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The Hidden Subgroup Problem
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e G1ven a function f(x), find the y such that
flz+y) = f(z)
for all x.

e Given a function f on a group G, find the
subgroup H consisting of /4 such that

f(gh) = f(9)
for all g.



The Hidden Subgroup Problem
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> This captures many quantum algorithms:
indeed, most algorithms which give an
exponential speedup.

° Zo : Simon’s problem
¢ 7., : factoring, discrete log (Shor)
e 7 : Pell’s equation (Hallgren)

c What can the non-Abelian HSP do?



Graph Isomorphism
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° Define a function f on .S5,,. If both graphs
are rigid, then either fis 1-1 and H = {1},
or fis 2-1 and H = {1, m} for some
involution m (of a particular type).
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Standard Method: Coset States
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° Start with a uniform superposition,
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> Measuring f gives a random coset of H:
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or, if you prefer, a mixed state:
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The Fourier Transform
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> We now perform a basis change. In Z,,,

eo 1 2mikx /n
ol

and in Z7%,

k) = <= 3 (1)

° Why? Because these are homomorphisms
from G to C. These form a basis for C|G]
with many properties (e.g. convolution)



Group Representations
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° Homomorphisms from groups to matrices:
og:G—U(V)

¢ For 1nstance, consider
this three-dimensional
representation of As.

> Any representation can be
decomposed into a direct sum
of irreducible representations.




Heartbreakmg Beauty
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° Given a “name” p and a
row and column i, j,

¢ Miraculously, these form an
orthogonal basis for C|G]

g = (G
aE@




Group Actions
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¢ Given a state in C|G| and a group element g,
we can apply various group actions:

) — |xg)or|g~ ) or |g” xg)

> We can think of C|G] as a representation of G
under any of these actions.

> Under (left or right) multiplication, the regular
representation contains d, copies of each o € G.



[ evels of Measurement
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> For most group families, the QFT can be

carried out efficiently, in polylog(IGl) steps
[Beals 1997; Hayer 1997; M., Rockmore, Russell 2004]

° Weak sampling: just the name o

o Strong sampling: name, row and column o, 7, j
in a basis of our choice (some bases may be
much more informative than others)

° Intermediate: strong, but with a random basis



Fourier Sampling 1s Optimal
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> The mixed state over (left) cosets

0= cH) (cH|
el Z

ceG
1s left G-invariant, hence block-diagonal.

> Measuring the irrep name (weak sampling)
loses no coherence.

= Strong sampling 1s the only thing left to do!




Projections and Probabilities
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¢ For each 1rrep o, we have a projection operator

dU\H|rk7Tj‘LI

d2
¢ Compare with the Plancherel distribution ——

(H = {1}, the completely mixed state) G|



Weak Samphng Fails
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o [f H = {1,m}, we have (Xa(g) i tra(g))
do Xo (M)
k7, = — (14
K7y 5 ( do- >

e In S,,, Xo(m)/d, is exponentially small, so the
observed distribution 1s very close to Plancherel

> Weak sampling fails [Hallgren, Russell, Ta-Shma 2000]
¢ Random basis fails [Grigni, Schulman, Vazirani, Vazirani 2001 ]
> But, strong 1s stronger for some G... [MRRS 2004]



Now for Strong Sampling
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¢ But what about a basis of our choice? Given o,
we observe a basis vector b with probability

|7abl|”

l"kﬂ'H

1
: Here we have ||mybl|” = 5(1 + (b, mb))

< How much does (b, mb) vary with m?



