
P vs. NP,
Phase Transitions,
and Incomputability in the Wild

Cristopher Moore
Santa Fe Institute

Monday, June 18, 2012

An analogy

A set S is decidable if there is an algorithm* A(x) that runs in finite time,
such that

A set S is recursively enumerable (RE) if there is an algorithm A(x,w) that runs
in finite time such that

e.g. a Turing machine x halts if there is an integer t such that x halts after t steps.
A(x,t) runs x for t steps and checks that x halts.

*you know what I mean.

x ∈S ⇔ A(x) = 1

x ∈S ⇔ ∃w : A(x , w) = 1

Monday, June 18, 2012

An analogy

A set S is in P if there is an algorithm A(x) that runs in poly(n) = O(nc) time
(where n is the length of x) such that

A set S is in NP if there is an algorithm A(x,w) that runs in poly(n) time,
such that

e.g. a graph x is Hamiltonian if there is a tour w that visits each vertex once.
A(x,w) checks that w is a Hamiltonian tour of x.

Note asymmetry! There is an easy proof if the
answer is “yes”, but not necessarily if it is “no”

x ∈S ⇔ A(x) = 1

x ∈S ⇔ ∃w : A(x , w) = 1

6 PROLOGUE

FIGURE 1.5: Left, the dodecahedron; right, a flattened version of the graph formed by its edges. One
Hamiltonian cycle, which visits each vertex once and returns to its starting point, is shown in bold.

we say that a graph is Hamiltonian if it possesses a Hamiltonian cycle. One such cycle for the dodecahe-
dron is shown in Figure 1.5.

At first Hamilton’s puzzle seems very similar to the bridges of Königsberg. Eulerian paths cross each
edge once, and Hamiltonian paths visit each vertex once. Surely these problems are not very different?
However, while Euler’s theorem allows us to avoid a laborious search for Eulerian paths or cycles, we have
no such insight into Hamiltonian ones. As far as we know, there is no simple property—analogous to
having vertices of even degree—to which Hamiltonianness is equivalent.

As a consequence, we know of no way of avoiding, essentially, an exhaustive search for Hamiltonian
paths. We can visualize this search as a tree as shown in Figure 1.6. Each node of the tree corresponds to
a partial path, and branches into child nodes corresponding to the various ways we can extend the path.
In general, the number of nodes in this search tree grows exponentially with the number of vertices of
the underlying graph, so traversing the entire tree—either finding a leaf with a complete path, or learning
that every possible path gets stuck—takes exponential time.

To phrase this computationally, we believe that there is no program, or algorithm, that tells whether
a graph with n vertices is Hamiltonian or not in an amount of time proportional to n , or n 2, or any poly-
nomial function of n . We believe, instead, that the best possible algorithm takes exponential time, 2c n for
some constant c > 0. Note that this is not a belief about how fast we can make our computers. Rather, it
is a belief that finding Hamiltonian paths is fundamentally harder than finding Eulerian ones. It says that
these two problems differ in a deep and qualitative way.

While finding a Hamiltonian path seems to be hard, checking whether a given path is Hamiltonian
is easy. Simply follow the path vertex by vertex, and check that it visits each vertex once. So if a compu-
tationally powerful friend claims that a graph has a Hamiltonian path, you can challenge him or her to

Monday, June 18, 2012

P: we can find a solution efficiently

NP: we can check a solution efficiently: tilings, tours, proofs...

Needles in haystacks

Monday, June 18, 2012

Do we need to search?INTRACTABLE ITINERARIES 7

FIGURE 1.6: The first two levels of the search tree for a Hamiltonian path.
Monday, June 18, 2012

P vs. NP
180 THE DEEP QUESTION: P VS. NP

The question is, how fast does ϕ(n) grow for an optimal machine. One can show that ϕ(n)≥
K n . If there actually were a machine with ϕ(n)∼ K n (or even only ϕ(n)∼ K n 2), this would
have consequences of the greatest magnitude. That is to say, it would clearly indicate that,
despite the unsolvability of the Entscheidungsproblem, the mental effort of the mathemati-
cian in the case of yes-or-no questions could be completely replaced by machines (footnote:
apart from the postulation of axioms). One would simply have to select an n large enough
that, if the machine yields no result, there would then be no reason to think further about the
problem.

If our mathematical language has an alphabet of k symbols, then the number of possible proofs of length
n is N = k n . Even excluding those which are obviously nonsense leaves us with a set of exponential size.
As Gödel says, we can solve SHORT PROOF in polynomial time—in our terms, P= NP—precisely if we can
do much better than exhaustive search (in German, dem blossen Probieren, or “mere sampling”) among
these N possibilities:

ϕ ∼ K n (or ∼ K n 2) means, simply, that the number of steps vis-à-vis exhaustive search can
be reduced from N to log N (or (logN)2).

