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Abstract. Previous studies have found broad distributions, resembling
power laws for different measures of the size of rainfall events. We inves-
tigate the large-event tail of these distributions and find in one measure
that tropical cyclones account for a large proportion of the very largest
events outside the scaling regime, i.e., beyond the cutoff of the power
law. Tropical cyclones are sufficiently rare that they contribute a sig-
nificant number only in a regime of large event sizes that common rain
events almost never reach. The different physical dynamics of tropical
cyclones permits a substantial extension of the tail in this large-event
regime.

1 Introduction

This volume addresses the re-lationship between commonly observed everyday events
and uncommon extreme events in various physical systems. Are the extreme events
only different by being very big (or very small) and infrequent or are they fundamen-
tally different “Dragon-Kings”? This nomenclature was introduced by Sornette [1] to
denote in particular extreme events in distributions that are well approximated by
power laws in a large scaling regime. What happens outside this regime? In Ref. [1],
Dragon-Kings are associated with more-likely extreme events than a simple extrapola-
tion of the body of the distribution would suggest. In Chinese mythology, four Dragon
Kings are rulers of water-related weather phenomena. It would thus be apt if traces
of Dragon-Kings could be found in the atmospheric system. We find no footprints of
the legendary creatures in common everyday rainfall but argue for indications of their
presence in the form of hurricanes (known as typhoons in the northwestern Pacific), or
generally in tropical cyclones. For simplicity, we use the term “hurricane” in the text
for strong tropical cyclones in any ocean basin (even when identified by morphology
rather than a wind speed criterion), and use the term “tropical cyclone” when we are
not referring to the strong-event end of the spectrum. We begin by summarizing a
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perspective on atmospheric convection and rainfall which we have developed over the
past decade and then discuss potential signatures of Dragon-Kings.
Common everyday rain showers come in all sizes, reflected by a broad scaling

region in the size distribution. In this region there are no signs of Dragon-Kings,
as reviewed below. However, the atmospheric dynamics literature provides evidence
that hurricanes are an example of rare extremely large events that result from a
switch to a different physical regime [2–5]. Everyday rain showers primarily dissipate
energy stored in the atmosphere, whereas hurricanes rely on an efficient way to access
warm sea surface water as a different reservoir of energy. Hurricanes are known to be
extreme events in different measures – a common definition of a hurricane is a tropical
storm with extreme wind speed, for example sustained winds above 74 mph. The high
wind speed, a simple threshold, is accompanied by morphological characteristics: the
development of a closed-vortex system and the eye in the center. Hurricanes are thus
extreme entities, physically different from a convective drizzle, a thunderstorm, a
squall line or a large but less-organized mesoscale convective cloud cluster or tropical
wave. There is thus reason to postulate a priori, based on the physical differences,
that hurricanes may constitute an example of Dragon-Kings in this context. We ask
here how they compare in a measure of rain event size.

2 Atmospheric convection and rainfall

The rain rate averaged over the globe is about 0.1 mmh−1, corresponding to a light
drizzle, which also happens to be a common operational definition of detectable rain
as opposed to no rain, for instance with optical rain gauges [6]. Local and highly
temporally resolved measurements reveal a great degree of variability. At one-minute
and square-decimeter resolution it is not uncommon to observe 100 mmh−1 in a one-
year record in many places on Earth [7]. Taking the resolution to extremes, there is
an upper bound on precipitation rates: individual drops cannot fall faster than about
10 m/s, because they become unstable and break up into smaller, slower, droplets
at such speeds. This implies an upper bound of about 107 mmh−1 for the rain rate.
The durations of rain showers on human scales extend over 7 orders of magnitude
from about a millisecond (the impact duration of an individual drop) to several hours
in many places. Areas covered by precipitating cloud clusters, again depending on
resolution, extend over 18 orders of magnitude from about 0.1 mm2 (the size of the
smallest individual raindrops [8]) to hundreds of thousands of square-kilometers [9].
This leads to an enormous range of possible event sizes, where an event is defined

as the volume of water (proportional to the energy; dimension: Length3) released from
the atmosphere without interruption in space or time on given spatial and temporal
resolutions, see Fig. 1.

