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Dear Prof. Knuth,

I’m a great admirer. I wanted to send you a handful of comments on Pre-Fascicle 6A, having to do
with random satisfiability.

• On p.5, you write “Indeed, the most di⇥cult known SAT problems are random ones close
to the transition. . . ” I don’t think this is true. There are “crafted” instances based on, for
instance, parity-check codes or cryptographic problems that are much harder than random
ones: see http://www.satcompetition.org/. On these instances, algorithms like Survey
Propagation and Belief Propagation generally perform poorly. Indeed, SP and BP can be
defeated by highly “loopy” instances that are quite small: see e.g. Jia, Moore, and Selman,
“From spin glasses to hard satisfiable formulas,” arxiv.org/abs/cond-mat/0408190.

• Physicists believe that there is a satisfiable but hard region, where no polynomial time algo-
rithm exists. The transition is believed to take place when “freezing” occurs, so that in most
clusters of solutions there are �(n) variables that take the same value in all solutions in that
cluster. See Florent Krzakala, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semer-
jian, and Lenka Zdeborová, “Gibbs states and the set of solutions of random constraint sat-
isfaction problems,” Proceedings of the National Academy of Sciences, 104(25):10318–10323
(2007). For rigorous results suggestive of this conjecture, see Achlioptas and Coja-Oghlan,
“Algorithmic barriers from phase transitions.” Proc. 49th FOCS 793–802 (2008).

For k = 3 in particular, this frozen regime seems to occupy a very narrow range of densities,
explaining why Survey Propagation (and, for that matter, variants of Walk-SAT) work very
close to the satisfiability threshold. For larger k, the frozen regime extends all the way from
�(2k log k/k) up to the threshold at �(2k).

• If you don’t mind a little self-promotion, in the solution to Exercise 100, the fact that the
k-SAT threshold is �(2k) was first proved by Achlioptas and Moore, “Two moments su⇥ce
to cross a sharp threshold.” SIAM Journal on Computing 36 740–762 (2006). They used a
second moment argument for NAE k-SAT, which is easier because of the additional symmetry
under complement, but lower bounds on the NAE k-SAT threshold are also lower bounds
for k-SAT. This left a factor of 2 in between the first-moment upper bound and the second
moment lower bound for k-SAT, which Achlioptas and Peres closed with a weighted version of
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How can we find patterns in data?
How do we know if the patterns we see are really there?

Statistical inference ⇔ statistical physics 
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Structure is that which...

makes data different from noise

helps us compress the data

helps us generalize from data we’ve seen from data we haven’t seen    

helps us coarse-grain the dynamics, reducing the number of variables

What is structure?
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Statistical inference

Suppose we have a network (a graph with nodes and links)

Imagine that it is created by a generative model, and fit the parameters of this 
model to the data

Can gracefully incorporate partial information: e.g. if

attributes of some nodes are known

some links are known, others not observed yet (e.g. food webs)

some links are false positives (e.g. gene regulatory networks, protein 
interactions)

Use the model to generalize from what we know to what we don’t
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The stochastic block model

nodes have discrete labels: k “groups” or types of nodes

k×k matrix p of connection probabilities

if i is type r and j is type s, there is a link i→j with probability prs

p is not necessarily symmetric, and we don’t assume that prr > prs

given the graph G, find the labels!
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Divided we blog

7

ing corrected and uncorrected blockmodels with K = 2,
we find the results shown in Fig. 1. As pointed out also
by other authors [11, 30], the non-degree-corrected block-
model fails to split the network into the known factions
(indicated by the dashed line in the figure), instead split-
ting it into a group composed of high-degree vertices and
another of low. The degree-corrected model, on the other
hand, splits the vertices according to the known commu-
nities, except for the misidentification of one vertex on
the boundary of the two groups. (The same vertex is also
misplaced by a number of other commonly used commu-
nity detection algorithms.)
The failure of the uncorrected model in this context

is precisely because it does not take the degree sequence
into account. The a priori probability of an edge be-
tween two vertices varies as the product of their degrees,
a variation that can be fit by the uncorrected blockmodel
if we divide the network into high- and low-degree groups.
Given that we have only one set of groups to assign, how-
ever, we are obliged to choose between this fit and the
true community structure. In the present case it turns
out that the division into high and low degrees gives the
higher likelihood and so it is this division that the algo-
rithm returns. In the degree-corrected blockmodel, by
contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood,
which frees up the block structure for fitting to the true
communities.
Moreover it is apparent that this behavior is not lim-

ited to the case K = 2. For K = 3, the ordinary
stochastic blockmodel will, for sufficiently heterogeneous
degrees, be biased towards splitting into three groups by
degree—high, medium, and low—and similarly for higher
values of K. It is of course possible that the true com-
munity structure itself corresponds entirely or mainly to
groups of high and low degree, but we only want our
model to find this structure if it is still statistically sur-
prising once we know about the degree sequence, and this
is precisely what the corrected model does.
As a second real-world example we show in Fig. 2 an

application to a network of political blogs assembled by
Adamic and Glance [31]. This network is composed of
blogs (i.e., personal or group web diaries) about US pol-
itics and the web links between them, as captured on
a single day in 2005. The blogs have known political
leanings and were labeled by Adamic and Glance as ei-
ther liberal or conservative in the data set. We consider
the network in undirected form and examine only the
largest connected component, which has 1222 vertices.
Figure 2 shows that, as with the karate club, the uncor-
rected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model
finds a split more aligned with the political division of
the network. While not matching the known labeling ex-
actly, the split generated by the degree-corrected model
has a normalized mutual information of 0.72 with the la-
beling of Adamic and Glance, compared with 0.0001 for
the uncorrected model.

(a) Without degree-correction

(b) With degree-correction

FIG. 2: Divisions of the political blog network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The division in (b) corresponds
roughly to the division between liberal and conservative blogs
given in [31].

(To make sure that these results were not due to a fail-
ure of the heuristic optimization scheme, we also checked
that the group assignments found by the heuristic have a
higher objective score than the known group assignments,
and that using the known assignments as the initial con-
dition for the optimization recovers the same group as-
signments as found with random initial conditions.)