Can SHORT PROOF really be this easy? As mathematicians, we like to believe that we need to use all the
tools at our disposal—drawing analogies with previous problems, visualizing and doodling, designing
examples and counterexamples, and making wild guesses—to find our way through this search space
to the right proof. But if P = NP, finding proofs is not much harder than checking them, and there is a
polynomial-time algorithm that makes all this hard work unnecessary. As Gödel says, in that case we can
be replaced by a simple machine.

Nor would the consequences of P = NP be limited to mathematics. Scientists in myriad fields spend
their lives struggling to solve the following problem:

ELEGANT THEORY

Input: A set E of experimental data and an integer n given in unary

Question: Is there a theory T of length n or less that explains E ?

For instance, E could be a set of astronomical observations, T could be a mathematical model of plane-
tary motion, and T could explain E to a given accuracy. An elegant theory is one whose length n , defined
as the number of symbols it takes to express it in some mathematical language, is fairly small—such as
Kepler’s laws or Newton’s law of gravity, along with the planets’ masses and initial positions.

Let’s assume that we can compute, in polynomial time, what predictions a theory T makes about the
data. Of course, this disqualifies theories such as “because God felt like it,” and even for string theory this
computation seems very difficult. Then again, if we can’t tell what predictions a theory makes, we can’t
carry out the scientific method anyway.

With this assumption, and with a suitable formalization of this kind, ELEGANT THEORY is in NP. There-
fore, if P = NP, the process of searching for patterns, postulating underlying mechanisms, and forming
hypotheses can simply be automated. No longer do we need a Kepler to perceive elliptical orbits, or a
Newton to guess the inverse-square law. Finding these theories becomes just as easy as checking that
they fit the data.

Let ϕ(n) be the time it takes to tell if a proof of length n or less exists. . .

Monday, June 18, 2012

The diagonal argument

The problem Halt(Π,x) of telling whether a program Π will halt on input x canʼt be
decidable...

since if it were we could run the following program:

and would halt if and only if it wouldn’t.

But Halt is RE, so

Trouble(Trouble)

Trouble(Π)
if Π(Π)will ever halt, then loop forever
else halt

DECIDABLE⊂RE .

Monday, June 18, 2012

The diagonal argument in bounded time

We can’t predict whether or not Π(Π) will halt within t steps, with fewer than
t steps of computation...

since if we could we could run the following program:

and would halt if and only if it wouldn’t.

But a universal program can simulate t steps of Π in s(t) steps, so if g ≪ f,

Troublet (Π)
if Π(Π)will halt in t or fewer steps, then loop forever
else halt

Troublet (Troublet)

TIME(g (n))⊂ TIME(s (f (n)) .
 TMs: s(t) = O(t log t)
RAMs: s(t) = O(t)

Monday, June 18, 2012

The time hierarchy theorem

This proves [Hartmanis and Stearns, 1965]

Similar theorems for SPACE, NTIME, SPACE... can compare apples to apples

But can a similar argument separate P and NP?

We can’t seem to diagonalize P within NP — but perhaps some other type of
diagonalization will work?

Sadly, no...

TIME(n)⊂ TIME(n 2)⊂ TIME(n 2.001)⊂ · · ·⊂ P⊂ EXPTIME⊂ · · ·

Monday, June 18, 2012

Oracles and relativization

We can consult an oracle for a set A,
asking her yes-or-no questions

PA is the class of problems we can solve
in polynomial time, with her help

NPA is the class of problems where we can check solutions in polynomial time,
with her help

[Baker, Gill, Solovay 1975]: there exist oracles A, B such that

PA =NPA but PB �=NPB

188 THE DEEP QUESTION: P VS. NP

FIGURE 6.3: The King of Athens receiving advice from Pythia, the Oracle of Delphi.

levels deep as we like. As we showed in Section 6.1.1, in this case we can absorb any constant number of
quantifiers, and P includes the entire polynomial hierarchy.

If you like, PSAT is what P would be if we were given a supply of magic boxes that solve SAT problems.
These boxes are black, and we can’t take them apart and look at them. But if we can build these boxes
out of earthly components, and nest them inside each other, then P= NP and the polynomial hierarchy
collapses.

To make this more precise, suppose we are trying to verify a statement of the following form:

∀x1,x2, . . . ,xn : ∃y1, y2, . . . , yn :φ(x1, . . . ,xn , y1, . . . , yn) . (6.4)

Is this problem in PNP? That is, can we solve it in polynomial time if we have access to a SAT oracle? For
each truth assignment x1, . . . ,xn , we can ask her whether there is an assignment y1, . . . , yn such that φ is
true. But since there are 2n ways to set the xi , we would have to call on her an exponential number of
times. We would like to ask her the question “is there an assignment x1, . . . ,xn such that you will say no?”
But that would be asking the oracle a question about herself, and that’s cheating.

