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IT not a curious fact that in a world

steeped in irrational hatreds which

threaten civilization itself, men and

women-old and young-detach them-

selves wholly or partly from the angry

current of daily life to devote themselves

to the cultivation of beauty, to the exten-

sion of knowledge, to the cure of disease,

to the amelioration of suffering, just as

though fanatics were not simultaneously

engaged in spreading pain, ugliness, and

suffering? The world has always been a

sorry and confused sort of place-yet

poets and artists and scientists have ig-

nored the factors that would, if attended

to, paralyze them. From a practical

point of view, intellectual and spiritual

life is, on the surface, a useless form of

activity, in which men indulge because

they procure for themselves greater satis-

factions than are otherwise obtainable.

In this paper I shall concern myself with

the question of the extent to which the

pursuit of these uselesssatisfactions proves

unexpectedly the source from which un-

dreamed-of utility is derived.

We hear it said with tiresome iteration

that ours is a materialistic age, the main

concern of which should be the wider
distribution of material goods and worldly

opportunities. The justified outcry of

those who through no fault of their own

are deprived of opportunity and a fair

share of worldly goods therefore diverts

an increasing number of students from

the studies which their fathers pursued to

the equally important and no less urgent

study of social, economic, and govern-

mental problems. I have no quarrel

with this tendency. The world in which

we live is the only world about which our

senses can testify. Unless it is made a

better world, a fairer world, millions

will continue to go to their graves

silent, saddened, and embittered. I

have myself spent many years pleading

that our schools should become more

acutely aware of the world in which

their pupils and students are destined to

pass their lives. Now I sometimes won-

der whether that current has not become

too strong and whether there would be

sufficient opportunity for a full life if

the world were emptied of some of the

useless things that give it spiritual sig-

nificance; in other words, whether our

conception of what .is useful may not

have become too narrow to be adequate

to the roaming and capricious possibili-

ties of the human spirit.

We may look at this question from two

points of view: the scientific and the

humanistic or spiritual. Let us take the

scientific first. I recall a conversation

which I had some years ago with Mr.

George Eastman on the subject of use.

Mr. Eastman, a wise and gentle far-

seeing man, gifted with taste in music

and art, had been saying to me that he

meant to devote his vast fortune to the

promotion of education in useful sub-

jects. I ventured to ask him whom he

regarded as the most useful worker in
science in the world. He replied in-

stantaneously: "Marconi." I surprised

him by sayin~, "Whatever pleasure we
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Caesar’s cipher

Shift each letter three places in the alphabet:


Plaintext:     ET TU BRUTE

Ciphertext:  HW WX EUXWH

To decode, just shift backwards

26 possibilities

A B C D E

D E F G H

W X Y Z

Z A B C
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The Kama Sutra recommends that women learn the art                                                
of secret writing, to help them conceal their liaisons


Plaintext:     MEET ME BY THE BANYAN TREE

Ciphertext:  AHHL AH TK LBH TZSWZS LGHH

To decode, look up the letters in the scrambled alphabet

26×25×24...3×2×1 = 403,291,461,126,605,635,584,000,000 possibilities

Art number 45

A B C D E

Z T Q X H

W X Y Z

N C K M
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Cracking the code

The most common letters are E, T, A, O, I, N

Doubled letters: LL, EE, SS, OO

Digrams: letter pairs like QU that go together

Punctuation and spaces help a lot 

JNN YBMF NK R HNNW JFQXH QU INXWDEKBG
JOO YBMF OK R HOOW JFQXH QU IOXWDEKBG
TOO YBMF OK R HOOW TFQXH QU IOXWDEKBG
TOO YBMF OF A HOOW TFIXH IS IOXWDEFBG
TOO YBMH OF A GOOD THING IS IONDDEFBG
TOO MUCH OF A GOOD THING IS WONDERFUL

Al-Kindi, 801-873
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The enigma machine

Each letter changes the cipher, affecting 
the rest of the code, in a different way

Turing was a quite brilliant mathematician, 
most famous for his work on breaking the German 

Enigma codes. It is no exaggeration to say that, without 
his outstanding contribution, the history of the Second 
World War could have been very different.... The debt of 
gratitude he is owed makes it all the more horrifying, 
therefore, that he was treated so inhumanely.  I am 

pleased to have the chance to say how deeply sorry 
I and we all are for what happened to him.



True security—but at a cost



True security—but at a cost

One-time pad:




True security—but at a cost

One-time pad:


1 0 0 6 4 1 0 3plaintext:



True security—but at a cost

One-time pad:


1 0 0 6 4 1 0 3plaintext:

1 4 1 5 9 2 6 5pad:



True security—but at a cost

One-time pad:


note: add mod 10 (no carries!)

