P vs. NP,
“hase Transitions,
and Incomputabillity in the Wild

Cristopher Moore
Santa Fe Institute

Monday, June 18, 2012

An analogy

A set S is decidable if there is an algorithm™ A(x) that runs in finite time,
such that

xeS & Ax)=1

A set S is recursively enumerable (RE) if there is an algorithm A(x,w) that runs
in finite time such that

xeS & dw:Alx,w)=1

e.g. a Turing machine x halts if there is an integer t such that x halts after t steps.
A(x,t) runs x for t steps and checks that x halts.

*you know what | mean.

Monday, June 18, 2012

An analogy

A set S is in P if there is an algorithm A(x) that runs in poly(n) = O(n°) time
(where n is the length of x) such that

xeS & Alx)=1

A set S is in NP if there is an algorithm A(x,w) that runs in poly(n) time,
such that

xeS & dw:Alx,w)=1

e.g. a graph x is Hamiltonian if there is a tour w that visits each vertex once.
A(x,w) checks that w is a Hamiltonian tour of x.

Note asymmetry! There is an easy proof if the
answer is “yes”, but not necessarily if it is “no”

Monday, June 18, 2012

Needles in haystacks

P: we can find a solution efficiently

NP: we can check a solution efficiently: tilings, tours, proofs...

Monday, June 18, 2012

DO we need to search?

/ \ / \
/ \ / \
/ \ / \
/ \ / \
/ \ / \
/ \ / \

Monday, June 18, 2012

P vs. NP

Let ¢(n) be the time it takes to tell if a proof of length 7 or less exists...

The question is, how fast does ¢ (n) grow for an optimal machine. One can show that ¢(n) >
Kn. If there actually were a machine with ¢(n)~ Kn (or even only ¢(n) ~ Kn?), this would
have consequences of the greatest magnitude. That is to say, it would clearly indicate that,
despite the unsolvability of the Entscheidungsproblem, the mental effort of the mathemati-
cian in the case of yes-or-no questions could be completely replaced by machines (footnote:
apart from the postulation of axioms). One would simply have to select an n large enough
that, if the machine yields no result, there would then be no reason to think further about the
problem.

Monday, June 18, 2012

The diagonal argument

The problem Halt(1,x) of telling whether a program 1 will halt on input x can’t be
decidable...

since if it were we could run the following program:

Trouble(II)

if II(IT) will ever halt, then loop forever
else halt

and Trouble(Trouble) would halt if and only if it wouldn’t.

But Halt is RE, so

DEecCIDABLE C RE.

Monday, June 18, 2012

The diagonal argument in bounded time

We can’t predict whether or not I1(I'l) will halt within t steps, with fewer than
t steps of computation...

since if we could we could run the following program:

Trouble,(II)

if II(IT) will halt in # or fewer steps, then loop forever
else halt

and Trouble;(Trouble;) would halt if and only if it wouldn’t.

But a universal program can simulate t steps of 1 in s(f) steps, so if g « f,

TIME(g(n)) c TIME(s(f(n)).
TMs: s(t)
RAMSs: s(t)

O(t log t)
O(t)

Monday, June 18, 2012

The time hierarchy theorem

This proves [Hartmanis and Stearns, 1965]

TIME(n) C TIME(n*) C TIME(n*"')C---c P C EXPTIME C ---

Similar theorems for SPACE, NTIME, SPACE... can compare apples to apples
But can a similar argument separate P and NP?

We can’t seem to diagonalize P within NP — but perhaps some other type of
diagonalization will work?

Sadly, no...

Monday, June 18, 2012

Oracles and relativization

We can consult an oracle for a set A,
asking her yes-or-no questions

PA is the class of problems we can solve
in polynomial time, with her help

NPA is the class of problems where we can check solutions in polynomial time,
with her help

[Baker, Gill, Solovay 1975]: there exist oracles A, B such that

PA=NP4 but PZ#ANP*

Monday, June 18, 2012

Logical hierarchies

| can win if there exists a move for me,

such that for all of your replies,

there exists a move for me...

Sam Loyd (1903)

- N w ~ 6)) (o)) ~ 00

Mate in 3

-t \} w ~ 6)) (o)) ~N 00

Lewis Stiller (1995)

53 A
5 B -
a7
/////
//////
" inu
%///

a c d e f g h

Mate in 262

Monday, June 18, 2012

A powerful oracle

Adding poly(n) quantifiers to P gives the class

PSPACE =dVd---P

Let A be a PSPACE-complete problem, such as Quantified SAT:
dx1:Vyridxe i Vy, i (X1, 11, X2, ..+, V)

NPA is PA with another 3. This just gives another instance of A, so

PA =NP%.