Thus we believe that PNP is smaller than Π2P, the level of the polynomial hierarchy where problems
like (6.4) live. Specifically, Problem 6.11 shows that

PNP ⊆Σ2P∩Π2P .

Monday, June 18, 2012

I can win if there exists a move for me,

such that for all of your replies,

there exists a move for me...

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

PLAYING CHESS WITH GOD 9

Sam Loyd (1903)

80Z0ZrZbZ
7ZpZ0Z0A0
6pM0ZpS0Z
5SBZ0j0Z0
40O0ZNZ0o
3Z0o0Z0a0
2nZ0O0o0s
1Z0Z0ZKZn

a b c d e f g h

Mate in 3

Lewis Stiller (1995)

80Z0Z0ZNZ
7Z0Z0ZKS0
60ZnZ0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20ZnZ0Z0Z
1ZkZ0Z0Z0

a b c d e f g h

Mate in 262

Figure 1.7: Chess problems are hard to solve—and hard to check.

inexorably to checkmate after n moves. On the left, n = 3, and seeing how to corner Black—after a very
surprising first move—is the work of a pleasant afternoon. On the right, we have a somewhat larger value
of n : we claim that White can force Black into checkmate after 262 moves.

But how, dear reader, can we prove this claim to you? Unlike the problems of the previous two sec-
tions, we are no longer playing solitaire: we have an opponent, who will do their best to win. This means
that it’s not enough to prove the existence of a simple object like a Hamiltonian path. We have to show
that there exists a move for White, such that no matter how Black replies, there exists a move for White,
such that no matter how Black replies, and so on. . . until, at most 262 moves later, every possible game
ends in checkmate for Black. As we go forward in time, our opponent’s moves cause the game to branch
into a exponential tree of possibilities, and we have to show that a checkmate awaits at every leaf. Thus a
strategy is a much larger object, with a much deeper logical structure, than a path.

There is indeed a proof, consisting of a massive database of endgames generated by a computer
search, that White can mate Black in 262 moves in the position of Figure 1.7. But verifying this proof
far exceeds the capabilities of human beings, since it requires us to check every possible line of play. The
best we can do is look at the program that performed the search, and convince ourselves that it will run
correctly. As of 2007, an even larger search has confirmed the long-standing opinion of human players
that Checkers is a draw under perfect play. For humans with our finite abilities, however, Chess and
Checkers will always keep their secrets. 1.5

Logical hierarchies

Monday, June 18, 2012

A powerful oracle

188 THE DEEP QUESTION: P VS. NP

FIGURE 6.3: The King of Athens receiving advice from Pythia, the Oracle of Delphi.

levels deep as we like. As we showed in Section 6.1.1, in this case we can absorb any constant number of
quantifiers, and P includes the entire polynomial hierarchy.

If you like, PSAT is what P would be if we were given a supply of magic boxes that solve SAT problems.
These boxes are black, and we can’t take them apart and look at them. But if we can build these boxes
out of earthly components, and nest them inside each other, then P= NP and the polynomial hierarchy
collapses.

To make this more precise, suppose we are trying to verify a statement of the following form:

∀x1,x2, . . . ,xn : ∃y1, y2, . . . , yn :φ(x1, . . . ,xn , y1, . . . , yn) . (6.4)

Is this problem in PNP? That is, can we solve it in polynomial time if we have access to a SAT oracle? For
each truth assignment x1, . . . ,xn , we can ask her whether there is an assignment y1, . . . , yn such that φ is
true. But since there are 2n ways to set the xi , we would have to call on her an exponential number of
times. We would like to ask her the question “is there an assignment x1, . . . ,xn such that you will say no?”
But that would be asking the oracle a question about herself, and that’s cheating.

Thus we believe that PNP is smaller than Π2P, the level of the polynomial hierarchy where problems
like (6.4) live. Specifically, Problem 6.11 shows that

PNP ⊆Σ2P∩Π2P .

Adding poly(n) quantifiers to P gives the class

Let A be a PSPACE-complete problem, such as Quantified SAT:

NPA is PA with another ∃. This just gives another instance of A, so

PSPACE= ∃∀∃ · · ·P

∃x1 :∀y1 : ∃x2 : · · · :∀yn :φ(x1, y1,x2, . . . , yn)

PA =NPA .

Monday, June 18, 2012

A random oracle

For each n=0, 1, 2, ... flip a coin

If Heads, choose a random string sn of length n:
The oracle likes sn, dislikes all others of length n

If Tails, the oracle dislikes all strings of length n

Haystack(n): is there a string of length n that the oracle likes?

