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ow can we find patterns in data’
ow do we know If the patterns we see are really there!
Statistical inference < statistical physics
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What is structure?

Structure is that which...
makes data different from noise
helps us compress the data
helps us generalize from data we’ve seen from data we haven’t seen

helps us coarse-grain the dynamics, reducing the number of variables
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Statistical inference

Suppose we have a network (a graph with nodes and links)

Imagine that it is created by a generative model, and fit the parameters of this
model to the data

Can gracefully incorporate partial information: e.g. if
attributes of some nodes are known
some links are known, others not observed yet (e.g. food webs)

some links are false positives (e.g. gene regulatory networks, protein
interactions)

Use the model to generalize from what we know to what we don’t
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The stochastic block model

nodes have discrete labels: k “groups” or types of nodes

kxk matrix p of connection probabilities

If i is type r andj is type s, there is a link i—j with probability prs

p Is not necessarily symmetric, and we don’t assume that p, > prs

given the graph G, find the labels!
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Some cases of interest

1 { cin Cout 1 {a b c k {0 ! 1\
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n out in n \1 1 O}

lanted partitioning: . lanted graph coloring:
P P . J core-periphery: P Jrap J
Cin > Cout @ssortative k colors,
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Cin < Cout disassortative average degree c
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Inferring the block model scalably

in the worst case, fitting the block model to a graph is NP-hard

In practice, there are now several scalable methods:
belief propagation [Decelle, Krzakala, Moore, Zdeborova]
pseudolikelihood [Amini, Chen, Bickel, Levina]
stochastic optimization using subsampling [Gopalan, Blei, et al.]
exact EM algorithms [Ball, Karrer, Newman]
spectral methods

belief propagation (BP) lets us build analogies with statistical physics,

gives natural measures of statistical significance,
and reveals phase transitions in the detectability of community structure
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Likelihood and energy

the probability of G given the types t is a product over edges and non-edges:

P(G|t)= I_I Pt l_l (I_Pti,tj)

(i,/)€E (i,])EE

using P ~ e where B=1/T (Boltzmann) and E is the energy,

E(t)=—logP(G|t)=— Z logpy,,i; — Z log(1—py,.¢;)
(i,j)€E (i,])EE

like Ising model, but with interactions on both edges and non-edges

in the sparse case p=0(1/n), interactions on non-edges are weak
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Analogies with statistical physics:

a glossary
probability of G given t P(G|t) e PEW) (B=1 for now)
—log P(G | t) E(t) energy
most likely labeling (MAP) argmaxP(G |t) argmin E(t) ground state
4 4
total probability " .
of G in this model Z P(G,t) VA partition function
tedl,.. k"
. o P(G|1) e 1) . o
Gibbs distribution  P(t|G)= - P(t)= Gibbs distribution
> PG|t Z
—logz P(G|t) F=—-log/Z free energy
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Ground states and illusions

the most likely labeling, or MAP estimate, is the ground state: it maximizes P(Glt)

but even random 3-regular graphs have labelings with only 11% of the edges
crossing the cut [Zdeborova & Boettcher]

many labelings, about as good as each other, with nothing in common!

this is a sign there aren’t actually communities at all...
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Statistical significance vs. overfitting

we don’t just want the best fit!
random graphs have illusory communities, that only exist because of noise

sometimes the patterns we find aren’t really there:

we want to understand the coin, not the coin flips
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What'’s the best labeling, redux

for each node, compute its marginal distribution, the probability that it belongs
to each group

assign each node to its most-likely label

achieves a higher “overlap” with the true labeling than the ground state:
maximizes the expected fraction of nodes labeled correctly

marginals represent clusters of many solutions that agree on most nodes...

the consensus of many likely solutions is better than the most-likely one

Wednesday, May 27, 15



Model selection and free energy

let & denote the parameters of the model, e.g. factions vs. core-periphery

best model: maximize total probability of G, summed over all possible labelings:

P(G|6) = Z P(G,t|6)

this is the partition function Z and F = -log P(G|6) is a free energy

thermodynamically, F=E-TS

minimizing F = low energy (high probability) + high entropy (many good solutions)

a good model fits the data robustly, with many values of the hidden variables
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Zachary’s Karate Club:

Two factions




Zachary’s Karate Club:

Core-periphery




Two local optima Iin free energy

- free energy

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
Interpolation parameter t
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But how can we compute marginals and free energies!
Monte Carlo is too slow!
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Belief propagation (a.k.a. the cavity method)

each node / sends a “message” to each of its neighbors j, giving /’s marginal
distribution based on its other neighbors k

avoids an “echo chamber” between pairs of nodes
update until we reach a fixed point (how many iterations? does it converge?)

