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IT not a curious fact that in a world
Fsteeped in irrational hatreds which
threaten civilization itself, men and
women—old and young—detach them-
selves wholly or partly from the angry
current of daily life to devote themselves
to the cultivation of beauty, to the exten-
sion of knowledge, to the cure of disease,
to the amelioration of suffering, just as
though fanatics were not simultaneously
engaged in spreading pain, ugliness, and
suffering?
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Caesar’s cipher

Shift each letter three places in the alphabet:

A|B|C[D|E|S S|wW|X|Y|Z

DIE|F|G|HI|S S|z|A|B|C

Plaintext: ET TU BRUTE

Ciphertext: HW WX EUXWH

To decode, just shift backwards

26 possibilities
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Art number 45

The Kama Sutra recommends that women learn the art
of secret writing, to help them conceal their liaisons

A|B|C[D|E|S S|wW|X|Y|Z

Z|TIQIX[H|S SIN|C|K[M

Plaintext: MEET ME BY THE BANYAN TREE
Ciphertext: AHHL AH TK LBH TZSWZS LGHH

To decode, look up the letters in the scrambled alphabet

206x25x24...3x2x1 = 403,291,461,126,605,635,584,000,000 possibilities



Cracking the code
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Cracking the code

The most common lettersare E, T, A, O, |, N
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Cracking the code

The most common lettersare E, T, A, O, |, N

Doubled letters: LL, EE, SS, OO
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Cracking the code

The most common lettersare E, T, A, O, |, N

Doubled letters: LL, EE, SS, OO

Digrams: letter pairs like QU that go together
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Cracking the code

The most common lettersare E, T, A, O, |, N
Doubled letters: LL, EE, SS, OO
Digrams: letter pairs like QU that go together

Punctuation and spaces help a lot
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Jefferson’s cylinder

Each disk does a different scramble: the secret key is the
order of the disks
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The enigma machine
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The enigma machine

Each letter changes the cipher, affecting
the rest of the code, in a different way

......

Turing was a quite brilliant mathematician,
most famous for his work on breaking the German
Enigma codes. It is no exaggeration to say that, without
his outstanding contribution, the history of the Second
World War could have been very different.... The debt of
gratitude he is owed makes it all the more horrifying,
therefore, that he was treated so inhumanely. | am
pleased to have the chance to say how deeply sorry
| and we all are for what happened to him.
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plaintext: {10064 |1]0|3
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True security—but at a cost

One-time pad:

plaintext: (110|064 1|03

pad: |[114|1]5|/9|2|6|5

ciphertext: 1214 (1]1|3(3|6|8| note: add mod 10 (no carries!)

If the pad is truly random, the ciphertext is random too:
No pattern that the codebreaker can discover

But never use the same pad twice!

Must share one digit of pad for every digit of message,
and must do this in a physically secure way.
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What we need is a method where every letter affects every other letter:
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“x mod N” is the remainder when we divide x by N:

for instance, x mod 10 is x’s 1s digit

6+5 mod 10 =1

11+3 mod 12 =2
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Cyclic arithmetic

“x mod N” is the remainder when we divide x by N:
for instance, x mod 10 is x’s 1s digit

6+5 mod 10 =1

11+3 mod 12 =2

24+3 mod 26 = 1: Y=B

multiplication mod 5: 2x3 = 1

A~ w2 X

A WO =

W = B DN

N ~r =2 WOW

— N W H~|Ph



Cyclic arithmetic

“x mod N” is the remainder when we divide x by N:
for instance, x mod 10 is x’s 1s digit

6+5 mod 10 =1

11+3 mod 12 = 2

24+3 mod 26 = 1: Y=B

multiplication mod 5: 2x3 = 1

75,764 mod 1,000 = 764
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RSA public-key encryption

Alice’s public key: e=3, N=1,000

To send Alice m=413, Bob encrypts it as

413° = 413x413x413 = 70,444,997

Only Alice knows that if we raise the
encrypted message to the 67th power,

she gets the original message m back! caveat. m must be odd
and not a multiple of 5

997°7 =
817665373962643786759813699247646158630785787528904568618228
11772191993279453137/3761406228949504304/16744619902823768572
754836451383036420378360358129864380547637845421151481946569
591385634343038032413
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RSA public-key encryption

Alice’s public key: e=3, N=1000

Her private key: d=67

Can we crack her code?

