# SECOND MOMENT LOWER BOUNDS FOR K-SAT

CRISTOPHER MOORE UNIV. NEW MEXICO SANTA FE INSTITUTE

JOINT WORK WITH DIMITRIS ACHLIOPTAS

#### RANDOM FORMULAS

In analogy with the G(n, m) model of random graphs, let  $F_k(n, m)$  denote a formula with n variables and m clauses, where the clauses are chosen uniformly (with replacement) from the  $2^k \binom{n}{k}$  possible clauses:

$$(x_{37} \vee \overline{x_{12}} \vee x_{42}) \wedge \cdots$$

\*\* When is  $F_k(n, m = rn)$  probably satisfiable?

# THE THRESHOLD CONJECTURE

\*\* We believe that for each  $k \geq 2$ , there is a constant  $r_k$  such that

$$\lim_{n \to \infty} \Pr[F_k(n, m = rn) \text{ is satisfiable}]$$

$$= \begin{cases} 1 & \text{if } r < r_k \\ 0 & \text{if } r > r_k \end{cases}$$

- \*\* Known for k=2 [Chvátal & Reed, de la Vega, Goerdt]
- \*\* A non-uniform threshold [Friedgut] implies that positive probability  $\Rightarrow$  high probability

### UPPER AND LOWER BOUNDS

\* A first moment argument gives [Franco & Paull]

$$r_k < 2^k \ln 2$$

\*\* Analyzing simple algorithms with differential equations [Chao & Franco, Frieze & Suen] gives

$$r > 2^k/k$$

This asymptotic gap persisted for 10 years until [Achlioptas and Moore, FOCS 2002] showed

$$r > 2^{k-1} \ln 2 - O(1)$$

# THE SECOND MOMENT METHOD

\*\* Let X be the number of satisfying assignments. We will try to show that  $F_k(n,m)$  is satisfiable with positive probability using

$$\Pr[X > 0] \ge \frac{\mathrm{E}[X]^2}{\mathrm{E}[X^2]}$$

\*\* True for any non-negative random variable *X*; proof by Cauchy-Schwartz

# OVERLAPS AND CORRELATIONS

- For any truth assignment, the probability it satisfies a random clause c is  $p = 1 2^{-k}$ , and so  $E[X] = 2^n p^m = (2p^r)^n$ .
- $\mathbb{E}[X^2]$  is the expected number of *pairs* of satisfying assignments. If s, t have *overlap*  $\alpha$ , the probability they both satisfy c is

$$q(\alpha) = 1 - 2 \cdot 2^{-k} + \alpha^k 2^{-k}$$

\*\* Note  $q(1/2) = p^2$  (as if s, t were independent)

### A LITTLE ASYMPTOTIC COMBINATORICS

\* Stirling's approximation gives

$$E[X^{2}] = 2^{n} \sum_{z=0}^{n} {n \choose z} q(z/n)^{m}$$

$$\sim \frac{1}{\sqrt{n}} \sum_{z=0}^{n} g(z/n)^{n} \sim \sqrt{n} \int_{0}^{1} g(\alpha)^{n} d\alpha$$

where 
$$g(\alpha) = 2e^{h(\alpha)}q(\alpha)^r$$

$$[h(\alpha) = -\alpha \ln \alpha - (1-\alpha) \ln(1-\alpha)]$$

### LAPLACE'S METHOD

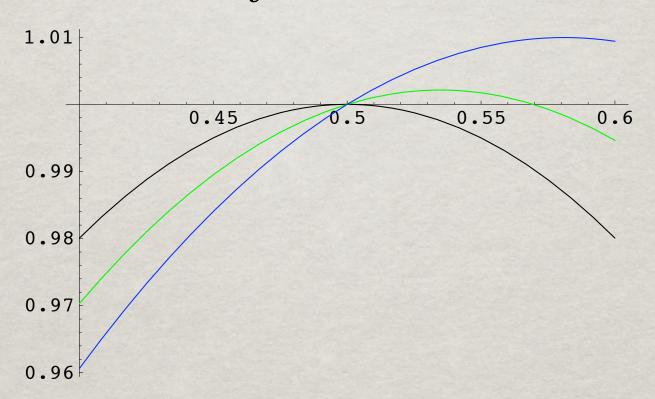
\*\* For any smooth function  $g(\alpha)$ ,

$$\int g(\alpha)^n d\alpha \sim \sqrt{\frac{2\pi}{n}} \frac{g_{\text{max}}}{|g''_{\text{max}}|} g_{\text{max}}^n$$