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we
use are themselves generated from the degree-corrected

[Adamic & Glance]
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Who eats whom
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I record that I was born on a Friday
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Some cases of interest

planted partitioning:
cin > cout assortative

cin < cout disassortative

planted graph coloring:
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Inferring the block model scalably

in the worst case, fitting the block model to a graph is NP-hard

in practice, there are now several scalable methods:

belief propagation [Decelle, Krzakala, Moore, Zdeborová]

pseudolikelihood [Amini, Chen, Bickel, Levina]

stochastic optimization using subsampling [Gopalan, Blei, et al.]

exact EM algorithms [Ball, Karrer, Newman]

spectral methods 

belief propagation (BP) lets us build analogies with statistical physics,                  
gives natural measures of statistical significance,                                                
and reveals phase transitions in the detectability of community structure
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Likelihood and energy

the probability of G given the types t is a product over edges and non-edges:

using P ~ e–βE where β=1/T (Boltzmann) and E is the energy,

like Ising model, but with interactions on both edges and non-edges

in the sparse case p=O(1/n), interactions on non-edges are weak

P(G | t ) =
Y

(i ,j )2E

pti ,t j

Y

(i ,j )/2E

(1�pti ,t j )

E (t ) =� log P(G | t ) =�
X

(i ,j )2E

log pti ,t j �
X

(i ,j )/2E

log(1�pti ,t j )
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Analogies with statistical physics: 
a glossary

� logP(G | t ) energyE (t )

most likely labeling (MAP) argmax

t
P(G | t ) argmin

t
E (t ) ground state

Z partition function

� log

X

t

P(G | t ) F =� logZ free energy

Gibbs distribution P(t |G ) = P(G | t )P
t 0 P(G | t 0)

P(t ) =
e�E (t )

Z
Gibbs distribution

e��E (t ) (β=1 for now)P(G | t )probability of G given t

total probability 
of G in this model

X

t2{1,...,k }n
P(G , t )
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Ground states and illusions

the most likely labeling, or MAP estimate, is the ground state: it maximizes P(G|t)

but even random 3-regular graphs have labelings with only 11% of the edges 
crossing the cut [Zdeborová & Boettcher]

many labelings, about as good as each other, with nothing in common!

this is a sign there aren’t actually communities at all...
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Statistical significance vs. overfitting

we don’t just want the best fit!

random graphs have illusory communities, that only exist because of noise

sometimes the patterns we find aren’t really there:

we want to understand the coin, not the coin flips
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What’s the best labeling, redux

for each node, compute its marginal distribution, the probability that it belongs 
to each group

assign each node to its most-likely label

achieves a higher “overlap” with the true labeling than the ground state:            
maximizes the expected fraction of nodes labeled correctly                              

marginals represent clusters of many solutions  that agree on most nodes...

the consensus of many likely solutions is better than the most-likely one
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Model selection and free energy

let θ denote the parameters of the model, e.g. factions vs. core-periphery

best model: maximize total probability of G, summed over all possible labelings:

this is the partition function Z and F = –log P(G|θ) is a free energy

thermodynamically, F = E – TS

minimizing F = low energy (high probability) + high entropy (many good solutions)

a good model fits the data robustly, with many values of the hidden variables

P(G |✓ ) =
X

t2{1,...,k }n
P(G , t |✓ )
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Zachary’s Karate Club:
Two factions
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Zachary’s Karate Club:
Core-periphery
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Two local optima in free energy

21

Depending on the initial parameters {na}, {cab}, it converges to one of two attractive fixed points in parameter space:

n(i) =

(

0.525
0.475

)

, c(i) =

(

8.96 1.29
1.29 7.87

)

,

n(ii) =

(

0.854
0.146

)

, c(ii) =

(

16.97 12.7
12.7 1.615

)

. (50)

For comparison, we also performed learning using MCMC for the expectation step; this network is small enough,
with such a small equilibration time, that MCMC is essentially exact. We again found two attractive fixed points in
parameter space, very close to those in (50):

n(i)
MC =

(

0.52
0.48

)

, c(i)
MC =

(

8.85 1.26
1.26 7.97

)

,

n(ii)
MC =

(

0.85
0.15

)

, c(ii)
MC =

(

16.58 12.52
12.52 1.584

)

. (51)

A first observation is that even though Zachary’s karate club is both small and “loopy,” rather than being locally
treelike, the BP algorithm converges to fixed points that are nearly the same as the (in this case exact) MCMC. This
is despite the fact that our analysis of the BP algorithm assumes that there are no small loops in the graph, and
focuses on the thermodynamic limit N → ∞. This suggests that our BP learning algorithm is a useful and robust
heuristic even for real-world networks that have many loops.
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FIG. 7. (color online): (a) The partitioning of Zachary’s karate club found by our inference algorithm using the first fixed point,
(i) in (50). The colors indicate the two groups found by starting with an assortative initial condition, i.e., where c11, c22 > c12.
The shades represent the marginal probabilities: a white node belongs to both groups with equal probability, whereas a node
that is solid red or solid blue belongs to the corresponding group with probability 1. Most of the nodes are strongly biased.
The ×s show the five nodes that are grouped together by the second fixed point, (ii) in (50), which divides the nodes into
high-degree and low-degree groups rather than into the two factions. (b) The negative free energy for parameters interpolating
between the two fixed points, with (i) at t = 0 and (ii) at t = 1. The two fixed points are local maxima, and each one has a
basin of attraction in the learning algorithm. As noted in [8], the high-degree/low-degree fixed point actually has lower free
energy, and hence a higher likelihood, in the space of block models with q = 2. The horizontal lines show the largest values of
the likelihood that we obtained from using more than two groups. Unlike in Fig. 6, the likelihood continues to increase when
more groups are allowed. This is due both to finite-size effects and to the fact that the network is not, in fact, generated by
the block model: in particular, the nodes in each faction have a highly inhomogeneous degree distribution.

Fig. 7 shows the marginalized group assignments for the division into two groups corresponding to these two fixed

points. Fixed point (i) corresponds to the actual division into two factions, and c(i)
ab has assortative structure, with

larger affinities on the diagonal. In contrast, fixed point (ii) divides the nodes according to their degree, placing
high-degree nodes in one group, including both the president and the instructor, and the low-degree nodes in the
other group. Of course, this second division is not wrong; rather, it focuses on a different kind of classification, into
“leaders” on the one hand and “students/followers” on the other. In Fig. 7(b) we plot the negative free energy (32)

achieved by interpolating between the two fixed points according to a parameter t, with cab(t) = (1− t)c(i)
ab + tc(ii)

ab and
similarly for na. We see that the two fixed points correspond to two local maxima, the second (ii) being the global

core/peripheryfactions
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But how can we compute marginals and free energies?
Monte Carlo is too slow!
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Belief propagation (a.k.a. the cavity method)

each node i sends a “message” to each of its neighbors j, giving i’s marginal 
distribution based on its other neighbors k

avoids an “echo chamber” between pairs of nodes

update until we reach a fixed point (how many iterations? does it converge?) 

fixed point returns estimated marginals and the Bethe free energy

j

i

k
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a complete graph of messages: takes O(n2) time to update.  Not scalable!

sparse case: can simplify by assuming that                   for all non-neighbors i

then update takes O(n+m) time: scalable!