2.1 Event-depth distribution

In 2002, two of us (OP and KC) analyzed a time series from a single location and
quantified the event-depth distribution [10]. A time series leaves out the spatial aspect
in the sense that space is fixed to the measuring site (one could argue that because
the rain field moves across the measuring site, the time series is actually a slice where
space and time are mixed). We defined a time event as a sequence of consecutive non-
zero rain rates, at one-minute resolution, and the associated event depth as the local
depth of the layer of water released, d =

∑
time event q(x, y, t)∆t (dimension: Length),

where x, y are the coordinates of the measuring site and the sum runs over the time
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Fig. 1. Illustration of the spatio-temporal nature of rain events, where time increases in
the up-direction. An event is defined as a cluster of raining nearest neighbors in a discrete
space-time (the discreteness being the resolutions of the measurements in space and time),
solid lines. Two events are displayed. The event size, s, is the volume (in m3) of the water
released over such a cluster. It is computed by summing the rain rate q(x, y, t) (dimension:
Length/Time) over an event, multiplied by the volume of a voxel in space-time ∆x∆y∆t
(dimension: Length2× Time), that is, s =

∑
event q(x, y, t)∆x∆y∆t (dimension: Length

3).

event. Similar studies had been attempted earlier with much coarser temporal and
rain-rate resolutions [11].
The event depth distribution is very broad [10], and its shape resembles a power

law spanning about 3 orders of magnitude, even more in finer resolution. We recently
confirmed that power-law exponents fitted to event-depth distributions show little
variation between different locations on Earth, provided the measurements are carried
out with the same type of instrument at the same resolution [7], see Fig. 2.
The tails of the distributions do not follow an extrapolation of the power law but

fall off more rapidly. We interpret this as a reflection of the finite capacity of the
system.
There is no evidence of Dragon-Kings in the event-depth distributions, that is, for

anomalously high likelihoods of very large events, or a regime shift.

2.2 Event-area distribution

Numerous studies have addressed the spatial aspect of rain events in observational
work on different types of spatial clusters related to rainfall, clouds and convection
[12–21]. We added our own analysis, focusing specifically on the instantaneous area
of a precipitation cluster, a =

∑
cluster∆x∆y (dimension: Length

2), where the sum
runs over a nearest-neighbor cluster of precipitating pixels in one time slice, observed
with the precipitation radar on the TRMM (Tropical Rainfall Measuring Mission)
satellite [9], using an algorithm from [17], see Fig. 3. Hence, we are not taking into
account the rain rates, q(x, y, t), nor are we integrating over time.
Similar to the event depths displayed in Fig. 2 [10], the precipitation areas in

Fig. 3 [9] have broad distributions, as expected. The distribution resembles a power
law over about 3 orders of magnitude for the areas in satellite data.

2.3 Self-organized criticality–control & order parameter

The findings of scale-free event-depth and event-area distributions indicate that the
system may be an example of self-organized criticality. By this we mean that the
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Fig. 2. (a) The event-depth probability density function (PDF) Pd(d) versus event depth
d. Inset: rain-rate vs. time, showing two events, defined using the zero-threshold for the
measurement (horizontal line). Details in [7]. (b) The transformed PDF, dτdPd(d), where the
data in (a) are multiplied with the inverse of the best-fit power law (exponent τd = 1.17). The
horizontal part, spanning about 3 orders of magnitude, indicates the region where the power
law holds, and the upper cutoff, where deviation from the power law becomes significant, is
clearly visible.

point at which the atmosphere becomes unstable to convection, or where rainfall
is generated, could be the critical point of a continuous phase transition: An order
parameter (the rain rate) switches from being zero (no rain) to non-zero (rain). More-
over, fluctuations in this variable should diverge in the sense that there are spatial
and temporal correlations that prevent fluctuations from disappearing with the com-
mon dimensional scaling as larger regions of space-time are averaged over. Finally,
we expect this critical point to be attractive in the sense that we expect the system
to self-organize towards it.
In a 2006 study two of us (OP and DN) tested the hypothesis of such an underly-

ing phase transition more directly [22]. Using satellite estimates [23], we found that
averages of the instantaneous precipitation rate, q(x, y, t), our supposed order para-
meter, conditioned on the column-integrated water vapor, w(x, y, t), a good proxy for
our control parameter, show a sharp power-law-like pick-up above a certain value (the
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Fig. 3. (a) The inferred PDF of cluster areas Pa(a) versus event area a (in km
2) in the

West Pacific. (b) Transformed PDF, a2.05Pa(a) versus event area a. The horizontal line
corresponds to a power-law decay of the form Pa(a) ∝ a−2.05. For small areas the discreteness
of the lattice becomes important.