Monday, June 18, 2012

A random oracle

For each n=0, 1, 2, ... flip a coin

If Heads, choose a random string s of length n:
The oracle likes sp, dislikes all others of length n

If Tails, the oracle dislikes all strings of length n
Haystack(n): is there a string of length n that the oracle likes?
In NP5, since if the answer is “yes” we can prove it by asking her about s,

But (with probability 1) not in P2, since we have no hope of finding s, among
the 2" possibilities in only poly(n) time.

PE £NP5.

Monday, June 18, 2012

A barrier to resolving the P vs. NP gquestion

Since P vs. NP has different answers in different “possible worlds™...

...no proof technique that relativizes (works in the presence of oracles) can
resolve it either way

iIncludes diagonalization, and also ideas like exhaustive search:
NP C EXPTIME, NTIME(f(n))C TIME(2°0U ()

“syntactic” manipulations of programs are not enough

Monday, June 18, 2012

Another barrier: natural proofs

We would like to say that a function f is outside a complexity class C if f is
“too complicated”

But if “complicatedness” is
common — i.e. random functions are complicated
constructive — it is fairly easy to compute from f’s truth table

then this leads to a contradiction if C contains pseudorandom functions...

...and we think P does!

Defeats most known techniques in circuit complexity: random restrictions,
Fourier methods, etc. [Razborov and Rudich, 1994]

Further generalized to “algebrization” [Aaronson and Wigderson, 2009]

Monday, June 18, 2012

Phase transitions in NP-complete problems

3-SAT: Boolean variables xi,...,x,
Constraints (x1 VT3V xg) A (x3V 24V T17) A -

Is there a truth assignment for x4, ..., x, that satisfies the entire formula, i.e.,
all the constraints?

A classic NP-complete problem: any problem in NP can be reduced
(translated) to it

If we can solve it in polynomial time, then P=NP

Monday, June 18, 2012

Satisfying a circuit

Any program that tests solutions
(e.g. Hamiltonian paths) can be
“compiled” into a Boolean circuit

The circuit outputs “true” if an input
solution works

NOT

AND

Is there a set of values for the inputs
that makes the output true?

©

Monday, June 18, 2012

-rom circuits to formulas

Add variables representing the truth values
of the wires

The condition that each AND or OR gate
works, and the output is “true,”

can be written as a Boolean formula: Yo NOT
(1 V) A (22 VT) A (@1 VT2 VY1)
NNz .

©

Monday, June 18, 2012

Phase transitions in NP-complete problems

NP-completeness is a worst-case notion

3-SAT is hard because hard instances exist...

...and we assume instances are designed by a clever adversary (cruel world!)
What if the constraints are chosen randomly instead?

As we add more constraints, more contradictions arise...

Monday, June 18, 2012

A transition from solvabllity to unsolvability

When the density of constraints is too high, we can no longer satisfy all of them

1.0

0.8

o
oy}
|

Pr[satisfiable]

e
N
|

0.2

Monday, June 18, 2012

Where the hard problems are

Search times are highest at the boundary

10°

10*

DPLL calls

103

10?

10! | | | | | |

Monday, June 18, 2012

Clustering, freezing, and hardness

L clust U cond Arigid A

At a certain density, solutions break up into clusters
These clusters become frozen — many variables take a fixed value
If a search algorithm sets any of these variables wrong, it’'s doomed

A rugged landscape, with many local optima to get stuck in

[Achlioptas, Coja-Oghlan, Krzakala, Mezard, Molloy, Montanari, Moore, Ricci-Tersenghi, Zdeborova , Zecchina...]

Monday, June 18, 2012

Clustering, freezing, and hardness

L clust U cond Arigid A

We believe that the “freezing” transition marks where the problem becomes hard
All known algorithms for k-SAT stop working at or below rigia ~ 2 log k / k
Hard, but satisfiable, instances up to & ~ 2¥log 2

Can this be made into a proof that P=NP?

Monday, June 18, 2012

XORSA

Use XOR (addition mod 2) instead of OR:
T1 DxroPxrg =1
1 Dxo Pxrs =0
To BxrsPDary =1

Random instances have many of the same properties as 3-SAT: clustering
and freezing (at the same density) and then a transition to unsatisfiability

But XORSAT is easy! Just linear equations:

0 (1)
1] -7 =
1

)

1
1
0

—_ =
—_ O =
—_ O =

Monday, June 18, 2012

XORSA

How is XORSAT like SAT, and how is it different?

Clustering: local search algorithms can’t move through the space, and
hill-climbing algorithms get stuck in local optima

Freezing: backtracking algorithms (Davis-Putnam) take exponential time,
repeatedly setting frozen variables the wrong way

But Gaussian elimination is a global rearrangement of variables and
constraints, letting us turn a hard-looking problem into an easy one

If SAT has a similar kind of rearrangement — something totally different from
backtracking or local search — then P=NP

Proving that it doesn’t is hard!