j

i

k

µk!i
r =µk

r

Updating the beliefs

µi!j
s =

1
Z i!j qs

Y

k 6=j
(i ,k )2E

X

r

µk!i
r pr s ⇥
Y

k 6=j
(i ,k )/2E

X

r

µk!i
r (1�pr s )

conditional independence

WARNING:
EXACT ONLY 
ON TREES
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Approximating the free energy: variational trick

holds with equality when Q(t) is the Gibbs distribution

variational approach: find the best Q(t) (with the lowest free energy) in a family 
of distributions with poly(n) parameters

each family gives a lower bound on P(G|θ), upper bound on free energy

S(Q) =�
X

t

Q(t ) log Q(t )where

logP(G |✓ ) = log

X

t

P(G | t ,✓ )

= log E
t⇥Q

P(G | t ,✓ )
Q(t )

� E
t⇥Q

log

P(G | t ,✓ )
Q(t )

= E
t⇥Q

logP(G | t ,✓ ) + S(Q)

��F = log Z = log

X

t

e

��E (t )

= log E
t⇠Q

e

��E (t )

Q(t )
��� E

t⇠Q
E (t ) + S(Q)

=�� hE i+S(Q)

F = E �TSor
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The Bethe free energy

average energy depends just on 1- and 2-point marginals,

but the entropy is more complicated... so approximate the Gibbs distribution 
with a form that depends just on 1- and 2-point marginals:

exact for trees, but pretty good even for graphs with loops 

BP fixed points are local optima of the Bethe free energy [Yedidia]

Q({ti }) =
Q
(i ,j )⇥E µ

i j
ti ,t j

Q
i

Ä
µi

ti

äd i�1

hE i=
X

(i ,j )2E

kX

r,s=1

µi j
r s logpr s +
X

(i ,j )/2E

kX

r,s=1

µi j
r s log(1�pr s )
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Active learning: 
update the model as we learn more

[Moore, Yan, Zhu, Rouquier, Lane, KDD 2011]
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BP is a fast algorithm we can run on real networks...

but it’s also a framework for analytic calculations on ensembles of graphs       
(e.g. the stochastic block model) in the large-n limit

analyze fixed points of the messages, their basins of attraction, their stability

j

i

k

The double life of Belief Propagation                
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BP convergence: nearly size-independent,         
but with critical slowing down at a phase transition

14
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FIG. 2. (color online): The number of iterations needed for convergence of the BP algorithm for two different sizes. The
convergence time diverges at the critical point εc. The equilibration time of Gibbs sampling (MCMC) has qualitatively the
same behavior, but BP obtains the marginals much more quickly.

so let us first investigate the influence of the perturbation of a single leaf kd, which is connected to k0 by a path
kd, kd−1, . . . , k1, k0. We define a kind of transfer matrix

T a
i ≡

∂ψki
a

∂ψki+1

b

∣

∣

∣

ψt=nt

=

[

ψki
a cab

∑

r carψ
ki+1
r

− ψki
a

∑

s

ψki
s csb

∑

r carψ
ki+1
r

]

∣

∣

∣

ψt=nt

= na

(cab

c
− 1

)

. (40)

where this expression was derived from (26) to leading order in N . The perturbation εk0

t0 on the root due to the

perturbation εkd
td

on the leaf kd can then be written as

εk0

t0 =
∑

{ti}i=1,...,d

[

d−1
∏

i=0

T ti,ti+1

i

]

εkd
td

(41)

We observe in (40) that the matrix T ab
i does not depend on the index i. Hence (41) can be written as εk0 = T dεkd .

When d → ∞, T d will be dominated by T ’s largest eigenvalue λ, so εk0 ≈ λdεkd .
Now let us consider the influence from all cd of the leaves. The mean value of the perturbation on the leaves is

zero, so the mean value of the influence on the root is zero. For the variance, however, we have

〈

(

εk0

t0

)2
〉

≈

〈





cd

∑

k=1

λdεk
t





2
〉

≈ cdλ2d
〈

(

εk
t

)2
〉

. (42)

This gives the following stability criterion,

cλ2 = 1 . (43)

For cλ2 < 1 the perturbation on leaves vanishes as we move up the tree and the factorized fixed point is stable. On
the other hand, if cλ2 > 1 the perturbation is amplified exponentially, the factorized fixed point is unstable, and the
communities are easily detectable.

Consider the case with q groups of equal size, where caa = cin for all a and cab = cout for all a &= b. This includes the
Newman-Girvan benchmarks, as well as planted (noisy) graph coloring and planted graph partitioning. If there are q
groups, then cin +(q−1)cout = qc. The transfer matrix T ab has only two distinct eigenvalues, λ1 = 0 with eigenvector
(1, 1, . . . , 1), and λ2 = (cin − cout)/(qc) with eigenvectors of the form (0, . . . , 0, 1,−1, 0, . . . , 0) and degeneracy q − 1.
The factorized fixed point is then unstable, and communities are easily detectable, if

|cin − cout| > q
√

c . (44)

The stability condition (43) is known in the literature on spin glasses as the de Almeida-Thouless local stability
condition [39], in information science as the Kesten-Stigum bound on reconstruction on trees [40, 41], or the threshold
for census reconstruction [25], or robust reconstruction threshold [42].

pss=cin/n, prs=cout/n

random graphstrong communities

k=4, c=16

ε=cout /cin
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when cout /cin is small enough,                                                                             
BP can find the communities  

there is a regime where it can’t,                                                                         
and no algorithm can!

for 2 groups, the threshold is at

there is a fixed point where all 
nodes have uniform marginals... 

at the transition, it becomes stable

A phase transition: 
detectable to undetectable communities

conjectured by [Decelle, Krzakala, Moore, Zdeborová, ‘11]
proved by [Mossel, Neeman, Sly, `13; Massoulié ‘13]

for k>2 groups, not much is known rigorously...

|c
in

� c
out

|= 2

p
c

13

obeying detailed balance with respect to the Hamiltonian (8), starting with a random initial group assignment {qi}.
We see that Q = 0 for cout/cin > εc. In other words, in this region both BP and MCMC converge to the factorized
state, where the marginals contain no information about the original assignment. For cout/cin < εc, however, the
overlap is positive and the factorized fixed point is not the one to which BP or MCMC converge.

