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Abstract. We compare rain event size distributions derived from measurements
in climatically different regions, which we find to be well approximated by power
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the scale-free aspects are related to the absence of characteristic scales in the
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1. Introduction

Atmospheric convection and precipitation have been hypothesized to be a real-world
realization of self-organized criticality (SOC). This idea is supported by observations of
avalanche-like rainfall events [1, 2] and by the nature of the transition to convection in
the atmosphere [3, 4]. Many questions remain open, however, as summarized below. Here
we ask whether the observation of scale-free avalanche size distributions is reproducible
using data from different locations and whether the associated fitted exponents show any
sign of universality.

Many atmospheric processes are characterized by long-range spatial and temporal
correlation, and by corresponding structure on a wide range of scales. There are
two complementary explanations why this is so, and both are valid in their respective
regimes: structure on many scales can be the result of different processes producing many
characteristic scales [5, 6]; it can also be the result of an absence of characteristic scales
over some range, such that all intermediate scales are equally significant [7]. The latter
perspective is relevant, for instance, in critical phenomena and in the inertial subrange of
fully developed turbulence.

Processes relevant for precipitation are associated with many different characteristic
time and spatial scales, see e.g. [6]. The list of these scales has a gap, however, from a
few kilometers (a few minutes) to 1000 km (a few days), spanning the so-called mesoscale,
and it is in this gap that the following arguments are most likely to be relevant.

The atmosphere is slowly driven by incident solar radiation, about half of which is
absorbed by the planet’s surface, heating and moistening the atmospheric boundary layer;
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combined with radiative cooling at the top of the troposphere this creates an instability.
This instability drives convection, which in the simplest case is dry. More frequently,
however, moisture and precipitation play a key role. Water condenses in moist rising air,
heating the environment and reinforcing the rising motion, and often, the result of this
process is rainfall. The statistics of rainfall thus contain information about the process
of convection and the decay towards stability in the troposphere. A common situation
is conditional instability, where saturated air is convectively unstable, whereas dry air
is stable. Under-saturated air masses then become unstable to convection if lifted by a
certain amount, meaning that relatively small perturbations can trigger large responses.

Since driving processes are generally slow compared to convection, it has been argued
that the system as a whole should typically be in a far-from equilibrium statistically
stationary state close to the onset of instability. In the parlance of the field, this idealized
state, where drive and dissipation are in balance, is referred to as ‘quasi-equilibrium’
(QE) [8]. In [3], using satellite data over tropical oceans, it was found that departures
from the point of QE into the unstable regime can be described as triggering a phase
transition whereby large parts of the troposphere enter into a convectively active phase.
Assuming that the phase transition is continuous, the attractive QE state would be a case
of SOC—a critical point of a continuous phase transition acting as an attractor in the
phase space of a system [9, 10].

The link between SOC and precipitation processes has also been made by investigating
event size distributions in a study using data from a mid-latitude location [2]. Both the
tropical data in [3] and the mid-latitude data in [2] support some notion of SOC in
precipitation processes, but the climatologies in these regions are very different. Rainfall
in the mid-latitudes is often generated in frontal systems, whereas in the tropics, much of
the precipitation is convective, supporting high rain rates. It is not a priori clear whether
these differences are relevant to the SOC analogy, or whether they are outweighed by the
robust similarities between the systems. For instance, drive and dissipation timescales are
well separated also in the mid-latitudes. In time series from Sweden the average duration
of precipitation events was found to be three orders of magnitude smaller than the average
duration of dry spells [11]. It is therefore desirable to compare identical observables from
different locations.

Scale-free event size distributions suggest long-range correlation in the system, which
in turn hints at a continuous transition to precipitation. Similar effects, however, can also
result directly from a complex flow field, as was shown in simulations using randomized
vortices and passive tracers [12]. Since the fluid dynamics is complex enough to generate
apparent long-range correlation, and it is difficult from direct observation to judge whether
the transition is continuous, we cannot rule out a discontinuous jump.

This uncertainty is mirrored in parameterizations of convection. The spatial
resolution of general circulation models is limited by constraints in computing power
to about 100 km in the horizontal. Dynamically there is nothing special about this
scale, and the approach in climate modeling for representing physical processes whose
relevant spatial scales are smaller is to describe their phenomenology in parameterizations.
Parameterizations of convection and precipitation processes often contain both continuous
and discontinuous elements. For instance, the intensity of convection and precipitation
typically depends continuously on a measure of convective plume buoyancy (such as
convective available potential energy) and water vapor content [8, 13], but sometimes
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Table 1. Observation sites with corresponding time periods, number of observed
precipitation events N , estimated annual precipitation in millimeters, and
location.

Site From Until N Precip./yr Location

Manus Island, 02/15/2005 08/27/2009 11 981 5 883.29 2.116◦S, 147.425◦E
Papua New Guinea
Nauru Island, 02/15/2005 08/27/2009 5 134 1 860.87 0.521◦S, 166.916◦E
Republic of Nauru
Darwin, Australia 02/15/2005 08/27/2009 2 883 1 517.09 12.425◦S, 130.892◦E
Niamey, Niger 12/26/2005 12/08/2006 262 608.37 13.522◦N, 2.632◦E
Heselbach, Germany 04/01/2007 01/01/2008 2 439 2 187.85 48.450◦N, 8.397◦E
Shouxian, China 05/09/2008 12/28/2008 480 1 221.20 32.558◦N, 116.482◦E
Graciosa Island, Azores 04/14/2009 07/10/2010 3 066 702.35 39.091◦N, 28.029◦E
NSA, USA 04/01/2001 10/13/2003 9 097 23 516.16 71.323◦N, 156.616◦E
Point Reyes, USA 02/01/2005 09/15/2005 579 797.85 38.091◦N, 122.957◦E
SGP, USA 11/06/2007 08/24/2009 1 624 968.95 36.605◦N, 97.485◦E

a discontinuous threshold condition is introduced to decide whether convection occurs at
all [14].