fixed point returns estimated marginals and the Bethe free energy

Wednesday, May 27, 15



Updating the beliefs

a complete graph of messages: takes O(n?) time to update. Not scalable!
sparse case: can simplify by assuming that ,u’r“_’i = ,u’rC for all non-neighbors i

then update takes O(n+m) time: scalable!
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Approximating the free energy: variational trick

log P(G|0)=log > P(G|t,0) _BF=logZ=logy e PO
P(G|t,0) e—BE()
=log E _
S p(gft)e) %% o
X >_B E E(t) + S(Q)

=% 8T ~o

= E logP(G|1,0) + S(Q) =—P(E)+S5(Q)
where  S(Q)=- Q()log Q(t) or F=E-TS

holds with equality when Q(f) is the Gibbs distribution

variational approach: find the best Q(f) (with the lowest free energy) in a family
of distributions with poly(n) parameters

each family gives a lower bound on P(G|6), upper bound on free energy
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The Bethe free energy

average energy depends just on 1- and 2-point marginals,

Z‘ Lu’ﬂslogprﬂr Z ZU log(1—pys)

(i,j)eE r,s=1 (i,j)¢E 1,s=1

but the entropy is more complicated... so approximate the Gibbs distribution
with a form that depends just on 1- and 2-point marginals:

exact for trees, but pretty good even for graphs with loops

BP fixed points are local optima of the Bethe free energy [Yedidia]

Wednesday, May 27, 15



Active learning:
update the model as we learn more

[Moore, Yan, Zhu, Rouquier, Lane, KDD 2011]



The double life of Belief Propagation

BP is a fast algorithm we can run on real networks...

but it’s also a framework for analytic calculations on ensembles of graphs
(e.g. the stochastic block model) in the large-n limit

analyze fixed points of the messages, their basins of attraction, their stability
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BP convergence: nearly size-indepe

but with critical slowing down at a p

convergence time
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A phase transition:
detectable 1o undetectable communities

when cout /Cin is small enough, 1 ! " N=100K BP
BP can find the communities Noro8 MG T
0.8 r X N=128, full BP %
there is a regime where it can't, ed o
and no algorithm can! . =% C=
(CYJS 0.6 _
for 2 groups, the threshold isat 5
O
(@) n
S 0.4
|Cin — Cout| = 2V ¢
. . . 0.2 >§K undetectable
there is a fixed point where all T
nodes have uniform marginals... ; | | %%%mrf- 5
0.2 0.4 0.6 0.8

at the transition, it becomes stable £=Cout /Cin

conjectured by [Decelle, Krzakala, Moore, Zdeborova, ‘11]
proved by [Mossel, Neeman, Sly, 13; Massoulié ‘13]
for k>2 groups, not much is known rigorously...
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Another regime: detectable but hard
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find the 5-coloring!

In the hard region, BP has two fixed points: the trivial one and an accurate one

but we need some initial help to find the accurate one...
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Phase transitions with metadata:
what if we know some labels?

suppose we are given the correct labels
for an nodes for free

can we extend this information to the
rest of the graph?

when « is large enough, knowledge

percolates from the known nodes to the
rest of the network

35

a line of discontinuities in the (c,«) plane,
ending at a critical point

[Zhang, Moore, Zdeborova ’14]
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Dynamic networks

what if nodes change their label, moving from group to group over time?

tradeoff between persistence of labels and the strength of the communities
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E£=Cout /Cin Clauset, Moore, Peel]
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—xtensions to richer data

can add metadata to nodes and edges: signed or weighted edges, nodes with
social status, location, content...

for networks of documents, a model that combines overlapping communities
with standard models of word frequencies

a network of 1,000 microprocessor patents (joint work with Sergi Valverde):

testing power
. . debuggin reset rotection ,
arithmetic g91ng : P branching
: emulator frequencies transparent , ,
multiplexer . prediction
error pulses securlity
buses . : concurrence
. : : traces voltages multi-tasking ,
microinstructions : . . speculation
. embedding sensing encryption ,
mlicroprograms . . . . reordering
Jjumps driving restricting
halting osclllators

using both text and links does better than either one alone

[Zhu, Yan, Getoor, Moore, KDD 201 3]
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Statistical significance and the energy landscape
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Statistical significance and the temperature

recall the Boltzmann distribution: P ~ e where B=1/T

higher B = lower temperature = greedier algorithm = stronger structure

what happens if we look for more structure than is really there?