“critical point”) of the water vapor, see Fig. 4. This observation, ⟨q⟩(w) = a (w − wc)β
for w > wc, corroborated the hypothesis that the atmospheric system is operating
close to a critical point.
Furthermore, the system was mostly found close to the onset of the instability,

which we interpreted as evidence for self-organization towards this special point, and
we confirmed, using finite-size scaling of the variance of q(w), that fluctuations de-
cayed anomalously slowly with averaging scale. These analyses were later improved
by including various measures of temperature, both of the sea-surface and of the tro-
posphere [24]. Studies of entire vertical profiles of measures of stability helped explain
the success we had had with using only water vapor as a proxy for the control para-
meter [25].
The idea of an attractive point in the phase space of the atmospheric system

that marks the onset of convection was first explicitly communicated by Arakawa
and Schubert in 1974 [26], who argued both theoretically and empirically that the
troposphere self-organizes to a state, the so-called “Quasi-Equilibrium state” (QE
state), where it is marginally convectively stable. Largely, this was thought of as a
result of the separation between the fast time scale of convective energy dissipation
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Fig. 4. The precipitation rate ⟨q⟩(w) and its associated variance σ2q versus column-integrated
water vapor w for the tropical eastern and western Pacific. The solid line is a fit of the form
⟨q⟩(w) = a (w − wc)β for w > wc with β = 0.215. The inset displays on double-logarithmic
scales the precipitation rate as a function of reduced water vapour ∆w = (w − wc)/w for
western Pacific, eastern Pacific, Atlantic, and Indian Ocean (for basin definitions see [22]).
The data in the inset are shifted by a small arbitrary factor for visual clarity. The straight
lines have slope β = 0.215.

and the slow time scale of destabilization through heating and moistening near the
ground and radiative cooling aloft.
Thus our own studies – re-phrased in our current understanding of the problem –

are consistent with the hypothesis that the QE state may be critical.

3 Dragon-Kings

We have shown above that the distributions of event-depth (dimension: Length)
and event-area (dimension: Length2) are very broad, see Fig. 2 and Fig. 3. We
were not able to measure exactly what we would like to measure, namely the size
s =

∑
event q(x, y, t)∆x∆y∆t (dimension: Length

3), where the sum runs over the
event, because data sets that cover both time and space at acceptable resolutions are
difficult to construct. If such data were available, a new feature might emerge. Whereas
the distributions displayed in Fig. 2 and Fig. 3 seemed to cut off sharply beyond a
certain scale, it seems likely that in the fully space-time integrated sense hurricanes
constitute a different kind of event. Hurricanes are effective heat engines that connect
the atmospheric surface boundary layer (which is warmed and moistened by ocean
surface water) to the cold tropopause. Strong surface winds enhance the transfer of
energy from the sea surface [2]. Other precipitating systems with specific relations of
wind speed and moist convection can be sustained by similar mechanisms [27,28], but
the strong winds permitted by the closed vortex morphology of hurricanes contribute
to much more effective maintenance of the system. These heat engines can sustain
themselves over many days or even weeks, underscoring the differences from ordinary
cloud clusters, which tend to fall apart more rapidly.
In a previous study, two of us (OP and DN) investigated the relationship in