Controlling the Variance
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> Expectation of an irrep o over m’s conjugates 1s

S (m)

1
do

Exp,.o(m)

Xo (M)
da

> To turn the second moment into a first moment,

(b, mb)|” = (b® b*, m(b ® b*))

so Exp, (b, mb) =



Controlling the Variance
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> Decompose o ® ¢ into irreducibles:

0@0*%@%7‘

o C/;\
Then

2

32 1 XT(m) 0'®0'* >k
Var,, |mub|® < Z - HHT (b ® b*)
TG

> How much of b ® b™ lies in low-dimensional 77



Strong Samphng Fails
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o Using simple counting arguments, we show that
almost all of b ® b* lies in high-dimensional
subspaces T of 0 ® o

¢ Since x-(m)/d, is exponentially small, the
observed distribution on b for any basis is
exponentially close to uniform.

> No subexponential set of experiments on coset

states can solve Graph Isomorphism.
[M., Russell, Schulman 2005]



Entangled Measurements
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° For any group, there exists a measurement on
the tensor product of coset states

D et
k

with k£ = pOlY(lOg ‘GD [Ettinger, Hgyer, Knill 1999]

° What can we prove about entangled
measurements?



Bounds on Multiregister Sampling
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> Weak sample each register, observing
O—=01Q" -0k

° (G1ven a subset I of the k registers, decompose
that part of the tensor product:

®oi= Poair

el TE@

¢ This group action multiplies these registers by
g and leaves the others fixed.



Bounds on Multiregister Sampling
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> Second moment: analogous to one register,
consider o ® o*. Given subsets I and J, define

| 2

EI,J(b) e Z XTd(m) HH{_,J(b R b*)
TE@ 5

° For an arbitrary entangled basis, [M., Russell 2005]
e I.J
Vary [Mgbl? < = " EM(b)
1,JC[Kk]:I,J#0



Bounds on Multiregister Sampling
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e With some additional work, this general bound
can be used to show that 2(nlogn) registers
are necessary for .S, [Hallgren, Rotteler, Sen; M., Russell]

> But what form might this measurement take?

> Note that each subset of the registers
contributes some information...



Subset Sum and the Dihedral Group
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¢ The HSP 1n the dihedral group D,, reduces to
random cases of Subset Sum [Regev 2002]

o Leads to a 29V1°8™) _time and -register
algorithm [Kuperberg 2003]

> Subset Sum gives the optimal multiregister
measurement [Bacon, Childs, van Dam 2005]



More Abstractly...
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« If H = {1, m}, there is a missing harmonic:

) m(h) =

he H

° Weak sampling gives random two-dimensional
irreps o ; think of these as integers = .

¢ Tensor products: 0; ® oy

> Find subset that gives o

Y

>

Oj+k D Oj—k

16 .



Subsets 1n General
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> Suppose H has a missing harmonic 7.

> For each subset I, consider the subspace W;.’
resulting from applying the group action to /.
(In D, this flips the integers j in this subset.)

¢ If the hidden subgroup 1s a conjugate ot H,
then the state is perpendicular to WW? for all 1.

> How much of C[G*] does this leave? What
fraction 1s spanned by the W;_’ i



Independent Subspaces
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> Say that two subspaces V, W of a space U are
independent 1t, just as for random vectors in U,

dim W
dim U 14
or equivalently 7~ v

tr Hvﬂw tr HV tr HW /

dmU  dimU dimU

2
EXPUEV HHWUH i

> Being in V or W are “independent events.”



Each Subset Contributes
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e For I # J, Wf and WTJ are independent.

o Therefore, W, = span; W is large:

dim W s 1
dim C[G*] — 1+ 2F/|G]

o If k > log, |G|, probability of “some subset
being in 77 is > 1/2 if the hidden subgroup is

trivial, but is zero 1f 1t 1s a conjugate of H.
[M., Russell 2005]



Find An Informative Subset!
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> Divide C[G*] into subspaces; for each one, find
a subset [ for a large fraction of the completely
mixed state is in W': e.g. 00 = 1 ® 7 in D,,.

> “Pretty Good Measurement” (1.e., Subset Sum
for D,,) 1s optimal for Gel’tand pairs... [MR 2005]

o ...but it is not optimal for S,, [childs]. What is?
And, 1s 1t related to Subset Something?



The Hunt Continues
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