In particular the right-hand side of Fig. 1 shows the case of q = 4 groups with average degree c = 16, corresponding
to the benchmark of Newman and Girvan [9]. We show the large N results and also the overlap computed with
MCMC for size N = 128 which is the commonly used size for this benchmark. Again, up to symmetry breaking,
marginalization achieves the best possible overlap that can be inferred from the graph by any algorithm. Therefore,
when algorithms are tested for performance, their results should be compared to Fig. 1 instead of to the common but
wrong expectation that the four groups are detectable for any ε < 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ov
er

la
p

!= cout/cin

undetectable

q=2, c=3

N=500k, BP
N=70k, MCMC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ov
er

la
p

!= cout/cin

undetectable

q=4, c=16

N=100k, BP
N=70k, MC
N=128, MC

N=128, full BP

FIG. 1: (color online): The overlap (5) between the original assignment and its best estimate given the structure of the graph,
computed by the marginalization (13). Graphs were generated using N nodes, q groups of the same size, average degree c, and
different ratios ε = cout/cin. Thus ε = 1 gives an Erdős-Rényi random graph, and ε = 0 gives completely separated groups.
Results from belief propagation (26) for large graphs (red line) are compared to Gibbs sampling, i.e., Monte Carlo Markov
chain (MCMC) simulations (data points). The agreement is good, with differences in the low-overlap regime that we attribute
to finite size fluctuations. On the right we also compare to results from the full BP (22) and MCMC for smaller graphs with
N = 128, averaged over 400 samples. The finite size effects are not very strong in this case, and BP is reasonably close to the
exact (MCMC) result even on small graphs that contain many short loops. For N → ∞ and ε > εc = (c−

√
c)/[c+

√
c(q−1)] it

is impossible to find an assignment correlated with the original one based purely on the structure of the graph. For two groups
and average degree c = 3 this means that the density of connections must be ε−1

c (q = 2, c = 3) = 3.73 greater within groups
than between groups to obtain a positive overlap. For Newman and Girvan’s benchmark networks with four groups (right),
this ratio must exceed 2.33.

Let us now investigate the stability of the factorized fixed point under random perturbations to the messages when
we iterate the BP equations. In the sparse case where cab = O(1), graphs generated by the block model are locally
treelike in the sense that almost all nodes have a neighborhood which is a tree up to distance O(log N), where the
constant hidden in the O depends on the matrix cab. Equivalently, for almost all nodes i, the shortest loop that i
belongs to has length O(log N). Consider such a tree with d levels, in the limit d → ∞. Assume that on the leaves
the factorized fixed point is perturbed as

ψk
t = nt + εk

t , (39)

and let us investigate the influence of this perturbation on the message on the root of the tree, which we denote k0.
There are, on average, cd leaves in the tree where c is the average degree. The influence of each leaf is independent,
so let us first investigate the influence of the perturbation of a single leaf kd, which is connected to k0 by a path
kd, kd−1, . . . , k1, k0. We define a kind of transfer matrix

T a
i ≡

∂ψki
a

∂ψki+1

b

∣

∣

∣

ψt=nt

=

[

ψki
a cab

∑

r carψ
ki+1
r

− ψki
a

∑

s

ψki
s csb

∑

r carψ
ki+1
r

]

∣

∣

∣

ψt=nt

= na

(cab

c
− 1

)

. (40)

where this expression was derived from (26) to leading order in N . The perturbation εk0

t0 on the root due to the

k=4, c=16

ε=cout /cin
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find the 5-coloring!

in the hard region, BP has two fixed points: the trivial one and an accurate one

but we need some initial help to find the accurate one...

Another regime: detectable but hard 16
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FIG. 3: (color online): Left: graphs generated with q = 5, cin = 0, and N = 105. We compute the overlap (5) and the free
energy with BP for different values of the average degree c. The green crosses show the overlap of the BP fixed point resulting
from using the original group assignment as the initial condition, and the blue crosses show the overlap resulting from random
initial messages. The red stars show the difference between the factorized free energy (38) and the free energy resulting from
the planted initialization. We observe three important points where the behavior changes qualitatively: cd = 12.84, cc = 13.23,
and c! = 16. We discuss the corresponding phase transitions in the text. Right: the case q = 10 and c = 10. We plot the
overlap as a function of ε; it drops down abruptly from about Q = 0.35. The inset zooms in on the critical region. We mark
the stability transition ε!, and data points for N = 5 · 105 for both the random and planted initialization of BP. In this case
the data are not so clear. The overlap from random initialization becomes positive a little before the asymptotic transition.
We think this is due to strong finite size effects. From our data for the free energy it also seems that the transitions εc and εd
are very close to each other (or maybe even equal, even though this would be surprising). These subtle effects are, however,
relevant only in a very narrow region of ε and are, in our opinion, not likely to appear for real-world networks.

value c! = (q − 1)2. We plot again the overlap obtained with BP, using two different initializations: the random one,
and the planted one corresponding to the original assignment. In the latter case, the initial messages are

ψi→j
qi = δqiti , (47)

where ti is the original assignment. We also plot the corresponding BP free energies. As the average degree c increases,
we see four different phases in Fig. 3:

I. For c < cd, both initializations converge to the factorized fixed point, so the graph does not contain any significant
information about the original group assignment. The ensemble of assignments that have the proper number
of edges between each pair of groups is thermodynamically indistinguishable from the uniform ensemble. The
original assignment is one of these configurations, and there is no possible way to tell which one it is without
additional knowledge.

II. For cd < c < cc, the planted initialization converges to a fixed point with positive overlap, and its free energy
is larger than the annealed free energy. In this phase there are exponentially many basins of attraction (states)
in the space of assignments that have the proper number of edges between each pair of groups. These basins
of attraction have zero overlap with each other, so none of them yield any information about any of the others,
and there is no way to tell which one of them contains the original assignment. The annealed free energy is still
the correct total free energy, the graphs generated by the block model are thermodynamically indistinguishable
from Erdős-Rényi random graphs, and there is no way to find a group assignment correlated with the original
one.

III. For cc < c < c!, the planted initialization converges to a fixed point with positive overlap, and its free energy is
smaller than the annealed free energy. There might still be exponentially many basins of attraction in the state
space with the proper number of edges between groups, but the one corresponding to the original assignment
is the one with the largest entropy and the lowest free energy. Therefore, if we can perform an exhaustive
search of the state space, we can infer the original group assignment. However, this would take exponential
time, and initializing BP randomly almost always leads to the factorized fixed point. In this phase, inference is
possible, but exponentially hard; the state containing the original assignment is, in a sense, hidden below a glass
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[Zhang, Moore, Zdeborová ’14]

Phase transitions with metadata:
what if we know some labels?

α

  c   

suppose we are given the correct labels 
for αn nodes for free

can we extend this information to the 
rest of the graph?

when α is large enough, knowledge 
percolates from the known nodes to the 
rest of the network

a line of discontinuities in the (c,α) plane, 
ending at a critical point
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Dynamic networks

what if nodes change their label, moving from group to group over time?

tradeoff between persistence of labels and the strength of the communities
5

stochastic block matrix

✓
p
in

p
out

p
out

p
in

◆
to generate the net-

works at each snapshot. The second coordinate ⌘ can be
used to generate the type of the temporal neighbor nodes
regarding their current according to Eq. (1). Then we
use belief propagation (Sec. IIA) to infer the group as-
signments at each time step. Each sequence is T = 40
time steps long and each network within the sequence has
512 nodes with an average degree c = 16, which are orga-
nized into k = 2 groups. We parameterize the networks
according to the ratio of in and out degrees, ✏ = c

out

c

in

, so
that when ✏ = 0 there exists only links within commu-
nities and none between communities, and when ✏ = 1
we have an Erdős-Rényi random graph. Within each se-
quence the parameters {⌘, ✏, c} are kept constant and we
assume that these are known.