In NPB, since if the answer is “yes” we can prove it by asking her about sn

But (with probability 1) not in PB, since we have no hope of finding sn among
the 2n possibilities in only poly(n) time.

PB �=NPB .

Monday, June 18, 2012

A barrier to resolving the P vs. NP question

Since P vs. NP has different answers in different “possible worlds”...

...no proof technique that relativizes (works in the presence of oracles) can
resolve it either way

includes diagonalization, and also ideas like exhaustive search:

“syntactic” manipulations of programs are not enough

NP⊆ EXPTIME , NTIME(f (n))⊆ TIME(2O(f (n)))

Monday, June 18, 2012

Another barrier: natural proofs

We would like to say that a function f is outside a complexity class C if f is
“too complicated”

But if “complicatedness” is

common — i.e. random functions are complicated

constructive — it is fairly easy to compute from f’s truth table

then this leads to a contradiction if C contains pseudorandom functions...

...and we think P does!

Defeats most known techniques in circuit complexity: random restrictions,
Fourier methods, etc. [Razborov and Rudich, 1994]

Further generalized to “algebrization” [Aaronson and Wigderson, 2009]

Monday, June 18, 2012

Phase transitions in NP-complete problems

3-SAT: Boolean variables

Constraints

Is there a truth assignment for that satisfies the entire formula, i.e.,
all the constraints?

A classic NP-complete problem: any problem in NP can be reduced
(translated) to it

If we can solve it in polynomial time, then P=NP

x1, . . . , xn

(x1 ∨ x3 ∨ x6) ∧ (x3 ∨ x4 ∨ x17) ∧ · · ·

x1, . . . , xn

Monday, June 18, 2012

AND

OR

NOT

AND

x1 x2

z

Any program that tests solutions
(e.g. Hamiltonian paths) can be
“compiled” into a Boolean circuit

The circuit outputs “true” if an input
solution works

Is there a set of values for the inputs
that makes the output true?

Satisfying a circuit

Monday, June 18, 2012

The condition that each AND or OR gate
works, and the output is “true,”
can be written as a Boolean formula:

AND

OR

NOT

AND

x1 x2

z

y1

y2

y3

From circuits to formulas

Add variables representing the truth values
of the wires

(x1 ∨ y1) ∧ (x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1)
∧ · · · ∧ z .

Monday, June 18, 2012

Phase transitions in NP-complete problems

NP-completeness is a worst-case notion

3-SAT is hard because hard instances exist...

...and we assume instances are designed by a clever adversary (cruel world!)

What if the constraints are chosen randomly instead?

As we add more constraints, more contradictions arise...

Monday, June 18, 2012

A transition from solvability to unsolvability

When the density of constraints is too high, we can no longer satisfy all of them

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

728 WHEN FORMULAS FREEZE

DPLL
input: a SAT formula φ
output: isφ satisfiable?
begin

if φ is empty then return true;
if φ contains an empty clause then return false;
select an unset variable x ;
if DPLL(φ[x =true]) = “yes” then return true;
if DPLL(φ[x =false]) = “yes” then return true;
return false;

end

Figure 14.1: The DPLL backtracking search algorithm.

0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7
α

Pr
[s

at
is

fi
ab

le
]

Figure 14.2: The probability that a random 3-SAT formula F3(n , m) is satisfiable as a function of the clause
density α=m/n , for various values of n . The sample size varies from 106 for n = 10 (light dots) to 104 for
n = 100 (dark dots).

Monday, June 18, 2012

Where the hard problems are

Search times are highest at the boundary

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

EXPERIMENTS AND CONJECTURES 729

101

102

103

104

105

1 2 3 4 5 6 7 8
α

D
P

LL
ca

lls

Figure 14.3: Number of recursive calls of DPLL on random 3-SAT formulas as a function of α = m/n .
Here n = 100. Light and dark dots represent satisfiable and unsatisfiable instances. Note that the y -axis
is logarithmic.

14.1.2 Backtracking and Search Times

We can also ask about the running time of DPLL on these random formulas. How long does it take to
either find a satisfying assignment, or confirm that none exists?

DPLL is actually a family of algorithms. Each has a different branching rule that determines which
variable to set next and which truth value to give it first. For instance, if φ contains a unit clause—a
clause with a single variable, (x) or (x)—then we should immediately set x to whichever value this clause
demands. As we saw in Section 4.2.2, this unit clause propagation rule is powerful enough to solve 2-SAT
in polynomial time. In our experiments we use a slight generalization called the short clause rule: choose
a clause c from among the shortest ones, and choose x randomly from c ’s variables.