Monday, June 18, 2012

he road ahead

It seems unlikely that P vs. NP is formally independent since it is almost first-order:

Consider the statement “For all n = 1000, there is no circuit of size n'°9" that solves all
SAT formulas of length n” [Ben-David & Halevi, Aaronson]

Sophisticated approaches from algebraic geometry have been suggested [Mulmuley]
The most hopeful view: we will eventually prove that P=NP...

...but we will be forced to build a lot of new mathematics in the process!

Monday, June 18, 2012

Problems in the gap

To prove that a problem A is undecidable, we usually reduce Halting to it:

HAarLTING < A

But there are undecidable problems to which Halting can’t be reduced:
“easier” than (or at least different from) than Halting [Friedberg-Muchnik]

If P£NP, there are problems that are outside P, but not NP-complete [Ladner]
Candidates: Factoring, Graph Isomorphism, Shortest Lattice Vector
Could “naturally occurring” problems live in this middle ground?

Claim: problems equivalent to Halting are easy (to think about, not to solve!)

Monday, June 18, 2012

Building a computer: SAT clauses

Add variables representing the truth values
of the wires

The condition that each AND or OR gate
works, and the output is “true,”

can be written as a Boolean formula: Yo NOT
(1 V) A (22 VT) A (@1 VT2 VY1)
NNz .

©

Monday, June 18, 2012

Building a computer: tilings

Monday, June 18, 2012

Building a computer: tilings

F5OGICUGICUEIGICS
e
o
i e Hmmhm Bs nmﬁ!.m
pisibie skl kit

e

L e
=
%

4B
({7

=
o

:

= s
8:8“!-888- N
iac SaNOETne salatine SnNORHaC
EcHgURtRl S gy

g
g
g
g
g
g
g
g
g
g
m
g

[l kL

ot :
AL R
e r“... g o

{ W

Tl S i,
o T

EEEEEN am r
wnnnpg By B ..r.r.r...r. r.r....
e
o] il

R Rk

_......"r..mEm.
1

[Cook, Wolfram]

. o el By S
St L
] T ™ bk
Rk

L i
]

o] i
e W ..r..r"
e e B

-lr-lr-lrllrllrllr

it B

e

r rr rr.r-

el
o
i .FF"F

7 r. Ir- rrr.r. 7 .r
._._.r.....r....__._..._.._._... T
FE bbb
2] i
S e e

k 1
T Tl ™
e el Rty

KR

Rl

L

T

kR Ry]
: 'R e e e e e T T T L
e e e el e el el el] Al

Y

] L Thl Ny

PR

cellular automata

php bbb
.wr... il el s

™ ..W.r.

e e e e el

..r..._.:."_.._..

g bk bk ke ke e ke k.

B k!
= b
N ey T

e o

e e el ey
]] Ml Ml Ml] M e e e
T e e e

R e e e e e
g

r.:._..._..._... e by

o e
| | r. r rr r

e e L
q I R
rrrr_.r...r..r"
(S

el e e e T

B e o e

ll-rl-rl-rl-rl-r-r-r -lr-lr-lrllrllr

e ! h
T
. r. L3 T.r.r.

Building a computer

Monday, June 18, 2012

Building a computer: cellular automata

e PR oy Sy

[Rendell]

DN T

Monday, June 18, 2012

Building a computer: dynamical systems

bt “NW

i
|

O
o
'S;‘"«'ﬁ

.
ey (e

o 1t
vl
i 1)

i

‘::.\"ﬂ A
I ?T:f‘“‘:»w,v. A
(N

... Y3)2Y1 . X1X2X3 ...

. Y3)2. V1 X1 X2X3 ...

Monday, June 18, 2012

Suilding a computer: dynamical systems

v
>
mn

>
—
@
N
D | =
=
O

\/
</ D> B
=) g [N
) == — |
F | S So S3 Sa S5 S6
0 O,Sl,L O,SG,L O,Sg,R 1,85,R 1,84,L 1,81,L
1 l,Sz,L O,Sg,L l,Sg,L O,Sﬁ,R 1,84,R O,S4,R

[Moore]

Monday, June 18, 2012

Wild problems

Pt+1 =P T K sin Ht
0r11=0:+prn

Monday, June 18, 2012

Wild problems

Monday, June 18, 2012

Shameless Plug

This book rocks! You somehow manage
to combine the fun of a popular book ' B A
with the intellectual heft of a textbook.

— Scott Aaronson

A treasure trove of information on
algorithms and complexity, presented in
the most delightful way.

— Vijay Vazirani

A creative, insightful, and accessible
introduction to the theory of computing,
written with a keen eye toward the
frontiers of the field and a vivid
enthusiasm for the subject matter.

— Jon Kleinberg

Oxford University Press,
201 |

Monday, June 18, 2012

Acknowledgments

and the National Science Foundation

Monday, June 18, 2012