Fig. 4 using pixels from a space-time window that included Hurricane Katrina [29],
see Fig. 5. The conditioned precipitation rate picks up similarly as a function of
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Fig. 5. The rain rate versus the water vapor from TRMM microwave retrievals during
hurricane Katrina (red symbols). Note the similarity with the data displayed in Fig. 4.
Indeed, the blue line is a fit of the form (w − wc)β with β = 0.21. The difference in estimates
of the rain rate amplitude is due to an updated retrieval algorithm being used here [30], and
the difference in wc reflects the difference in tropospheric temperatures in the West Pacific
and the Gulf of Mexico. The green symbols show the frequency at which a given water vapor
was observed (precipitating pixels only, logarithmic right y-axis), and the turquoise straight
line represents an exponential decay as is observed in less organized convection [29], which
we claim does not fit to the hurricane data.

water vapor. But the frequency with which high water vapor occurred is different
(green line in Fig. 5). In [24] the frequency of water vapor in precipitating pixels
was found to be approximately symmetric about the maximum just below wc and
to decay approximately exponentially above wc at a rate of 3.8 mm−1, represented
by the turqoise line in Fig. 5. While the sample is small, neither is this line is a
good fit to the hurricane data, nor does the distribution (green line) look symmetric.
The hurricane sustained over a period of several days a level of water vapor that
usually only occurs very rarely and for brief periods, resulting in relatively many
high-water vapor measurements. The value of 75 mm was reached 68 times (green
symbols in Fig. 5). This bin appears to include measurements that maxed out the
retrieval algorithm.
This is the signature of the fundamentally different dynamics by which high values

of water vapor are maintained over a long time within hurricanes. In order to quantify
this in observations we looked for time series that contained data collected during a
hurricane. The only series we found was from an ongoing experiment in Barbados,
carried out by the Max-Planck Institute for Meteorology in Hamburg. On 29 October
2010, the measuring site was hit by hurricane Tomas. Unfortunately, the hurricane
led to a loss of electricity on the island and the time series was interrupted. We
mention this here to make a point about extreme events: Truly extreme events that
result from different physical processes and may be orders of magnitude smaller or
larger than “ordinary” events may often be missed because they escape our attention,
measurements are not designed to capture them, or people have other things to worry
about than academic interests.

3.1 Event power

Using the precipitation clusters defined in [9], we make another attempt at iden-
tifying the nature of the largest spatio-temporally integrated rain events. Instead
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Fig. 6. (a) The inferred PDF of event power Pp(p) versus event power p (in m
3s−1) in

the West Pacific from 1 January 1998 till 31 December 2006 (open circles) from TRMM
radar retrievals, see [9]. The straight line has slope −1.87. (b) Transformed PDF, p1.87Pp(p)
versus event power p. Hence, a horizontal line corresponds to a power-law decay of the form
Pp(p) ∝ p−1.87.

of focusing on the depth or the area of a precipitation cluster, we compute the
total instantaneous precipitation rate in a cluster, which we call the event power,
p =
∑
cluster q(x, y, t)∆x∆y (dimension: Length

3/Time), where the sum, like for the
areas, runs over a cluster of nearest-neighbor precipitating pixels in a single time
slice. This yields the volume of water per time that is shed from the cluster. It misses
the time dimension in that it does not contain any information about how long the
cluster continued to shed water at this rate. We expect hurricanes to be large in this
measure, even though it does not include their distinguishing persistence.
The event power PDF is shown in Fig. 6. Similar to the event depth and event

area, the event power has a broad distribution. We find that the data is consistent
with a power-law decay over approximately 3 orders of magnitude.
Next, we identified the 10 most powerful clusters for each ocean basin and in-

spected them in satellite microwave retrievals [30] (available from http://www.ssmi.
com/tmi/tmi daily.html), to check which were tropical cyclones. We did this by eye
based on morphological characteristics and persistence, using data for precipitation,
water vapor and wind. Each cluster was located in the satellite image, and we looked
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for approximately circular structure in the rain field (aside from the characteristic rain
bands that break circular symmetry), examining also images from 2 days before and
after the event to clarify whether not fully closed vortices would eventually turn into,
or were the remnants of, tropcial cyclones, using persistence of the circular structure
as another criterion for classification. The border-line cases would have been classified
either as hurricanes or as tropical storms in named-hurricane lists. The choice of these
criteria was made to avoid using an explicit amplitude threshold in the definition, as
is the case for “named storm” criteria (which use wind speed thresholds in deter-
mining when a tropical storm is assigned a name and when it enters the hurricane
category).
Out of the 10 most powerful clusters, one was a hurricane in the Atlantic basin,