Can we get d from e and N?

We can do this if we can factor N,
break it down into a product of prime
numbers: 2, 3,5, 7,11, 13, 17, 19...

For instance, 1000 = 2x2x2x5x5x5



—asy In one direction...



—asy In one direction...

Multiplying is easy



—asy In one direction...

Multiplying is easy

We have an algorithm that multiplies n-digit numbers
in about nxn = n? time



—asy In one direction...

Multiplying is easy

We have an algorithm that multiplies n-digit numbers
in about nxn = n? time

1 2 3
3 2 1

= |<©
N



—asy In one direction...

Multiplying is easy

We have an algorithm that multiplies n-digit numbers
in about nxn = n? time

Multiplication is in the class P of problems that can
be solved in polynomial time
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...but hard in the other

Is 267-1 = 147,573,952,588,676,412,927 a prime?

No, because it’s 193707721x 761838257287

Factoring is in the class NP of
problems where we can check
a solution in polynomial time...

...but that doesn’t mean
we can find one!

We believe (but don’t know)
that factoring n-digit numbers
takes exponential time
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...but exponentials explode

21’1

1,048,576

1,073,741,824

total:
18,446,744,073,709,551,615

'9r@. .’\
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Until the end of the world
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Chancy computations

The usual kind of computation looks like this:

A randomized computation looks like this:

Each path has a probability

The total probability of getting the right answer
Is the sum of the probabilities of the paths that
lead there

. o
wrong right wrong

Some of our best algorithms work this way! answer answer answer

(Like telling whether or not a number is prime)



—nter the quantum

Probability is a number between 0 and 1; different possibilities add up

But waves have both amplitude and phase: they can add or cancel
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The two-slit experiment
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“light is possessed of opposite qualities, capable of

1801:
neutralising or destroying each other.”

Thomas Young,

We see this even with one electron at a time! Even one particle is like a wave
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In two places at once

There are two paths the electron can take
to each location

If these paths have the same “phase”,
the paths add, and the probabillity is high

If they have opposite phase, they cancel

You can get to x’ from A or B—and you
never show up there at all!

|dea of quantum computation: probability
adds up at the right answer, cancels out
at the wrong ones

v
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t: 0 1 2 3 45 6 7 8
2001 2 4 8 1 2 4 8 1
16—1=15
4°—-1°=15 X —y*=(x—y)x+y)

(4—1)x(4+1)=15
Ix5=15



Shor’s factoring algorithm

Take the powers of some number x mod N, and see when this
sequence repeats: 1, x, x2, x5...

For instance, to factor N = 15, look at the powers of 2:

t: 0 1 2 3 45 6 7 8
2001 2 4 8 1 2 4 8 1
16—1=15
4°—-1°=15 X —y*=(x—y)x+y)

(4—1)x(4+1)=15
Ix5=15

But if the list of powers is very long, how can we tell when it repeats?
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Hearing the harmonies

Fourier analysis breaks a signal down into a sum of frequencies

A quantum algorithm can pick out the frequencies in a sequence of numbers,
even if it’s exponentially long!

This means they can factor large numbers...

and break RSA cryptography
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What next?

Are there cryptosystems that even
guantum computers can’t break?

Are there problems that even
guantum computers can’t solve?
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A set of possible messages, with large differences between
every pair of possibilities

o] f[o o 0 1 1 1 1
1
1 [1 01 0 1 0 1

-
—d
—
-
-
ot
ot

Every combination is at least 4 bits different from every other one:

If any one bit gets flipped, we can fix it ©
C C
A crystal of codewords: in high dimensions, finding the
closest one is NP-hard—a needle in a haystack ©
e
But for some special codes, we can do this quickly © ©
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The McEliece cryptosystem

Alice has an error-correcting code in which
she can correct errors easily

She publishes a scrambled version of it,
twisting and turning the crystal in order to
make it look unfamiliar

Bob composes his message in the
scrambled code, adds some noise,
and sends it

Removing Bob’s noise is hard for an
eavesdropper (we hope), but easy for Alice
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Can we unscramble the code”?