1 0 0 6 4 1 0 3plaintext:

1 4 1 5 9 2 6 5pad:

2 4 1 1 3 3 6 8ciphertext:



True security—but at a cost

One-time pad:


note: add mod 10 (no carries!)2 4 1 1 3 3 6 8ciphertext:



True security—but at a cost

One-time pad:


note: add mod 10 (no carries!)

1 4 1 5 9 2 6 5pad:

2 4 1 1 3 3 6 8ciphertext:



True security—but at a cost

One-time pad:


note: add mod 10 (no carries!)

1 0 0 6 4 1 0 3plaintext:

1 4 1 5 9 2 6 5pad:

2 4 1 1 3 3 6 8ciphertext:



True security—but at a cost

One-time pad:


If the pad is truly random, the ciphertext is random too: 
No pattern that the codebreaker can discover

note: add mod 10 (no carries!)

1 0 0 6 4 1 0 3plaintext:

1 4 1 5 9 2 6 5pad:

2 4 1 1 3 3 6 8ciphertext:



True security—but at a cost

One-time pad:


If the pad is truly random, the ciphertext is random too: 
No pattern that the codebreaker can discover

But never use the same pad twice!

note: add mod 10 (no carries!)

1 0 0 6 4 1 0 3plaintext:

1 4 1 5 9 2 6 5pad:

2 4 1 1 3 3 6 8ciphertext:



True security—but at a cost

One-time pad:


If the pad is truly random, the ciphertext is random too: 
No pattern that the codebreaker can discover

But never use the same pad twice!

Must share one digit of pad for every digit of message, 
and must do this in a physically secure way.

note: add mod 10 (no carries!)

1 0 0 6 4 1 0 3plaintext:

1 4 1 5 9 2 6 5pad:

2 4 1 1 3 3 6 8ciphertext:
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Cyclic arithmetic

“x mod N” is the remainder when we divide x by N: 
for instance, x mod 10 is x’s 1s digit

6+5 mod 10 = 1

11+3 mod 12 = 2

24+3 mod 26 = 1: Y⇒B

multiplication mod 5: 2×3 = 1

75,764 mod 1,000 = 764

1
2
3
4

1 2 3 4
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
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RSA public-key encryption

Alice’s public key: e=3, N=1,000

To send Alice m=413, Bob encrypts it as

Only Alice knows that if we raise the 
encrypted message to the 67th power, 
she gets the original message m back!

4133 = 413×413×413 = 70,444,997

99767 = 
817665373962643786759813699247646158630785787528904568618228
117721919932794531373761406228949504304716744619902823768572
754836451383036420378360358129864380547637845421151481946569
591385634343038032413

caveat: m must be odd 
and not a multiple of 5
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RSA public-key encryption

Alice’s public key: e=3, N=1000

Her private key: d=67

Can we crack her code? 

Can we get d from e and N?

We can do this if we can factor N, 
break it down into a product of prime 
numbers: 2, 3, 5, 7, 11, 13, 17, 19...

For instance, 1000 = 2×2×2×5×5×5
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3 9 4 8 3

3 6 9

2 4 6

1 2 3

× 3 2 1

1 2 3

n

n

n 2

FIGURE 2.4: The grade-school algorithm for multiplication, which takes Θ(n 2) time to multiply n-digit
integers.

Of course, on a digital computer we would operate in binary instead of decimal, writing x = 2n/2a +b and
so on, but the principle remains the same.

This approach lets us reduce the problem of multiplying n-digit integers to that of multiplying several
pairs of n/2-digit integers. We then reduce this problem to that of multiplying n/4-digit integers, and so
on, until we get to integers so small that we can look up their products in a table. We assume for simplicity
that n is even at each stage, but rounding n/2 up or down makes no difference when n is large.

What running time does this approach give us? If we use (2.3) as our strategy, we calculate four prod-
ucts, namely a c , a d , b c , and b d . Adding these products together is much easier, since the grade-school
method of adding two n-digit integers takes just O(n ) time. Multiplying an integer by 10n or 10n/2 is also
easy, since all we have to do is shift its digits to the left and add n or n/2 zeros. The running time T (n )
then obeys the equation

T (n ) = 4T (n/2)+O(n ) . (2.4)

If T (n ) scales faster than linearly, then for large n we can ignore the O(n ) term. Then the running time
is dominated by the four multiplications, and it essentially quadruples whenever n doubles. But as Prob-
lem 2.13 shows, this means that it grows quadratically, T (n ) = Θ(n 2), just like the grade-school method.
So we need another idea.