where the largest systems tend to be convective clusters in the Gulf of Guinea; none in
the East Pacific, where the largest systems are far off the (cold-water) American West
coast towards the West Pacific; two were hurricane-like tropical storms in the Indian
Ocean, and 7 out of 10 were hurricanes or hurricane-like in the West Pacific. In the
West Pacific there is one instance in the 10 most powerful events of a hurricane being
counted twice, during different overpasses of the satellite – the 3rd and 4th largest
events here are the same hurricane (on 13 April 2004), illustrating the persistence
argument. No non-hurricanes appeared twice in this list.
We then focused on the West Pacific and looked at the 400 most powerful events,

categorizing them as hurricanes or non-hurricanes, again by eye as described above.
We identified a total of 87 hurricanes and 313 non-hurricanes.
We compared these results to the following automated procedure: we used the

Best Track Archive for named storms of the Joint Typhoon Warning Center, available
at http://www.usno.navy.mil/JTWC/. Clusters were identified as hurricanes if they
were within two days and ±10◦ of the track of a named storm in the typhoon or
supertyphoon category. We found close correspondence between hurricanes identified
by eye and automatically, and continued to use the automated procedure for the
largest 10,000 clusters in West Pacific.
Figure 7(a) displays these 10, 000 events in ranked order, that is, the most pow-

erful event is given rank 1, the next-largest event is given rank 2 and so on. The
approximately exponential range in this figure (from about 100,000 m3s−1 corre-
sponds roughly to the region in Fig. 6 above the large-scale cutoff, where the power
law breaks down. Also shown are the ranked hurricanes (red circles with line), where
the largest hurricane is assigned rank 1, the second-largest hurricane rank 2 etc., and
the ranked non-hurricanes (black squares with line). In Fig. 7(b) we show the frac-
tion of events larger than a given size that are hurricanes. This fraction increases with
event power, showing that the extreme tail is dominated by hurricanes. If we restrict
the analysis to geographic regions and seasons known to be physically most favor-
able to hurricane formation, more non-hurricanes than hurricanes are eliminated, and
the transition from the non-hurricane to hurricane regime changes slightly, but the
general picture remains similar (not shown).
Figure 7(b) conveys an impression of statistical significance. Our observations

suggest that the tail of the distribution is dominated by hurricanes. The figure shows
an increase with size in the proportion of observed events larger than a given size being
hurricanes. But since the number of observations decreases towards the extreme tail of
the distribution, the significance of this observation decreases here too. By significance
we mean here a likelihood that in some ensemble of similar observations a similar trend
would be observed. For a rough quantitative estimate of that likelihood we assume the
following null model (to generate a reference ensemble): events are either hurricanes
or not, with probability 738/9, 967 ≈ 7.40%, i.e. the proportion of hurricanes in all
observed events equally sized or larger than the smallest observed hurricane, such
that the number of hurricanes in any sub-set of events is binomially distributed.
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Fig. 7. (a) Rank (see text) of events, hurricanes and non-hurricanes as a function of event
power, focusing on the tail of the event-power PDF from Fig. 6, displaying the 10, 000 largest
events (symbols only), the 738 largest hurricanes (red circles with lines), and the largest 9, 262
non-hurricanes (black circles with line), indicating that even without taking the duration of
the events into account, the hurricanes dominate the tail. The y-axis is logarithmic so that
a straight line corresponds to an exponential decay. (b) For each event in the tail, whether
hurricane (red circle) or not (black square) we show the fraction of events larger than p that
are hurricanes. The solid black squares (with line) indicate the likelihood (see main text) for
an equal or greater number of hurricanes to be observed in the sample of events larger than
p. The null model forces this likelihood to be 1/2 at the lower end, values are shown on the
right vertical axis. Even in the extreme tail, where the statistics are worse, the likelihood of
obtaining the observations from the null model (see text) is smaller than one in a thousand.