Even if we know Alice’s internal code, how can we tell how she scrambled it?

Similar: can | rearrange these nodes to turn one network into the other?

We don’t know how to solve this problem on classical computers...
What about quantum ones?
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Fearful symmetry

Emmy Noether: physics is about symmetry

Einstein: symmetries of space-time are not what
Galileo thought they were

Periodicity is symmetry: shift and it stays the same

Higher-dimensional symmetries:
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Can quantum computers detect the symmetries of these graphs —
the rearrangements that turn them into each other?
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Scramblings of codes or networks are permutations

We can “multiply” them, but xy # yx

1 2 3 1 2 3
1 2 3 1 2 3
2 3 1 3 1 2
2 3 1 3 1 2

Like a Rubik’s cube: order of rotations matters
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From permutations to rotations

Every group of permutations can be represented by rotations and reflections in
a high-dimensional space

Permute the five colors:




The bad (or good, depending) news



The bad (or good, depending) news

The ways Alice can scramble her code correspond to rotations and reflections
in a very (exponentially!) high-dimensional space



The bad (or good, depending) news

The ways Alice can scramble her code correspond to rotations and reflections
in a very (exponentially!) high-dimensional space

If we try to use a method like Shor’s, the algorithm “gets lost” in these spaces



The bad (or good, depending) news

The ways Alice can scramble her code correspond to rotations and reflections
in a very (exponentially!) high-dimensional space

If we try to use a method like Shor’s, the algorithm “gets lost” in these spaces

Any quantum measurement we try to do gives nearly the same result
no matter what scrambling Alice used...



The bad (or good, depending) news

The ways Alice can scramble her code correspond to rotations and reflections
in a very (exponentially!) high-dimensional space

If we try to use a method like Shor’s, the algorithm “gets lost” in these spaces

Any quantum measurement we try to do gives nearly the same result
no matter what scrambling Alice used...

...S0 we learn next to nothing about how to crack her code
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What does this mean??

To show that we can crack a code, one algorithm is enough

But to prove that we can’t, we have to reason about all possible algorithms

Factoring, and breaking RSA, might be easy for classical computers:
maybe we just haven’t been clever enough to think of an algorithm!
(We’ve been surprised before.)

But any quantum algorithm that breaks the McEliece cryptosystem would
have to use completely new ideas...
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If Eve measures Alice’s message, this disturbs it in a way
that Alice and Bob can detect

If their message got through without being intercepted,
they can use it as a secret key [Bennett and Brassard, 1984]
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Alice, Bob, and Eve

If Eve measures Alice’s message, this disturbs it in a way
that Alice and Bob can detect

If their message got through without being intercepted,
they can use it as a secret key [Bennett and Brassard, 1984]

144 km between the Canary Islands, and over 300 km of
optical fiber: bank transfers and election results in Geneva
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The first transistor looked like this:

Now they look like this:
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S0, can we build them?

The first transistor looked like this:

Now they look like this:
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The first integrated circuit looked like this:
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S0, can we build them?

We are rapidly gaining an ability to manipulate
single atoms

Quantum computation is delicate: we need
strong interactions in order to compute,
but we have to avoid stray interactions that
“measure” and destroy the quantum state

This is challenging, but not impossible:
simple quantum devices are now being built

It will take a while for this...

To turn into this
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Cristopher Moore & Stephan Mertens

www.nature-of-computation.org

To put it bluntly: this book rocks! It somehow

manages to combine the fun of a popular

book with the intellectual heft of a textbook.
Scott Aaronson, MIT

This is, simply put, the best-written book on
the theory of computation | have ever read,;
one of the best-written mathematical books |
have ever read, period.

Cosma Shalizi, Carnegie Mellon


http://www.nature-of-computation.org