The key observation is that we don’t actually need to do four multiplications. Specifically, we don’t
need a d and b c separately—we only need their sum. Now note that

(a +b )(c +d )−a c −b d = a d +b c . (2.5)

Therefore, if we calculate (a + b )(c + d ) along with a c and b d , which we need anyway, we can obtain
a d +b c by subtraction, which like addition takes just Θ(n ) time. Using this trick changes (2.4) to

T (n ) = 3T (n/2)+O(n ) . (2.6)

Now the running time only triples when n doubles, and using Problem 2.13 gives

T (n ) =Θ(nα) where α= log2 3≈ 1.585.

So, we have tightened our upper bound on the complexity of multiplication from O(n 2) to O(n 1.585).
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Multiplying is easy 

We have an algorithm that multiplies n-digit numbers 
in about n×n = n2 time


Multiplication is in the class P of problems that can 
be solved in polynomial time
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Now the running time only triples when n doubles, and using Problem 2.13 gives

T (n ) =Θ(nα) where α= log2 3≈ 1.585.

So, we have tightened our upper bound on the complexity of multiplication from O(n 2) to O(n 1.585).
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Polynomials don’t grow too badly as n grows...



...but exponentials explode

n = 1 n = 3
2n

n = 4n = 2

18, 446, 744, 073, 709, 551, 615

1, 048, 576

1, 073, 741, 824

total:
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FIGURE 2.5: Running times of algorithms as a function of the size n . We assume that each one can solve
an instance of size n = 1 in one microsecond. Note that the time axis is logarithmic.

Euler
input: a graph G = (V, E )
output: “yes” if G is Eulerian, and “no” otherwise
begin

y := 0 ;
for all v ∈V do

if deg(v ) is odd then y := y +1;
if y > 2 then return “no”;

end
return “yes”

end

FIGURE 2.6: Euler’s algorithm for EULERIAN PATH. The variable y counts the number of odd-degree vertices.

2.4.2 Details, and Why they Don’t Matter

In the Prologue we saw that Euler’s approach to EULERIAN PATH is much more efficient than exhaustive
search. But how does the running time of the resulting algorithm scale with the size of the graph? It turns
out that a precise answer to this question depends on many details. We will discuss just enough of these
details to convince you that we can and should ignore them in our quest for a fundamental understanding
of computational complexity.
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Chancy computations

The usual kind of computation looks like this:

A randomized computation looks like this:

Each path has a probability

The total probability of getting the right answer 
is the sum of the probabilities of the paths that 
lead there

Some of our best algorithms work this way! 
(Like telling whether or not a number is prime)

input

right 
answer

wrong 
answer

wrong 
answer



Enter the quantum

Probability is a number between 0 and 1; different possibilities add up


But waves have both amplitude and phase: they can add or cancel
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Thomas Young, 1801: “light is possessed of opposite qualities, capable of 
neutralising or destroying each other.”


We see this even with one electron at a time!  Even one particle is like a wave
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FIGURE 15.3: Constructive and destructive interference in the double-slit experiment. The phase of the
electron rotates with time, so the phase of each path depends on its length. The two paths leading to x
arrive with the same phase, so the electron has a large probability of hitting the screen there. The two
paths leading to x ′ arrive with opposite phases, so they cancel and the total probability the electron hits
the screen at that point is zero.

Decoherence helps explain why the world of our everyday experience looks classical rather than quan-
tum. Quantum states are fragile. When they are allowed to interact with large, blundering objects like hu-
mans, detectors, or even stray electromagnetic waves, their phases quickly randomize, and they collapse
into classical probability distributions. To build a quantum computer, we have to create a physical system
where every interaction is carefully controlled—where the states within the computer interact strongly
with each other, without becoming decohered by stray interactions with their environment. Clever peo-
ple are performing amazing feats of physics and engineering in pursuit of this goal. This chapter is about
what problems we can solve if they succeed.

15.2 States and Operators

In the classical world, we analyze our computers not in terms of physical quantities like voltages and
currents, but in terms of the logical quantities—the bits—they represent. In the same way, to get from
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never show up there at all!

Idea of quantum computation: probability 
adds up at the right answer, cancels out 
at the wrong ones
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Shor’s factoring algorithm

Take the powers of some number x mod N, and see when this 
sequence repeats: 1, x, x2, x3...

For instance, to factor N = 15, look at the powers of 2:


But if the list of powers is very long, how can we tell when it repeats?
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Fourier analysis breaks a signal down into a sum of frequencies

A quantum algorithm can pick out the frequencies in a sequence of numbers, 
even if it’s exponentially long!