What then would be the probability to observe an equal or greater proportion of
hurricanes than was actually observed, as a function of event size? This probability is
shown on the right-hand vertical axis in Fig. 7(b), using the Gaussian approximation
to the binomial distribution. By construction, this likelihood is 1/2 for the smallest
hurricane. It initially decays quickly to below 10−16 and increases again in the extreme
tail, where the statistics worsen, to a maximum for the largest hurricane of less than
10−3. In other words, even where the statistics are worse, less than one in a thousand
ensemble members (based on the null model) will produce a hurricane propensity
equal to or larger than the observations.
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Whether hurricanes are Dragon-Kings in the sense of generating more-likely ex-
treme events than a simple extrapolation of the body of the distribution would sug-
gest, as proposed in Ref. [1], depends on the distribution that is being extrapolated.
Where the power law holds, hurricanes are statistically insignificant in number. Be-
yond the cutoff, for p > 105 m3s−1, say, one could be tempted to approximate the
distribution by an exponential or some other fast-decaying function. Without a sep-
arate criterion to distinguish among events, the fit of such a function to data would
be heavily influenced by hurricanes. Because we have available separate criteria to
distinguish hurricanes, it may be seen (Figure 7a) that the contribution to the tail
associated with them falls much less quickly than that associated with other events.
It is thus reasonable to use the term Dragon-Kings for hurricanes to refer to the fact
that they are extreme in this measure and different from other events in morphology
and longevity.
Corral, Osso and Llebot [31] followed named storms through space and time,

which enabled them to observe something similar to the energy released in space-
time events of the type illustrated in Fig. 1. They found that estimates of the energy
dissipated through surface drag in a hurricane over its lifetime ranged over about two
orders of magnitude in a broad power-law like distribution. Our measure of hurricane
size does not allow us to test this observation. Firstly because we can only look
at the very large-event tail of the distribution (smaller observed power may be the
result of a hurricane lying only partly inside the satellite swath), secondly because
we use a measure of energy dissipated per time, whereas Ref. [31] estimated total
energy dissipated, i.e., integrated over time. This integration necessarily broadens the
distribution. Our data do not allow a similar integration. It is instructive to compare
different estimates of event power. Measures of energy dissipated by surface drag
in the atmospheric boundary layer are relevant to the destructive power of storms.
Emanuel estimates this power of a large Pacific supertyphoon as 3 × 1013W [32].
Our measure in m3 s−1 can be converted into Watts using the latent heat of water.
This procedure yields an estimate of the total power generated by the hurricane heat
engine. This is considerably larger than the power dissipated through surface drag
because because much of the energy goes into the increase in potential energy of
air lifted in the storm (which descends over large distances). Figure 7 ranges up to
powers of 1015W, in agreement with other estimates of the same quantity [33] for the
largest typhoons, and a good order of magnitude more than Emanuel’s estimate for
the maximum surface-drag energy dissipation rate.

3.2 Summary

Asking whether, in the context of rainfall, “Dragon-Kings” can be thought of as ex-
emplified by hurricanes, we find that the answer requires one to define what appears
to be a borderline case. On the one hand, hurricanes are extreme events that rely on
physical processes which are different from those at work in everyday events. Even for
large available data sets, it is challenging to quantify in how far the hurricanes dom-
inate the tail of event size distributions because measurements of extremes are rare,
technically difficult, and the measure in which we expect rainfall from hurricanes to
be most distinct cannot be obtained because of a lack of spatio-temporally complete
highly resolved data sets. Ordinary precipitation events exhibit a power-law distrib-
ution in a measure of their size (event power, i.e., rain rate integrated spatially over
an event). If the definition of Dragon-Kings is taken to be restricted to phenomena
that stand distinctly above the power law in the size distribution, then hurricanes
do not fall into this category. Nonetheless, we find evidence that hurricanes extend
the tail in a manner that greatly increases the probability of the largest event sizes.
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This occurs where the distribution of non-hurricane events reaches the roughly expo-
nential cut off at the end of the power law range. As a distinct physical process that
generates extreme events beyond the distribution of ordinary events hurricanes are,
if not Dragon-Kings, at least Dragon Princes.
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site and making them available to us in near-real time. Cluster data for Fig. 3 and Fig. 6
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analyze data shown in Fig. 2 for Ref. [7]. O.P. acknowledges support from ZONlab ltd. D.N.
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