- \* Approximate the integrand by a Gaussian.
- $% So, E[X^2] = Cg_{\max}^n.$
- \*\* We have  $g(1/2) = (2p^r)^2$ , matching  $E[X]^2$ .
- # If  $\alpha = 1/2$  is the max, then  $E[X]^2/E[X^2] \ge 1/C$ .

## A DISTURBING LACK OF SYMMETRY

\*\* For 3-SAT, sadly, g'(1/2) > 0:



Failure:  $E[X]^2/E[X^2]$  is exponentially small unless  $k = \log n + \omega(1)$  [Frieze & Wormald]

### AN ATTRACTIVE FORCE

- \*\* Where does this asymmetry come from?
- $q(\alpha)$  grows monotonically with  $\alpha$ : satisfying assignments s, t have an "attractive force" between them.
- Moreover, both s and t are attracted to the majority assignment.
- \* How can we cancel this attraction?

### NOT-ALL-EQUAL SAT

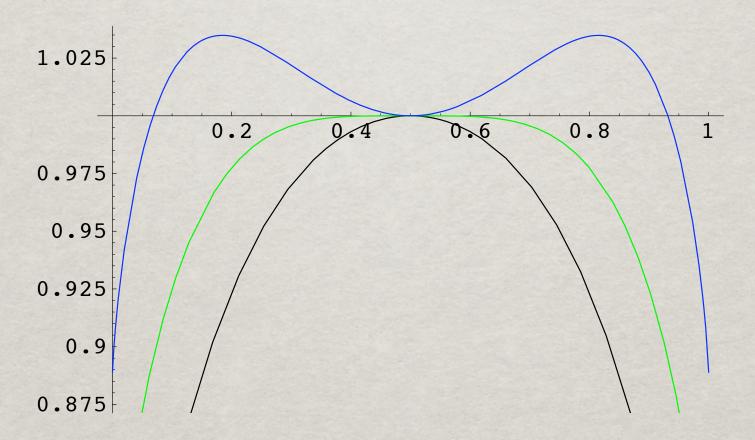
- \*\* What if we demand that each clause contain both a true literal and a false one?
- \*\* Equivalently, only count the assignments such that both s and  $\overline{s}$  satisfy the formula.
- \*\* Now the probability s, t both satisfy c is

$$q(\alpha) = 1 - 2 \cdot 2^{1-k} + (\alpha^k + (1-\alpha)^k)2^{1-k}$$

\*\* This is symmetric around  $\alpha = 1/2$ .

#### SYMMETRY REGAINED

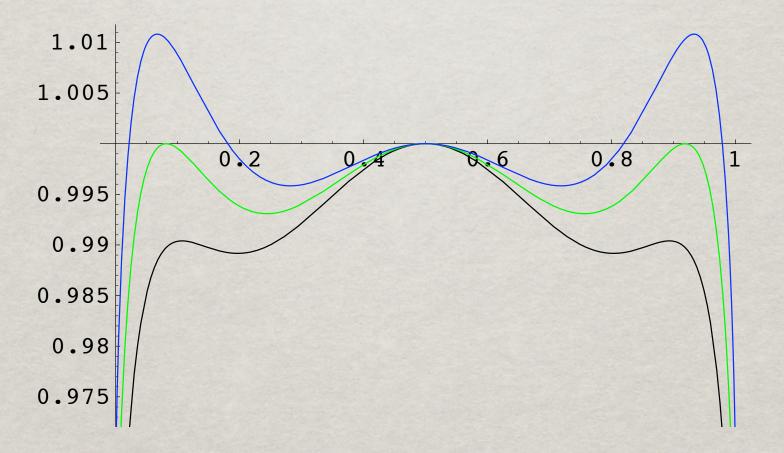
Now g'(1/2) = 0, and for sufficiently small r:



\*\* Thus we have  $E[X]^2/E[X^2] \ge C$ .