If we insist on pushing towards absolute zero, and the absolute optimum...
we find lots of near-optima, with nothing in common
BP bounces around them, never settling down

even if you could find the true optimum, would you care?
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Statistical significance and the temperature

modularity Q = # within-group edges — expected number [Newman & Girvan]
can be large even for random graphs (e.g. Guimera, Sales-Pardo, Amaral)

and yield inconsistent results in real ones (Good, Montjoye, Clauset)

A A 'g}:?“": g
quick! which graph - .5 i g
has communities? |55 738 v =g
Modularity
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Real structure or glassy illusion?

at low B (high T) the trivial fixed point is stable, BP finds zero modularity

if B is too large we’re too greedy: a “spin glass” where BP fails to converge,
wandering on a bumpy landscape of uncorrelated local optima

if there is real structure, there is a range of 8 where BP converges, and the
consensus partition has high modularity
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random graph real block model
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Real structure or glassy illusion?
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Hierarchical clustering

divide a network into subnetworks,
until the remaining pieces have no
statistically significant communities

reveals substructure in network of
political blogs

don’t maximize modularity!
the consensus of many
high-modularity structures is
better than the “best” one
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[Zhang and Moore, PNAS 2014]
image by Tiago de Paula Peixoto
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Spectral methods and their redemption
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Clustering nodes with eigenvalues

linear operators associated a graph: adjacency matrix, Laplacian, etc.

If there are 2 groups, label nodes according to the sign of the 2nd eigenvector

®
o//.

If there are k groups, look at the first k eigenvectors, and use your favorite
clustering algorithm in R¥

Wednesday, May 27, 15



When does this work”

using random matrix theory, can compute the typical spectrum of a graph
generated by the stochastic block model

“pbulk” follows the Wigner semicircle law

2Ne 0 2Ne
communities are detectable as long as A2 lies outside this bulk...

crosses at the detectabillity transition... if the graph is dense enough

[Nadakuditi and Newman, 12]
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Sut In the sparse case...

if v has degree d, applying A has d ways to return to v
thus A has an eigenvector with an eigenvalue at least \/d

these localized eigenvalues deviate from the semicircle law:

informative eigenvectors get lost in the bulk
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The non-backtracking operator

B is a walk on directed edges, with backtracking prohibited:
prevents paths from returning to a high-degree vertex, or getting stuck in trees

bulk of B’s spectrum is confined to a disk of radius ,/c, even in the sparse case
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Comparing with standard spectral methods

n=10°, c=3

O Non-backtracking
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You may ask yourself,
Well, how did we get here?

expand the BP equations around the trivial fixed point to first order:

the matrix of derivatives is a tensor product of B with a kxk matrix

no echo chamber = non-backtracking

bulk confined = works all the way down to the detectability transition
[Krzakala, Moore, Mossel, Neeman, Sly, Zdeborova, Zhang, PNAS 2013]

[Bordenave, Lelarge, Massoulie, 2015]
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Morals

the most likely model often overfits!

even if you can find the best fit, you might not want to...

...if it’s just one of many local optima that have nothing in common
the consensus of many likely fits is a better judge of structure
Belief Propagation finds this consensus in nearly-linear time (when it works)...
...gives us an analytic framework for finding phase transitions
...and linearization yields new spectral algorithms

Finally, the shape of the energy landscape can tell us whether structures are
statistically significant
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Physics culture meets machine learning

“as simple as possible (but no simpler)”
mathematical elegance and tractability pays off, even with real data
In practice: simpler models are easier to optimize, giving faster algorithms

In theory: analytic results on the strengths and weaknesses of these algorithms,
fundamental limits on when (and how well) these problems can be solved

Insights are better than small improvements in accuracy:
although big improvements in accuracy usually come from insights

the physics picture of the “energy landscape” can help us decide whether the
structures we find are really there
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YOORE TRYING TO PREDICT THE BEHAVIOR.
OF ? JUST MODEL

ITAS A - AND THEN ADD
SOME. SECONDARY TERMS To ACCOUNT FOR

\
EASY, R\?HT?
S0, WHY DOES NEED
A WHOLE JOURNAL, ANYWAY?

(

LIBERAL-ARTS MAJORS MAY BE ANNOYING SOMETIMES,
BUT THERES NOTAH/ING MORE QBNOXIOUS THAN
A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.
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Shameless Plug

OXFORD

it e N AT RUE Of To put it bluntly: this book rocks! It somehow

COMPUTATION manages to combine the fun of a popular

book with the intellectual heft of a textbook.
Scott Aaronson, MIT

This is, simply put, the best-written book on
the theory of computation | have ever read,
one of the best-written mathematical books |
have ever read, period.

Cosma Shalizi, Carnegie Mellon

Cristopber Moore & Stepban Mertens

www.nature-of-computation.org
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