DPLL’s running time is essentially the number of times it calls itself recursively, or the number of
nodes of the search tree it explores. How does this depend on α? As Figure 14.3 shows, when α is small
enough DPLL finds a satisfying assignment with little or no backtracking. Intuitively, this is because
each clause shares variables with just a few others, so there are few conflicts where satisfying one clause
dissatisfies another one. In this regime, DPLL sets each variable once and only rarely reconsiders its
decisions, and its running time is linear in n .

Monday, June 18, 2012

Clustering, freezing, and hardness

At a certain density, solutions break up into clusters

These clusters become frozen — many variables take a fixed value

If a search algorithm sets any of these variables wrong, it’s doomed

A rugged landscape, with many local optima to get stuck in

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

FROZEN VARIABLES AND HARDNESS 795

αclust αcond αrigid αc

Figure 14.30: A refined phase diagram of random k -SAT. Gray blobs represent frozen clusters, i.e., those
where Θ(n) variables take fixed values. Above αrigid almost all clusters are frozen, and we believe this is
responsible for the average-case hardness of random k -SAT.

clause renders this instance unsatisfiable with finite probability. Therefore we haveαc <α+ε for any ε > 0,
a contradiction.

But even if there are no variables that are frozen in all solutions, we could certainly have variables frozen
within a cluster. Let’s say that a variable xi is frozen in a cluster C if xi takes the same value in every
solution in C , and call a cluster frozen if it has κn frozen variables for some constant κ> 0.

Intuitively, these frozen clusters spell doom for local algorithms. Image aDPLL algorithm descending
into its search tree. With every variable it sets, it contradicts any cluster in which this variable is frozen
with the opposite value. If every cluster is frozen, then it contradicts a constant fraction of them at each
step, until it has excluded every cluster from the branch ahead. This forces it to backtrack, taking expo-
nential time.

It’s also worth noting that if the clusters are a Hamming distance δn apart, then the DPLL algorithm
is limited to a single cluster as soon as it reaches a certain depth in the search tree. Once it has set (1−δ)n
variables, all the assignments on the resulting subtree are within a Hamming distance δn of each other,
so they can overlap with at most one cluster. If any of the variables it has already set are frozen in this
cluster, and if it set any of them wrong, it is already doomed.

Recent rigorous results strongly suggest that this is exactly what’s going on. In addition to the other
properties of clusters established by Theorem 14.5 at densities above (2k /k) lnk , one can show that al-
most all clusters have κn frozen variables for a constant κ > n . Specifically, if we choose a cluster with
probability proportional to its size, then it has κn frozen variables with high probability. Equivalently, if
we choose a uniformly random satisfying assignment, then with high probability there are κn variables
on which it agrees with every other solution in its cluster.

Conversely, it can be shown that algorithms based on setting one variable at a time using BP messages
fail in this frozen region. But in a recent breakthrough, an algorithm was discovered which works at
densities up to (1− εk)(2k /k) lnk where εk → 0 as k →∞. Thus for large k , it seems that algorithms end
precisely where the frozen phase begins.

For large k , clustering and freezing take place at roughly the same density. In constrast, for small k
they are widely separated, which explains why some algorithms can probe deep into the clustered phase.
Figure 14.30 shows a refined picture of random k -SAT that includes frozen clusters. The freezing transi-
tion is defined by the point αrigid where the number of unfrozen clusters drops to zero.

14.22For finite k we can determine the freezing point αrigid numerically using Survey Propagation. A frozen
variable corresponds to BP messages µi→a (x) = δ(x) or µi→a (x) = δ(1− x), demanding that i take a par-

[Achlioptas, Coja-Oghlan, Krzakala, Mezard, Molloy, Montanari, Moore, Ricci-Tersenghi, Zdeborová , Zecchina...]

Monday, June 18, 2012

Clustering, freezing, and hardness

We believe that the “freezing” transition marks where the problem becomes hard

All known algorithms for k-SAT stop working at or below αrigid ~ 2k log k / k

Hard, but satisfiable, instances up to αc ~ 2k log 2

Can this be made into a proof that P≠NP?

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

FROZEN VARIABLES AND HARDNESS 795

αclust αcond αrigid αc

Figure 14.30: A refined phase diagram of random k -SAT. Gray blobs represent frozen clusters, i.e., those
where Θ(n) variables take fixed values. Above αrigid almost all clusters are frozen, and we believe this is
responsible for the average-case hardness of random k -SAT.

clause renders this instance unsatisfiable with finite probability. Therefore we haveαc <α+ε for any ε > 0,
a contradiction.

But even if there are no variables that are frozen in all solutions, we could certainly have variables frozen
within a cluster. Let’s say that a variable xi is frozen in a cluster C if xi takes the same value in every
solution in C , and call a cluster frozen if it has κn frozen variables for some constant κ> 0.