#### SYMMETRY REGAINED

\*\* For *k*-SAT with larger *k*, side maxima appear:



\*\* These are below g(1/2) for small enough r.

# TIGHT BOUNDS FOR NAESAT

\*\* For NAE k-SAT, refined first moment gives

$$r_k < 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{4}$$

\* And our second moment bound gives

$$r_k > 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} - o(1)$$

| k         | 3     | 4     | 5      | 6      | 7      | 8      | 9       | 10      |
|-----------|-------|-------|--------|--------|--------|--------|---------|---------|
| $r_k > 1$ | 3/2   | 49/12 | 9.973  | 21.190 | 43.432 | 87.827 | 176.570 | 354.027 |
| $r_k <$   | 2.214 | 4.969 | 10.505 | 21.590 | 43.768 | 88.128 | 176.850 | 354.295 |

### CLOSING THE ASYMPTOTIC GAP

\*\* This brings our upper and lower bounds to within a multiplicative constant:

$$2^{k-1} \ln 2 - O(1) < r_k < 2^k \ln 2$$

\* And proves the conjecture that

$$r_k = \Theta(2^k)$$

**Can we narrow the gap even further?** 

# CLOSING THE FACTOR OF 2

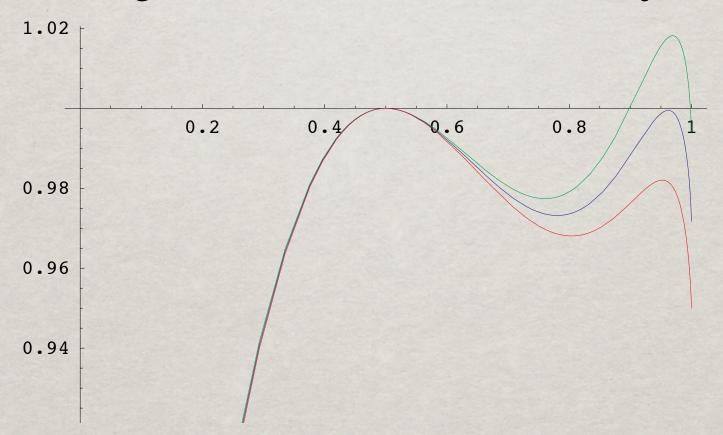
- \*\* A more fine-tuned way to restore symmetry [Achlioptas and Peres, STOC 2003]
- \*\* Let X be the sum over satisfying assignments of

$$\prod_{c} \eta^{\#}$$
 of satisfied literals in  $c$ 

\*\* Idea:  $\eta$  < 1 discourages the majority assignment

# CLOSING THE FACTOR OF 2

\*\* The right value of  $\eta$  restores local symmetry:



\*\* Implies  $r^k > 2^k \ln 2 - O(k)$ : within 1 + o(1)!

### MORE APPLICATIONS OF THE SECOND MOMENT

- \*\* Hypergraph 2-Coloring, or "Property B" [Achlioptas & Moore]
- \*\* MAX k-SAT [Achlioptas, Naor, Peres]
- \*\* Graph Coloring on G(n,p) [Achlioptas & Naor] and random regular graphs [Achlioptas & Moore]

## A CONJECTURE ABOUT GRAPH COLORING

Let  $A = (a_{ij})$  be a doubly-stochastic matrix. Is the function

$$\left(1 - \frac{2}{k} + \sum_{ij} a_{ij}^2\right)^{d/2} \exp\left(-\sum_{ij} a_{ij} \ln a_{ij}\right)$$

maximized by matrices of the form

$$A = b\mathbb{1} + cJ?$$

\*\* This would determine  $d_k$  to within O(1).

### ACKNOWLEDGMENTS