We measure the performance of recovering group labels
according to the overlap:
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, (18)

where ĝ
i

is the inferred label for node i. Figure 4 shows
the overlap for network sequences as we vary ⌘ and ✏. We
see that when ⌘ = 0 we recover the static detectability
limit. As we increase ⌘ the phase transition occurs at
increasing values of ✏, with the largest increase occurring
when ⌘ = 1.

Figure 3 represents the heat map of the detectability-
undetectability phase transition resulted from BP algo-
rithm and spectral method. Overlap versus epsilon for
di↵erent values of ⌘ is shown in figure 4.

Figure 5 shows the heat map of convergence time for
final phase of the BP algorithm.

IV. INITIALIZATION PHASE

An optimum with reasonable computational cost ap-
proach to infer the labels in a temporal network is based
on the BP algorithm which is also used in [7] for static
networks. One can treat temporal networks as static net-
works. In this approach according to our proposed model
we connect each node to itself in subsequent time slots
using the temporal edges. By applying message-passing
equations over this network we can infer the labels at
each snapshot but these labels are not consistent along
the time. Also when ⌘ is not zero then the search space
along the time is correlated. Therefore utilizing this fact,
we can improve the running time complexity by limiting
the search space to the vicinity of the discovered space
at the first snapshot by applying message-passing algo-
rithm on just first snapshot. In this section we introduce
an initialization phase for BP algorithm to improve the
convergence time besides to break the symmetry along
the snapshots in temporal networks. The physical justi-
fication of our proposed initialization is regarding to the
correlation parameter ⌘ in our model. We propose in-
stead of having random initialization at each time slot,
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[Ghasemian, Zhang, 

Clauset, Moore, Peel]
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Extensions to richer data

can add metadata to nodes and edges: signed or weighted edges, nodes with 
social status, location, content...

for networks of documents, a model that combines overlapping communities 
with standard models of word frequencies

a network of 1,000 microprocessor patents (joint work with Sergi Valverde):

using both text and links does better than either one alone

arithmetic!
multiplexer
buses
microinstructions
microprograms

testing
debugging
emulator
error
traces
embedding
jumps
halting

power
reset
frequencies
pulses
voltages
sensing
driving
oscillators

protection
transparent
security
multi-tasking
encryption
restricting

branching
prediction
concurrence
speculation
reordering

 [Zhu, Yan, Getoor, Moore, KDD 2013]
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Statistical significance and the energy landscape
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recall the Boltzmann distribution: P ~ e–βE where β=1/T

higher β = lower temperature = greedier algorithm = stronger structure

what happens if we look for more structure than is really there?

if we insist on pushing towards absolute zero, and the absolute optimum...

we find lots of near-optima, with nothing in common

BP bounces around them, never settling down

even if you could find the true optimum, would you care?

Statistical significance and the temperature

Wednesday, May 27, 15



Statistical significance and the temperature

modularity Q = # within-group edges – expected number [Newman & Girvan]

can be large even for random graphs (e.g. Guimera, Sales-Pardo, Amaral)

and yield inconsistent results in real ones (Good, Montjoye, Clauset) 

Modularity = 0.391 Modularity = 0.333

Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Inference of SBM
Modularity BP

Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213

Web-Google 916428 4322051 5 0.724 2331 505

2 www.pnas.org — — Footline Author

Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t, breaking ties randomly if more than one

t achieves the maximum. We call {ˆt} the retrieval partition, and
call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each itera-
tion takes linear time on sparse networks if the number of groups is
fixed, and it converges rapidly in most cases. It is optimal in the sense
that for synthetic graphs generated by the stochastic block model, it
works all the way down to the detectability transition. It provides a
principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
is the true, or planted, partition. Edges are generated independently
according to a q ⇥ q matrix p, by connecting each pair of nodes hiji
with probability pt⇤i ,t⇤j

. Here for simplicity we discuss the commonly
studied case where the q groups have equal size and where p has only
two distinct entries, prs = cin/n if r = s and cout/n if r 6= s. We use
✏ = cout/cin to denote the ratio between these two entries. In the as-
sortative case, cin > cout and ✏ < 1. When ✏ is small, the community
structure is strong; when ✏ = 1, the network becomes an ER graph.

For a given average degree c = (cin + (q � 1)cout)/q, there is a
so-called detectability phase transition (5, 6), at a critical value

✏⇤ =

p
c � 1p

c � 1 + q
. [2]

For ✏ < ✏⇤, BP can label the nodes with high accuracy; for ✏ > ✏⇤,
neither BP nor any other algorithm can label the nodes better than
chance, and indeed no algorithm can distinguish the network from an
ER graph with high probability. This transition was recently estab-
lished rigorously in the case q = 2 (26–28).

For larger numbers of groups, the situation is more complicated.
For q  4, in the assortative case, this detectability transition co-
incides with the Kesten-Stigum bound (29, 30). For q � 5 the
Kesten-Stigum bound marks a conjectured transition to a “hard but
detectable” phase where community detection is still possible but
takes exponential time, while the detectability transition is at a larger
value of ✏; that is, the thresholds for reconstruction and robust recon-
struction become different. Our claim is that our algorithm succeeds
down to the Kesten-Stigum bound, i.e., throughout the detectable
regime for q  4 and the easily detectable regime for q � 5.

In Fig. 2 we compare the behavior of our BP algorithm on ER
graphs and a network generated by the SBM in the detectable regime.
Both graphs have the same size and average degree c = 3. For the
ER graph (left) there are just two phases, separated by a transition at

Modularity = 0.391 Modularity = 0.333

Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213

Web-Google 916428 4322051 5 0.724 2331 505
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.

Modularity = 0.391 Modularity = 0.333

Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213

Web-Google 916428 4322051 5 0.724 2331 505
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.
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Real structure or glassy illusion?

at low β (high T) the trivial fixed point is stable, BP finds zero modularity

if β is too large we’re too greedy: a “spin glass” where BP fails to converge, 
wandering on a bumpy landscape of uncorrelated local optima

if there is real structure, there is a range of β where BP converges, and the 
consensus partition has high modularity

Modularity = 0.391 Modularity = 0.333

Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213

Web-Google 916428 4322051 5 0.724 2331 505
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t, breaking ties randomly if more than one

t achieves the maximum. We call {ˆt} the retrieval partition, and
call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each itera-
tion takes linear time on sparse networks if the number of groups is
fixed, and it converges rapidly in most cases. It is optimal in the sense
that for synthetic graphs generated by the stochastic block model, it
works all the way down to the detectability transition. It provides a
principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
is the true, or planted, partition. Edges are generated independently
according to a q ⇥ q matrix p, by connecting each pair of nodes hiji
with probability pt⇤i ,t⇤j

. Here for simplicity we discuss the commonly
studied case where the q groups have equal size and where p has only
two distinct entries, prs = cin/n if r = s and cout/n if r 6= s. We use
✏ = cout/cin to denote the ratio between these two entries. In the as-
sortative case, cin > cout and ✏ < 1. When ✏ is small, the community
structure is strong; when ✏ = 1, the network becomes an ER graph.