Intuitively, these frozen clusters spell doom for local algorithms. Image aDPLL algorithm descending
into its search tree. With every variable it sets, it contradicts any cluster in which this variable is frozen
with the opposite value. If every cluster is frozen, then it contradicts a constant fraction of them at each
step, until it has excluded every cluster from the branch ahead. This forces it to backtrack, taking expo-
nential time.

It’s also worth noting that if the clusters are a Hamming distance δn apart, then the DPLL algorithm
is limited to a single cluster as soon as it reaches a certain depth in the search tree. Once it has set (1−δ)n
variables, all the assignments on the resulting subtree are within a Hamming distance δn of each other,
so they can overlap with at most one cluster. If any of the variables it has already set are frozen in this
cluster, and if it set any of them wrong, it is already doomed.

Recent rigorous results strongly suggest that this is exactly what’s going on. In addition to the other
properties of clusters established by Theorem 14.5 at densities above (2k /k) lnk , one can show that al-
most all clusters have κn frozen variables for a constant κ > n . Specifically, if we choose a cluster with
probability proportional to its size, then it has κn frozen variables with high probability. Equivalently, if
we choose a uniformly random satisfying assignment, then with high probability there are κn variables
on which it agrees with every other solution in its cluster.

Conversely, it can be shown that algorithms based on setting one variable at a time using BP messages
fail in this frozen region. But in a recent breakthrough, an algorithm was discovered which works at
densities up to (1− εk)(2k /k) lnk where εk → 0 as k →∞. Thus for large k , it seems that algorithms end
precisely where the frozen phase begins.

For large k , clustering and freezing take place at roughly the same density. In constrast, for small k
they are widely separated, which explains why some algorithms can probe deep into the clustered phase.
Figure 14.30 shows a refined picture of random k -SAT that includes frozen clusters. The freezing transi-
tion is defined by the point αrigid where the number of unfrozen clusters drops to zero.

14.22For finite k we can determine the freezing point αrigid numerically using Survey Propagation. A frozen
variable corresponds to BP messages µi→a (x) = δ(x) or µi→a (x) = δ(1− x), demanding that i take a par-

Monday, June 18, 2012

XORSAT

Use XOR (addition mod 2) instead of OR:

Random instances have many of the same properties as 3-SAT: clustering
and freezing (at the same density) and then a transition to unsatisfiability

But XORSAT is easy! Just linear equations:

x1 ⊕ x2 ⊕ x3 = 1
x1 ⊕ x2 ⊕ x4 = 0
x2 ⊕ x3 ⊕ x4 = 1




1 1 1 0
1 1 0 1
0 1 1 1



 ·





x1

x2

x3

x4



 =




1
0
1





Monday, June 18, 2012

XORSAT

How is XORSAT like SAT, and how is it different?

Clustering: local search algorithms can’t move through the space, and
hill-climbing algorithms get stuck in local optima

Freezing: backtracking algorithms (Davis-Putnam) take exponential time,
repeatedly setting frozen variables the wrong way

But Gaussian elimination is a global rearrangement of variables and
constraints, letting us turn a hard-looking problem into an easy one

If SAT has a similar kind of rearrangement — something totally different from
backtracking or local search — then P=NP

Proving that it doesn’t is hard!

Monday, June 18, 2012

The road ahead

It seems unlikely that P vs. NP is formally independent since it is almost first-order:

Consider the statement “For all n ≥ 1000, there is no circuit of size nlog n that solves all
SAT formulas of length n” [Ben-David & Halevi, Aaronson]

Sophisticated approaches from algebraic geometry have been suggested [Mulmuley]

The most hopeful view: we will eventually prove that P≠NP...

...but we will be forced to build a lot of new mathematics in the process!

Monday, June 18, 2012

Problems in the gap

To prove that a problem A is undecidable, we usually reduce Halting to it:

But there are undecidable problems to which Halting can’t be reduced:
“easier” than (or at least different from) than Halting [Friedberg-Muchnik]

If P≠NP, there are problems that are outside P, but not NP-complete [Ladner]

Candidates: Factoring, Graph Isomorphism, Shortest Lattice Vector

Could “naturally occurring” problems live in this middle ground?

Claim: problems equivalent to Halting are easy (to think about, not to solve!)

HALTING≤ A

Monday, June 18, 2012

The condition that each AND or OR gate
works, and the output is “true,”
can be written as a Boolean formula:

AND

OR

NOT

AND

x1 x2

z

y1

y2

y3

Building a computer: SAT clauses

Add variables representing the truth values
of the wires

(x1 ∨ y1) ∧ (x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1)
∧ · · · ∧ z .

