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The Hidden Subgroup Problem

Given a function f(x), find the y such that

for all x.
Given a function f on a group G, find the 
subgroup H consisting of h such that

for all g.

f(x + y) = f(x)

f(gh) = f(g)



The Hidden Subgroup Problem

This captures many quantum algorithms: 
indeed, most algorithms which give an 
exponential speedup.

      : Simon’s problem
      : factoring, discrete log (Shor)
     : Pell’s equation (Hallgren)

What can the non-Abelian HSP do?
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Graph Isomorphism

Define a function f on       .  If both graphs 
are rigid, then either f is 1–1 and                , 
or f is 2–1 and                       for some 
involution m (of a particular type).

?

H = {1}
S2n

H = {1, m}



Standard Method: Coset States

Start with a uniform superposition,

Measuring f gives a random coset of H:

or, if you prefer, a mixed state:
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The Fourier Transform

We now perform a basis change.  In      ,

and in      ,

Why?  Because these are homomorphisms 
from G to    .  These form a basis for            
with many properties (e.g. convolution)
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Group Representations

Homomorphisms from groups to matrices:

For instance, consider                               
this three-dimensional                     
representation of      .
Any representation can be             
decomposed into a direct sum                         
of irreducible representations.   
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Heartbreaking Beauty

Given a “name”    and a 
row and column i, j,

Miraculously, these form an 
orthogonal basis for          :
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Given a state in          and a group element g,   
we can apply various group actions: 

We can think of          as a representation of G 
under any of these actions.
Under (left or right) multiplication, the regular 
representation contains      copies of each           .

Group Actions

C[G]

|x〉 → |xg〉 or

∣∣g−1
x
〉
or

∣∣g−1
xg

〉

C[G]

dσ σ ∈ Ĝ



For most group families, the QFT can be 
carried out efficiently, in polylog(|G|) steps  
[Beals 1997; Høyer 1997; M., Rockmore, Russell 2004] 

Weak sampling: just the name
Strong sampling: name, row and column           
in a basis of our choice (some bases may be 
much more informative than others)
Intermediate: strong, but with a random basis

Levels of Measurement
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The mixed state over (left) cosets 

is left G-invariant, hence block-diagonal.
Measuring the irrep name (weak sampling) 
loses no coherence.
Strong sampling is the only thing left to do!

Fourier Sampling is Optimal
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For each irrep   , we have a projection operator

The probability we observe     is

Compare with the Plancherel distribution         
(               , the completely mixed state)

Projections and Probabilities
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If                     , we have    (                           )

In      ,                    is exponentially small, so the 
observed distribution is very close to Plancherel
Weak sampling fails [Hallgren, Russell, Ta-Shma 2000]

Random basis fails [Grigni, Schulman, Vazirani, Vazirani 2001]

But, strong is stronger for some G... [MRRS 2004]

Weak Sampling Fails
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But what about a basis of our choice?  Given   , 
we observe a basis vector b with probability

Here we have

How much does                vary with m?

Now for Strong Sampling
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Expectation of an irrep     over m’s conjugates is 

so

To turn the second moment into a first moment,

Controlling the Variance
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Decompose             into irreducibles:

Then 

How much of              lies in low-dimensional   ?

Controlling the Variance
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Using simple counting arguments, we show that 
almost all of              lies in high-dimensional 
subspaces     of            .

Since                   is exponentially small, the 
observed distribution on     for any basis is 
exponentially close to uniform.

No subexponential set of experiments on coset 
states can solve Graph Isomorphism.                
[M., Russell, Schulman 2005]
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For any group, there exists a measurement on 
the tensor product of coset states

with                                [Ettinger, Høyer, Knill 1999] 

What can we prove about entangled 
measurements?

Entangled Measurements
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Weak sample each register, observing 

Given a subset I of the k registers, decompose 
that part of the tensor product:

This group action multiplies these registers by 
g and leaves the others fixed.

Bounds on Multiregister Sampling
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Second moment: analogous to one register,  
consider             .  Given subsets I and J, define

For an arbitrary entangled basis, [M., Russell 2005]

Bounds on Multiregister Sampling
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With some additional work, this general bound 
can be used to show that                    registers 
are necessary for       [Hallgren, Rötteler, Sen; M., Russell]

But what form might this measurement take?

Note that each subset of the registers 
contributes some information...

Bounds on Multiregister Sampling
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The HSP in the dihedral group       reduces to 
random cases of Subset Sum [Regev 2002]

Leads to a                  -time and -register 
algorithm [Kuperberg 2003]

Subset Sum gives the optimal multiregister 
measurement [Bacon, Childs, van Dam 2005]

Subset Sum and the Dihedral Group
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If                      , there is a missing harmonic:

Weak sampling gives random two-dimensional 
irreps      ; think of these as integers       .

Tensor products:

Find subset that gives                     .

More Abstractly...
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Suppose H has a missing harmonic   .

For each subset I, consider the subspace     
resulting from applying the group action to I.  
(In      , this flips the integers j in this subset.) 

If the hidden subgroup is a conjugate of H, 
then the state is perpendicular to        for all I.

How much of             does this leave?  What 
fraction is spanned by the       ?

Subsets in General
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Say that two subspaces V, W of a space U are 
independent if, just as for random vectors in U,

or equivalently

Being in V or W are “independent events.”

Independent Subspaces
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For           ,        and        are independent.

Therefore,                             is large:

If                      , probability of “some subset 
being in    ” is             if the hidden subgroup is 
trivial, but is zero if it is a conjugate of H.     
[M., Russell 2005]

Each Subset Contributes
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Divide            into subspaces; for each one, find 
a subset I for a large fraction of the completely 
mixed state is in       : e.g.                     in      .

“Pretty Good Measurement” (i.e., Subset Sum 
for      ) is optimal for Gel’fand pairs... [MR 2005] 

...but it is not optimal for       [Childs].  What is?  
And, is it related to Subset Something?

Find An Informative Subset!
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The Hunt Continues

The AdversaryBeauty and Truth

vs.
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