For a given average degree c = (cin + (q � 1)cout)/q, there is a
so-called detectability phase transition (5, 6), at a critical value

✏⇤ =

p
c � 1p

c � 1 + q
. [2]

For ✏ < ✏⇤, BP can label the nodes with high accuracy; for ✏ > ✏⇤,
neither BP nor any other algorithm can label the nodes better than
chance, and indeed no algorithm can distinguish the network from an
ER graph with high probability. This transition was recently estab-
lished rigorously in the case q = 2 (26–28).

For larger numbers of groups, the situation is more complicated.
For q  4, in the assortative case, this detectability transition co-
incides with the Kesten-Stigum bound (29, 30). For q � 5 the
Kesten-Stigum bound marks a conjectured transition to a “hard but
detectable” phase where community detection is still possible but
takes exponential time, while the detectability transition is at a larger
value of ✏; that is, the thresholds for reconstruction and robust recon-
struction become different. Our claim is that our algorithm succeeds
down to the Kesten-Stigum bound, i.e., throughout the detectable
regime for q  4 and the easily detectable regime for q � 5.

In Fig. 2 we compare the behavior of our BP algorithm on ER
graphs and a network generated by the SBM in the detectable regime.
Both graphs have the same size and average degree c = 3. For the
ER graph (left) there are just two phases, separated by a transition at
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213

Web-Google 916428 4322051 5 0.724 2331 505
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213

Web-Google 916428 4322051 5 0.724 2331 505
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t, breaking ties randomly if more than one

t achieves the maximum. We call {ˆt} the retrieval partition, and
call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each itera-
tion takes linear time on sparse networks if the number of groups is
fixed, and it converges rapidly in most cases. It is optimal in the sense
that for synthetic graphs generated by the stochastic block model, it
works all the way down to the detectability transition. It provides a
principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
is the true, or planted, partition. Edges are generated independently
according to a q ⇥ q matrix p, by connecting each pair of nodes hiji
with probability pt⇤i ,t⇤j

. Here for simplicity we discuss the commonly
studied case where the q groups have equal size and where p has only
two distinct entries, prs = cin/n if r = s and cout/n if r 6= s. We use
✏ = cout/cin to denote the ratio between these two entries. In the as-
sortative case, cin > cout and ✏ < 1. When ✏ is small, the community
structure is strong; when ✏ = 1, the network becomes an ER graph.

For a given average degree c = (cin + (q � 1)cout)/q, there is a
so-called detectability phase transition (5, 6), at a critical value

✏⇤ =

p
c � 1p

c � 1 + q
. [2]

For ✏ < ✏⇤, BP can label the nodes with high accuracy; for ✏ > ✏⇤,
neither BP nor any other algorithm can label the nodes better than
chance, and indeed no algorithm can distinguish the network from an
ER graph with high probability. This transition was recently estab-
lished rigorously in the case q = 2 (26–28).

For larger numbers of groups, the situation is more complicated.
For q  4, in the assortative case, this detectability transition co-
incides with the Kesten-Stigum bound (29, 30). For q � 5 the
Kesten-Stigum bound marks a conjectured transition to a “hard but
detectable” phase where community detection is still possible but
takes exponential time, while the detectability transition is at a larger
value of ✏; that is, the thresholds for reconstruction and robust recon-
struction become different. Our claim is that our algorithm succeeds
down to the Kesten-Stigum bound, i.e., throughout the detectable
regime for q  4 and the easily detectable regime for q � 5.

In Fig. 2 we compare the behavior of our BP algorithm on ER
graphs and a network generated by the SBM in the detectable regime.
Both graphs have the same size and average degree c = 3. For the
ER graph (left) there are just two phases, separated by a transition at
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
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t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213

Web-Google 916428 4322051 5 0.724 2331 505
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.
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Real structure or glassy illusion?
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213

Web-Google 916428 4322051 5 0.724 2331 505
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t, breaking ties randomly if more than one

t achieves the maximum. We call {ˆt} the retrieval partition, and
call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each itera-
tion takes linear time on sparse networks if the number of groups is
fixed, and it converges rapidly in most cases. It is optimal in the sense
that for synthetic graphs generated by the stochastic block model, it
works all the way down to the detectability transition. It provides a
principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
is the true, or planted, partition. Edges are generated independently
according to a q ⇥ q matrix p, by connecting each pair of nodes hiji
with probability pt⇤i ,t⇤j

. Here for simplicity we discuss the commonly
studied case where the q groups have equal size and where p has only
two distinct entries, prs = cin/n if r = s and cout/n if r 6= s. We use
✏ = cout/cin to denote the ratio between these two entries. In the as-
sortative case, cin > cout and ✏ < 1. When ✏ is small, the community
structure is strong; when ✏ = 1, the network becomes an ER graph.

For a given average degree c = (cin + (q � 1)cout)/q, there is a
so-called detectability phase transition (5, 6), at a critical value

✏⇤ =

p
c � 1p

c � 1 + q
. [2]

For ✏ < ✏⇤, BP can label the nodes with high accuracy; for ✏ > ✏⇤,
neither BP nor any other algorithm can label the nodes better than
chance, and indeed no algorithm can distinguish the network from an
ER graph with high probability. This transition was recently estab-
lished rigorously in the case q = 2 (26–28).

For larger numbers of groups, the situation is more complicated.
For q  4, in the assortative case, this detectability transition co-
incides with the Kesten-Stigum bound (29, 30). For q � 5 the
Kesten-Stigum bound marks a conjectured transition to a “hard but
detectable” phase where community detection is still possible but
takes exponential time, while the detectability transition is at a larger
value of ✏; that is, the thresholds for reconstruction and robust recon-
struction become different. Our claim is that our algorithm succeeds
down to the Kesten-Stigum bound, i.e., throughout the detectable
regime for q  4 and the easily detectable regime for q � 5.