Monday, June 18, 2012

Building a computer: tilings

278 THE GRAND UNIFIED THEORY OF COMPUTATION

a b c d

s

a b ′ c d

s ′

a b ′ c ′ d

s ′′

a b , s c d

a b ′ c , s ′ d

a b ′ c , s ′ d

a b ′ c ′ d , s ′′

s ′ s ′

s ′′ s ′′

FIGURE 7.17: Simulating a Turing machine with Wang tiles. Plain tape symbols have gray on their sides,
and transmit their symbols from top to bottom. Tiles representing the head transmit its state to the left
or right, and also modify the tape symbol. The dashed lines show the head’s path.

left can tile the infinite plane, but the set on the right always produces a gap that cannot be filled. The
following problem asks which is which:

TILING

Input: A set of T Wang tiles

Question: Can we tile the infinite plane with tiles from T ?

Given a Turing machine, it’s easy to design a set of Wang tiles such that each row corresponds to a step
of the machine’s computation. As Figure 7.17 shows, the tiles correspond to tape symbols, with special
tiles marking the head’s location and state. Each color corresponds to a tape symbol a , a head state s , or a
pair (a , s). Matching these colors transmits a tape symbol from each tile to the one below it, and transmits
the head’s state to the left or right.

Now suppose that there are no tiles in our set colored with the Turing machine’s HALT state. In that case,
if the machine halts, there is no way to complete the tiling. If we specify the tiles on one row, starting the
machine in its initial state and giving it an input string, then we can fill in the tiles below that row, all the
way out to infinity, if and only if the machine never halts. In fact, since the Halting Problem is undecidable
even for blank tapes (see Exercise 7.20), it suffices to specify a single tile at the origin corresponding to
the machine’s head. This shows that the following variant of TILING is undecidable:

TILING COMPLETION

Input: A set T of Wang tiles, and specified tiles at a finite set of positions

Question: Can this tiling be completed so that it covers the infinite plane?

However, this construction doesn’t show that TILING is undecidable. After all, it’s easy to tile the plane
with the tiles in Figure 7.17—just fill the plane with tape symbols, with no Turing machine head around

Monday, June 18, 2012

Building a computer: tilings

280 THE GRAND UNIFIED THEORY OF COMPUTATION

FIGURE 7.18: Robinson’s aperiodic tiles. When decorated with black and gray stripes, they form a frac-
tal hierarchy of squares whose sides are powers of 2. We then use these squares as scaffolds for Turing
machine computations.

280 THE GRAND UNIFIED THEORY OF COMPUTATION

FIGURE 7.18: Robinson’s aperiodic tiles. When decorated with black and gray stripes, they form a frac-
tal hierarchy of squares whose sides are powers of 2. We then use these squares as scaffolds for Turing
machine computations.

[Robinson]

Monday, June 18, 2012

Building a computer: cellular automata
276 THE GRAND UNIFIED THEORY OF COMPUTATION

FIGURE 7.15: The evolution of elementary CA rule 110 from a random initial state, showing collisions
between several types of gliders and periodic structures. Time increases downward, and each row of the
diagram is a single step.

For instance, suppose that when the Turing machine is in state s and the tape symbol is b , it writes b ′

on the tape, changes its state to s ′, and moves to the right. Then we would write, for any a , c , d ∈ A ,

f
!
a , (b , s), c
"
=b ′ and f
!
(b , s), c , d
"
= (c , s ′) .

We also define f (a ,b , c) = b for any a ,b , c ∈ A , since the tape symbols stay fixed if the head isn’t around
to modify them. Then one step of this CA would look like

· · · a (b , s) c d · · ·
· · · a b ′ (c , s ′) d · · · ,

moving the head to the right and updating the tape. Of course, the parallel nature of a cellular automa-
ton allows us to simulate many Turing machine heads simultaneously. We haven’t specified here what
happens when two heads collide.

If we start with a small universal Turing machine, i.e., one with a small number of states and symbols,
this construction gives a universal CA with a fairly small number of states. But what is more surprising is
that even “elementary” CAs—those with just two states and nearest-neighbor interactions—are capable
of universal computation. Consider the following rule:

111 110 101 100 011 010 001 000
0 1 1 0 1 1 1 0

[Cook, Wolfram]

Monday, June 18, 2012

Building a computer: cellular automata
COMPUTATION EVERYWHERE 275

FIGURE 7.14: Constructing a Turing machine in the Game of Life. The head with its finite-state control
is on the lower left, and the stack stretches from upper left to lower right. When animated, it is a truly
impressive sight. We magnify one of its components, a glider gun, to give a sense of its scale.

[Rendell]

Monday, June 18, 2012

Building a computer: dynamical systems
282 THE GRAND UNIFIED THEORY OF COMPUTATION

FIGURE 7.20: The Baker’s Map f on the unit square. It doubles y , halves x , and moves y ’s most significant
bit to x . We can think of the coordinates (x , y) as a tape full of bits, . . .y3y2y1.x1x2x3 . . ., where 0.x1x2x3 . . .
and y = 0.y1y2y3 . . . are the binary expansions of x and y respectively. Then f moves the decimal point,
representing the head of a Turing machine, one step to the left.

