difficult to catch much-needed sleep during the
writing of this paper. I also thank J. Felix Costa for noticing some mistakes.
This work was supported in part by NSF grant ASC-9503162.

References

1. E. Asarin, O. Maler and A. Pnueli, “Reachability analysis of dynamical systems
with piecewise-constant derivatives.” Theoretical Computer Science 138 (1995) 35-
66.

2. C. H. Bennett, “Logical Reversibility of Computation.” IBM J. Res. Develop. 17
(1973).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

. L. Blum, M. Shub, and S. Smale, “On a theory of computation and complexity over

the real numbers: NP-completeness, recursive functions and universal machines.”
Bull. Amer. Math. Soc. 21 (1989) 1-46.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth, “Learning and the
Vapnik-Chervonenkis dimension.” Journal of the ACM 36(4) (1989) 929-965.

M. Casey, “The dynamics of discrete-time computation, with application to re-
current neural networks and finite-state machine extraction.” Neural Computation
8:6 (1996)

G. Chaitin, “A theory of program size formally identical to information theory.” J.
Assoc. Comput. Mach. 22 (1975) 329-340; and “Algorithmic information theory.”
IBM J. Res. Develop. 21 (1977) 350-359.

J.H. Conway, “Unpredictable iterations.” In Proc. 1972 Number Theory University
of Colorado (1972) 49-52.

I.P. Cornfeld, S.V. Fomin, and Ya.G. Sinai. Ergodic Theory. Springer-Verlag, 1982.
J. Elman, “Language as a dynamical system.” In R.F. Port and T. van Gelder
(Eds.), Mind as Motion: Ezplorations in the Dynamics of Cognition. MIT Press,
1995.

C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, and Y.C. Lee, “Learning
and extracting finite-state automata with second-order recurrent networks.” Neural
Computation 2 (1992) 331-349

P.W. Goldberg and M.R. Jerrum, “Bounding the Vapnik-Chevonenkis dimension
of concept classes parametrized by real numbers.” Machine Learning 18 (1995)
131-148.

John Guckenheimer and Philip Holmes. Nonlinear Oscillations, Dynamical Sys-
tems and Bifurcations of Vector Fields. Springer-Verlag, 1983.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

P. Koiran, M. Cosnard, and M. Garzon, “Computability with low-dimensional
dynamical systems.” Theoretical Computer Science 132 (1994) 113-128.

P. Koiran and C. Moore, “Closed-form analytic maps in one and two dimensions
can simulate universal Turing machines.” Theoretical Computer Science 210 (1999)
217-223.

P. Koiran and E.D. Sontag, “Vapnik-Chervonenkis dimension of recurrent neural
networks.” To appear in Discrete Applied Math.

P. Kiurka, “On topological dynamics of Turing machines.” Theoretical Computer
Science 174 (1997) 203-216.

J.C. Lagarias, “The 3z +1 problem and its generalizations.” Amer. Math. Monthly
92 (1985) 3-23.

W. Maass and P. Orponen, “On the effect of analog noise in discrete-time analog
computations.” To appear in Proc. Neural Information Processing Systems (1996).
P. Michel, “Busy beaver competition and Collatz-like problems.” Arch. Math. Logic
32 (1993) 351-367.

Marvin Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
C. Moore, “Unpredictability and undecidability in dynamical systems.” Physical
Review Letters 64 (1990) 2354-2357

C. Moore, “Generalized shifts: unpredictability and undecidability in dynamical
systems.” Nonlinearity 4 (1991) 199-230.

C. Moore, “Smooth one-dimensional maps of the interval and the real line capable
of universal computation.” Santa Fe Institute Working Paper 93-01-001 (1993).
C. Moore, “Dynamical Recognizers: Real-time Language Recognition by Analog
Computers.” Theoretical Computer Science 201 (1998) 99-136.

26.
27.

28.

29.

30.

31.

32.

33.

34.

C.H. Papadimitriou, Computational Complezity. Addison-Wesley, 1994.

J. Pollack, “The Induction of Dynamical Recognizers.” Machine Learning 7 (1991)
227-252.

J.H. Reif, J.D. Tygar, and A. Yoshida, “The computability and complexity of opti-
cal beam tracing.” In Proc. 31st Annual Symposium on Foundations of Computer
Science (1990) 106-114.

H. Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967.

Yu.V. Rogozhin, “Seven universal Turing machines” (in Russian), Systems and
Theoretical Programming, Mat. Issled 69 (1982) 76-90, and “Small universal Turing
machines” (in English), Theoretical Computer Science 168 (1996) 215-240.

H. Siegelmann and E.D. Sontag, “On the Computational Power of Neural Nets.”
Journal of Computer and Systems Sciences 50 (1995) 132-150.

S. Smale, “Diffeomorphisms with many periodic points”, in Differential and Com-
binatorial Topology, S. S. Cairns, Ed. Princeton University Press, 1963, pp. 63-80.
M. Steijvers and P.D.G. Griinwald, “A recurrent network that performs a context-
sensitive prediction task.” NeuroCOLT Technical Report NC-TR-96-035 (1996),
and in Proceedings of the 18th Annual Conference of the Cognitive Science Society.
J. Wiles and J. Elman, “Learning to count without a counter: A case study of
dynamics and activation landscapes in recurrent networks.” Proceedings of the
17th Annual Conference of the Cognitive Science Society. MIT Press, Cambridge,
Massachusetts, 1995.