In Fig. 2 we compare the behavior of our BP algorithm on ER
graphs and a network generated by the SBM in the detectable regime.
Both graphs have the same size and average degree c = 3. For the
ER graph (left) there are just two phases, separated by a transition at
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
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t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213

Web-Google 916428 4322051 5 0.724 2331 505
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.
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Modularity = 0.391 Modularity = 0.333

Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t, breaking ties randomly if more than one

t achieves the maximum. We call {ˆt} the retrieval partition, and
call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each itera-
tion takes linear time on sparse networks if the number of groups is
fixed, and it converges rapidly in most cases. It is optimal in the sense
that for synthetic graphs generated by the stochastic block model, it
works all the way down to the detectability transition. It provides a
principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
Results on the Stochastic Block Model. Also called the planted par-
tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤

i 2 {1, . . . , q}; thus {t⇤}
is the true, or planted, partition. Edges are generated independently
according to a q ⇥ q matrix p, by connecting each pair of nodes hiji
with probability pt⇤i ,t⇤j

. Here for simplicity we discuss the commonly
studied case where the q groups have equal size and where p has only
two distinct entries, prs = cin/n if r = s and cout/n if r 6= s. We use
✏ = cout/cin to denote the ratio between these two entries. In the as-
sortative case, cin > cout and ✏ < 1. When ✏ is small, the community
structure is strong; when ✏ = 1, the network becomes an ER graph.
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✏⇤ =

p
c � 1p

c � 1 + q
. [2]
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For larger numbers of groups, the situation is more complicated.
For q  4, in the assortative case, this detectability transition co-
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Kesten-Stigum bound marks a conjectured transition to a “hard but
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down to the Kesten-Stigum bound, i.e., throughout the detectable
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In Fig. 2 we compare the behavior of our BP algorithm on ER
graphs and a network generated by the SBM in the detectable regime.
Both graphs have the same size and average degree c = 3. For the
ER graph (left) there are just two phases, separated by a transition at
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Fig. 1. The adjacency matrices of two networks, partitioned to show possible
community structure. Each blue point is an edge. The network on the left is
an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.

t, then ˆti = argmaxt  
i
t. We call {ˆt} the retrieval partition, and

call its modularity Q({ˆt}) the retrieval modularity. We claim that
{ˆt} is a far better measure of significant community structure than
the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.

Results
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tition model, the stochastic block model (SBM) is a popular ensem-
ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤
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Fig. 2. Retrieval modularity (blue ⇥, left y-axis) and BP convergence time (red
+, right y-axis) of an ER random graph (left) and a network generated by the
stochastic block model in the detectable regime (right). Both networks have
n = 1000 and average degree c = 3, and the network on the right has
✏ = 0.2. In both cases we ran BP with q = 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and spin
glass (SG), with a transition at �⇤ = 1.317. In the SBM network, there is an
additional retrieval phase (R) between �R = 1.072 and �SG = 2.27 where
BP finds a retrieval state with high modularity, indicating statistically significant
community structure.
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Fig. 3. Left: phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin glass (SG) phases.
Blue circles with error bars denote experimental estimates of �R, the boundary
between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
(red dash-dotted line) and ✏⇤ is the detectability transition (black dashed line).
Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, and the number of groups q⇤ as determined by our algorithm for several
real-world networks (2,33–37). For the Gnutella, Epinions and web-Google networks (37) no ground truth is known, but based on our results we claim, contrary to (37),
that these networks have statistically significant large-scale communities.

Network n m q⇤ Q(

ˆt) overlap time (sec) # iterations to converge

Zachary’s karate club 34 78 2 0.371 1 0.001 26

Dolphin social network 62 159 2 0.395 0.887 0.001 33

Books about US politics 105 441 3 0.521 0.829 0.002 23

Word adjacencies 112 425 2 -0.275 0.848 0.003 35

Political blogs 1222 16714 2 0.426 0.948 0.043 18

Gnutella 62586 147892 7 0.517 37.43 433

Epinions 75888 405740 4 0.429 57.13 213

Web-Google 916428 4322051 5 0.724 2331 505
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an ER graph, with no real community structure; however, a search by simulated
annealing finds a partition with modularity 0.391. The network on the right has
true communities, and is generated by the stochastic block model, but the true
partition has modularity just 0.333. Thus illusory communities in random graphs
can have higher modularity than true communities in structured graphs. Both
networks have size n = 5000 and a Poisson degree distribution with mean
c = 3; the network on the right has cout/cin = 0.2, in the easily-detectable
regime of the stochastic block model.
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the maximum-modularity partition. In the language of statistics, the
maximum marginal prediction is better than the maximum a posteri-
ori prediction (e.g. (23)). More informally, the consensus of many
good solutions is better than the “best” single one (24, 25).

We give an efficient Belief Propagation (BP) algorithm to ap-
proximate these marginals, which is derived from the cavity method
of statistical physics. This algorithm is highly scalable; each iteration
takes linear time on sparse networks if the number of groups is fixed,
and it converges rapidly in most cases. Moreover, it is optimal in
the sense that for synthetic graphs generated by the stochastic block
model, it works all the way down to the detectability transition: that
is, it detects communities whenever they can be detected. It provides
a principled way to choose the number of communities, unlike other
algorithms that tend to overfit. Finally, by applying this algorithm
recursively, subdividing communities until no statistically significant
subcommunities exist, we can uncover hierarchical structure.

We validate our approach with experiments on real and synthetic
networks. In particular, we find significant large communities in
some large networks where previous work claimed there were none.
We also compare our algorithm with several others, finding that it ob-
tains more accurate results, both in terms of determining the number
of communities and matching their ground truth structure.
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ble of networks with community structure. There are q groups of
nodes, and each node i has a group label t⇤
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between the paramagnetic and retrieval phases, and the solid green line shows
our theoretical expression [ 4 ]. The spin glass instability occurs for � > �⇤(2, 3)
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Right: The overlap of the retrieval partition at � = 1.315 ⇡ �⇤(2, 3) (blue
circles) and the partition obtained with the algorithm of (5), which infers the pa-
rameters of the SBM with an additional EM learning algorithm. Each experiment
is on the giant component of a network with n = 105, q = 2 groups, and
average degree c = 3. We average over 10 random instances.
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that these networks have statistically significant large-scale communities.
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Hierarchical clustering

divide a network into subnetworks, 
until the remaining pieces have no 
statistically significant communities

reveals substructure in network of 
political blogs

don’t maximize modularity!        
the consensus of many              
high-modularity structures is    
better than the “best” one

[Zhang and Moore, PNAS 2014]          
image by Tiago de Paula Peixoto
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Spectral methods and their redemption
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Clustering nodes with eigenvalues

linear operators associated a graph: adjacency matrix, Laplacian, etc.

if there are 2 groups, label nodes according to the sign of the 2nd eigenvector

if there are k groups, look at the first k eigenvectors, and use your favorite 
clustering algorithm in Rk
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When does this work?

using random matrix theory, can compute the typical spectrum of a graph 
generated by the stochastic block model

“bulk” follows the Wigner semicircle law

communities are detectable as long as λ2 lies outside this bulk...

crosses at the detectability transition... if the graph is dense enough

[Nadakuditi and Newman, `12]
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But in the sparse case...

if v has degree d, applying A2 has d ways to return to v                                    
thus A has an eigenvector with an eigenvalue at least √d

these localized eigenvalues deviate from the semicircle law:                
informative eigenvectors get lost in the bulk
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The non-backtracking operator

B is a walk on directed edges, with backtracking prohibited:                   
prevents paths from returning to a high-degree vertex, or getting stuck in trees
bulk of B’s spectrum is confined to a disk of radius √c, even in the sparse case              
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Comparing with standard spectral methods
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Fig. 5. The accuracy of spectral algorithms based on different linear operators, and of belief propagation, for two groups of equal size. On the left, we vary c
in

� c
out

while fixing the average degree c = 3; the detectability transition given by [ 1 ] occurs at c
in

� c
out

= 2
p
3 ⇡ 3.46. On the right, we set c

out

/c
in

= 0.3 and vary
c; the detectability transition is at c ⇡ 3.45. Each point is averaged over 20 instances with n = 105. Our spectral algorithm based on the non-backtracking matrix
B achieves an accuracy close to that of BP, and both remain large all the way down to the transition. Standard spectral algorithms based on the adjacency matrix,
modularity matrix, the Laplacian, and the random walk matrix fail well above the transition, doing no better than chance.