This makes the Baker’s Map a classic example of a chaotic dynamical system. It quickly magnifies any
perturbations or uncertainties in its initial conditions, until it becomes completely unpredictable. If we
only know the initial conditions to t bits of accuracy, we cannot predict the state of the system more than
t steps in the future.

Exercise 7.29 Show that the Baker’s Map has two unique fixed points and a unique period-2 orbit, i.e.,
a pair of points (x , y) and (x ′, y ′) such that f (x , y) = (x ′, y ′) and f (x ′, y ′) = (x , y). What are their digit
sequences, and where are they in the unit square? How many period-3 orbits are there? What can you say
about period-t orbits for larger t ?

How can maps like this simulate Turing machines? If we write the bits of y in reverse, we can think of
(x , y) as an infinite tape whose tape symbols are 0 and 1,

. . . y3y2y1.x1x2x3 . . . ,

where the decimal point represents the machine’s head. In that case, we have

f (. . .y3y2y1.x1x2x3 . . .) = f (. . .y3y2.y1x1x2x3 . . .) ,

so f moves the head one step to the left. Note the similarity to the arithmetization of the Turing machine
on page 262, where we treated each half of the tape as the bit sequence of an integer. Both there and here,
we move the machine’s head by halving one of these numbers and doubling the other.

. . . y3y2y1 .x1x2x3 . . .
⇓

. . . y3y2 . y1x1x2x3 . . .

Monday, June 18, 2012

Building a computer: dynamical systems

COMPUTATION EVERYWHERE 283

A
T

Γ
∆

ZE
H

Θ I
K Λ

Φ
Ξ O

P
ΣB

BA Γ∆
E

Z H Θ

I

K

ΛΦΞ

O

P
Σ

T

F s1 s2 s3 s4 s5 s6

0 0, s1, L 0, s6, L 0, s2, R 1, s5, R 1, s4, L 1, s1, L
1 1, s2, L 0, s3, L 1, s3, L 0, s6, R 1, s4, R 0, s4, R

FIGURE 7.21: Above, an iterated map f on the rectangle [0, 6]× [0, 1] equivalent to a universal Turing ma-
chine with 6 states and 2 symbols. Each large square corresponds to one of the machine’s states, and the
current tape symbol is the most significant bit of y . Stretching vertically or squashing horizontally corre-
sponds to moving the machine’s head left or right on the tape. Below, the machine’s transition function.
Each triplet gives the new symbol, the new state, and whether the head moves left or right.

To complete the simulation, let’s say that the tape symbol at the machine’s current location is y1, which
is 0 or 1 if we are in the lower or upper half of the square respectively. At each step, we can change y1 by
shifting up or down by 1/2. We then move the head left or right on the tape by stretching vertically or
squashing horizontally.

Finally, we define our function on a set of unit squares, one for each of the machine’s internal states,
and update the state by mapping pieces of one square to another. If the machine has s states, and we put
these squares next to each other, we get a piecewise-continuous function f from the rectangle [0, s]×[0, 1]
to itself. This function divides this rectangle into a finite number of pieces, stretches or squashes each one,
and maps it back somewhere inside the rectangle.

In Figure 7.21, we carry out this construction for a universal Turing machine with 6 states and 2 tape
symbols. This machine simulates cellular automaton rule 110, so the question of whether a particular
finite string of bits will ever appear on its tape, at its head’s current location, is undecidable. In our map,
this corresponds to x and y lying in a pair of finite intervals, where their binary expansions start out with
particular finite strings. Thus, given an initial point (x , y), the question of whether it will ever land in a
particular rectangle is undecidable.

As we discussed at the end of Section 7.6.4, the initial tape of this Turing machine is filled with periodic
patterns to the left and right of its input. Such a tape corresponds to an initial point (x , y) with rational
coordinates, since a real number is rational if and only if its binary expansion becomes periodic after a

[Moore]

Monday, June 18, 2012

Wild problems

pt+1 = pt +K sinθt

θt+1 = θt +pt+1

Monday, June 18, 2012

Wild problems

Monday, June 18, 2012

Shameless Plug

Oxford University Press,
2011

This book rocks! You somehow manage
to combine the fun of a popular book
with the intellectual heft of a textbook.

— Scott Aaronson

A treasure trove of information on
algorithms and complexity, presented in
the most delightful way.

— Vijay Vazirani

A creative, insightful, and accessible
introduction to the theory of computing,
written with a keen eye toward the
frontiers of the field and a vivid
enthusiasm for the subject matter.

— Jon Kleinberg

Monday, June 18, 2012

Acknowledgments

and the National Science Foundation

Monday, June 18, 2012