This means they can factor large numbers...

and break RSA cryptography
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A set of possible messages, with large differences between  
every pair of possibilities


Every combination is at least 4 bits different from every other one: 
if any one bit gets flipped, we can fix it 

A crystal of codewords: in high dimensions, finding the       
closest one is NP-hard—a needle in a haystack

But for some special codes, we can do this quickly
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The McEliece cryptosystem

Alice has an error-correcting code in which 
she can correct errors easily 

She publishes a scrambled version of it, 
twisting and turning the crystal in order to 
make it look unfamiliar

Bob composes his message in the 
scrambled code, adds some noise,        
and sends it

Removing Bob’s noise is hard for an 
eavesdropper (we hope), but easy for Alice
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Can we unscramble the code?

Even if we know Alice’s internal code, how can we tell how she scrambled it?

Similar: can I rearrange these nodes to turn one network into the other?


We don’t know how to solve this problem on classical computers…            
What about quantum ones?

THE TALE OF ARTHUR AND MERLIN 503

FIGURE 11.1: Are these two graphs isomorphic?

FIGURE 11.2: Merlin giving Arthur sage advice.
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Scramblings and symmetries

Scramblings of codes or networks are permutations 

We can “multiply” them, but xy ≠ yx


Like a Rubik’s cube: order of rotations matters

THE TALE OF ARTHUR AND MERLIN 503

FIGURE 11.1: Are these two graphs isomorphic?

FIGURE 11.2: Merlin giving Arthur sage advice.
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From permutations to rotations

Every group of permutations can be represented by rotations and reflections in 
a high-dimensional space

Permute the five colors:

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

886 QUANTUM COMPUTATION

Figure 15.9: A three-dimensional representation of A5, the group of even-parity permutations of 5 objects.
See if you can tell how to simultaneously switch two pairs of colors.

Sadly, all this machinery doesn’t give us what we want. While the general approach of generating
a coset state and measuring it in the Fourier basis does solve the HIDDEN SUBGROUP problem for some
families of nonabelian groups, it fails for Sn . The situation is even worse than that. It can be shown
that there is no measurement at all that we can do on the coset state (15.37) which will distinguish an
isomorphic pair of graphs from a non-isomorphic pair. Specifically, no matter what measurement we do,
the probability distribution of the outcomes we get in these two cases are exponentially close, so it would
take an exponential number of experiments to distinguish them.

Some hope yet remains. It is known that if we have many copies of the coset state—that is, the tensor
product of many |ψ〉s, where each one is a superposition over a randomly-chosen coset—then there is
a measurement which tells us whether the two graphs are isomorphic or not. However, this measure-
ment must be highly entangled. In other words, rather than an independent series of measurements on
the |ψ〉s, it is a complicated joint measurement along a basis where each basis vector corresponds to an
entangled state.

However, while we can write this measurement down mathematically, we do not know how, or if, it
can be carried out efficiently, i.e., by a quantum circuit with a polynomial number of gates. At the time
we write this, nearly every proposed family of algorithms has been proved to fail. Our current intuition
is that, if there is a quantum algorithm for GRAPH ISOMORPHISM, it doesn’t work by reducing to HIDDEN

SUBGROUP first.
15.20
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The bad (or good, depending) news

The ways Alice can scramble her code correspond to rotations and reflections 
in a very (exponentially!) high-dimensional space

If we try to use a method like Shor’s, the algorithm “gets lost” in these spaces

Any quantum measurement we try to do gives nearly the same result              
no matter what scrambling Alice used...

...so we learn next to nothing about how to crack her code
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To show that we can crack a code, one algorithm is enough

But to prove that we can’t, we have to reason about all possible algorithms

Factoring, and breaking RSA, might be easy for classical computers:        
maybe we just haven’t been clever enough to think of an algorithm!                
(We’ve been surprised before.)

But any quantum algorithm that breaks the McEliece cryptosystem would   
have to use completely new ideas...
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Alice, Bob, and Eve

If Eve measures Alice’s message, this disturbs it in a way 
that Alice and Bob can detect

If their message got through without being intercepted,   
they can use it as a secret key [Bennett and Brassard, 1984]

144 km between the Canary Islands, and over 300 km of 
optical fiber: bank transfers and election results in Geneva
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Quantum computation is delicate: we need 
strong interactions in order to compute,      
but we have to avoid stray interactions that 
“measure” and destroy the quantum state

This is challenging, but not impossible:  
simple quantum devices are now being built

It will take a while for this...

To turn into this



Shameless Plug	

To put it bluntly: this book rocks! It somehow 
manages to combine the fun of a popular 
book with the intellectual heft of a textbook.


Scott Aaronson, MIT


This is, simply put, the best-written book on 
the theory of computation I have ever read; 
one of the best-written mathematical books I 
have ever read, period. 


Cosma Shalizi, Carnegie Mellon
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