More generally, in a block model with q communities, an affinity
matrix c

ab

, and an expected fraction n
a

of vertices in each commu-
nity a, linearizing around the trivial point ⌘a

u!v

= n
a

gives a tensor
product operator

� := (T ⌦B)� , [14]

where T is the q ⇥ q matrix defined in [10].
This shows that the spectral properties of the non-backtracking

matrix are closely related to belief propagation. Specifically, the triv-
ial fixed point is unstable, leading to a fixed point that is correlated
with the community structure, exactly when T ⌦B has an eigenvalue
greater than 1. However, by avoiding the fixed point where all the ver-
tices belong to the same group, we suppress B’s leading eigenvalue;
thus the criterion for instability is ⌫µ

2

> 1 where ⌫ is T ’s lead-
ing eigenvalue and µ

2

is B’s second eigenvalue. This is equivalent
to [11] in the case where the groups are of equal size.

In general, the BP algorithm provides a slightly better agreement
with the actual group assignment, since it approximates the Bayes-
optimal inference of the block model. On the other hand, the BP up-
date rule depends on the parameters of the block model, and if these
parameters are unknown they need to be learned, which presents ad-
ditional difficulties (12). In contrast, our spectral algorithm does not
depend on the parameters of the block model, giving an advantage
over BP in addition to its computational efficiency.

Experimental Results and Discussion
In Fig. 5, we compare the spectral algorithm based on the non-

backtracking matrix B with those based on various classical opera-
tors: the adjacency matrix A, the modularity matrix M , the Lapla-
cian L, and the random walk matrix Q. We see that there is a regime
where standard spectral algorithms do no better than chance, while
the one based on B achieves a strong correlation with the true group
assignment all the way down to the detectability threshold. We also
show the performance of belief propagation, which is believed to be
asymptotically optimal (9, 10).

We measure the performance as the overlap, defined as
 
X

u

�
gu,g̃u � 1

q

!�✓
1� 1

q

◆
. [15]

Here g
u

is the group to which vertex u truly belongs, and g̃
u

is the
group label given to u by the algorithm. We break the obvious sym-
metry by maximizing over all q! permutations of the groups. The

overlap is normalized so that it is 1 for the correct labeling, and 0 for
a uniformly random labeling.

In Fig. 4 we illustrate clustering in the case q = 3. As described
above, in the detectable regime we expect to see q � 1 eigenvectors
with real eigenvalues that are correlated with the true group assign-
ment. Indeed B’s second and third eigenvector are strongly corre-
lated with the true clustering, and applying k-means in R2 gives a
large overlap. In contrast, the second and third eigenvectors of the
adjacency matrix are essentially uncorrelated with the true cluster-
ing, and similarly for the other traditional operators.

Finally we turn towards real networks to illustrate the advantages
of spectral clustering based on the non-backtracking matrix in prac-
tical applications. In Fig. 6 we show B’s spectrum for several net-
works commonly used as benchmarks for community detection. In
each case we plot a circle whose radius is the square root of the largest
eigenvalue. Even though these networks were not generated by the
stochastic block model, these spectra look qualitatively similar to the
picture discussed above (Fig. 2). This leads to several very conve-
nient properties. For each of these networks we observed that only
the eigenvectors with real eigenvalues are correlated to the group as-
signment given by the ground truth. Moreover, the real eigenvalues
that lie outside of the circle are clearly identifiable. This is very un-
like the situation for the operators used in standard spectral clustering
algorithms, where one must decide which eigenvalues are in the bulk
and which are outside.

In particular, the number of real eigenvalues outside of circle
seems to be a natural indicator for the true number q of clusters
present in the network, just as for networks generated by the stochas-
tic block model. This suggests that in the network of political books
there might in fact be 4 groups rather than 3, in the blog network
there might be more than two groups, and in the NCAA football net-
work there might be 10 groups rather than 12. However, we also note
that large real eigenvalues may correspond in some networks to small
cliques in the graph; it is a philosophical question whether or not to
count these as communities.

An important point is that clustering based on the non-
backtracking matrix B works not only in the assortative case, but
also in the disassortative one—such as the network of common ad-
jectives and nouns in the novel David Copperfield (27), for which the
corresponding real eigenvalue is negative.

Footline Author PNAS Issue Date Volume Issue Number 5
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You may ask yourself, 
Well, how did we get here?

expand the BP equations around the trivial fixed point to first order: 
the matrix of derivatives is a tensor product of B with a k×k matrix

no echo chamber = non-backtracking
bulk confined = works all the way down to the detectability transition

[Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang, PNAS 2013]

[Bordenave, Lelarge, Massoulié, 2015]
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Morals

the most likely model often overfits!

even if you can find the best fit, you might not want to...

...if it’s just one of many local optima that have nothing in common

the consensus of many likely fits is a better judge of structure

Belief Propagation finds this consensus in nearly-linear time (when it works)...   

...gives us an analytic framework for finding phase transitions

...and linearization yields new spectral algorithms

Finally, the shape of the energy landscape can tell us whether structures are 
statistically significant
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Physics culture meets machine learning

“as simple as possible (but no simpler)”

mathematical elegance and tractability pays off, even with real data

in practice: simpler models are easier to optimize, giving faster algorithms

in theory: analytic results on the strengths and weaknesses of these algorithms, 
fundamental limits on when (and how well) these problems can be solved      

insights are better than small improvements in accuracy:                              
although big improvements in accuracy usually come from insights  

the physics picture of the “energy landscape” can help us decide whether the 
structures we find are really there
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Shameless Plug	

To put it bluntly: this book rocks! It somehow 
manages to combine the fun of a popular 
book with the intellectual heft of a textbook.

Scott Aaronson, MIT

This is, simply put, the best-written book on 
the theory of computation I have ever read; 
one of the best-written mathematical books I 
have ever read, period. 

Cosma Shalizi, Carnegie Mellon

www.nature-of-computation.org
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