2. Data sets

We study rain data from all ten available sites of the Atmospheric Radiation Measurement
(ARM) Program, see www.arm.gov, over periods from about eight months to four years,
see table 1. Precipitation rates were recorded at 1 min resolution, with an optical rain
gauge, Model ORG-815-DA MiniOrg (Optical Scientific, Inc.) [15]. Data were corrected
using the ARM Data Quality Reports [16], and rates below 0.2 mm h−1 were treated as
zero measurements, as recommended by the ARM Handbook [15], see figure 1.

The measurements are from climatically different regions using a standardized
technique, making them ideal for our purpose. Three sites are located in the Tropical
Western Pacific (Manus, Nauru and Darwin), known for strong convective activity.
Niamey is subject to strong monsoons, with a pronounced dry season. Heselbach is a
mid-latitude site with an anomalously large amount of rainfall due to orographic effects.
Rainfall in Shouxian is mostly convective in the summer months, which constitute most
of the data set. Graciosa Island in the Azores archipelago is a sub-tropical site, chosen
for the ARM program to study precipitation in low clouds of the marine boundary layer.

Three data are less straightforward: the Point Reyes measurements specifically
target Marine Stratus clouds, which dominate the measurement period and are known
to produce drizzle in warm-cloud conditions (without ice phase). Unfortunately the
measurements only cover six months, and it is unclear whether observed differences are
due to the different physics or to the small sample size. The Southern Great Plains
(SGP) measurements suffer from a malfunction that led to apparent rain rates of about
0.1 mm h−1 over much of the observation period. The problem seems to be present
in most other data sets but is far less pronounced there, see figure 1. Measurements at
temperatures below 3 ◦C were discarded as these can contain snow from which it is difficult
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Figure 1. Probability (relative frequency) density of precipitation rate, r in
mm h−1. The vertical line indicates the lower intensity cutoff at 0.2 mm h−1.
Smaller rain rates are treated as zero. The peak around 0.1 mm h−1, most
pronounced in the Southern Great Plains data, is due to a malfunction of the
instrument. The Alaska data set contains mostly snow and is included only for
completeness.

to infer equivalent rates of liquid water precipitation. The North Slope of Alaska (NSA)
data set contains mostly snow; it is included only for completeness.

None of the data sets showed significant seasonal variations in the scaling exponents.
In the Point Reyes, SGP and NSA data we found slight variations but could not convince
ourselves that these were significant. Data from all seasons are used.

3. Event sizes

The data used here are (0+1)-dimensional time series, whereas the atmosphere is a (3+1)-
dimensional system. We leave the question unanswered as to which spatial dimensions
are most relevant—the system becomes vertically unstable, but it also communicates in
the two horizontal dimensions through various processes [4].

Following [2], we define an event as a sequence of non-zero measurements of the rain
rate, see inset in figure 2. The event size s is the rain rate, r(t), integrated over the event,
s =

∫
event dt r(t). The dimension of this object is [s] = mm, specifying the depth of the

layer of water left on the ground during the event. 1 mm corresponds to an energy density
of some 2500 kJ m−2 released latent heat of condensation. If the rain rate were known
over the area covered by the event, then the event size could be defined precisely as the
energy released during one event. Since spatial information is not available, it is ignored
in our study.

For each data set, the probability density function Ps(s) in a particular size interval
[s, s+∆s) is estimated as Ps(s) ≈ n(s)/(N∆s), where n(s) is the number of events in the
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Figure 2. Probability densities of event sizes, s in mm, and a power-law fit (black
straight line). Inset: precipitation rates from Niamey, including two rain events
lasting 7 and 15 min respectively. Interpreting reported rain rates of less than
0.2 mm h−1 as zero, the shaded areas are the corresponding event sizes.

interval and N the total number of events. We use (s +∆s)/s = 101/5 ≈ 1.58, i.e. 5 bins
per order of magnitude in s. Standard errors are shown, for Ps(s): assuming Poissonian
arrivals of events in any given bin, the error in n(s) is approximated by

√
n(s).

4. SOC scaling

Studies of simple SOC models that approach the critical point of a continuous phase
transition focus on Avalanche size distributions, which we liken to rain event sizes. Critical
exponents are derived from finite-size scaling, that is, the scaling of observables with
system size (as opposed to critical scaling, the scaling of observables with the distance
from criticality). In SOC models, moments of the avalanche size distribution scale with
system size L like

〈sk〉 ∝ LD(1+k−τs) for k > τs − 1, (1)

defining the exponent D, sometimes called the avalanche dimension, and the exponent
τs, which we call the avalanche size exponent. Equation (1) is consistent with probability
density functions Ps(s) of the form

Ps(s) = s−τsGs(s/sξ) for s > sl (2)

where sξ = LD, and the scaling function Gs(s/sξ) falls off very fast for large arguments,
s/sξ > 1, and is constant for small arguments, s/sξ & 1, down to a lower cutoff,
s = sl, where non-universal microscopic effects (e.g. discreteness of the system) become
important.

doi:10.1088/1742-5468/2010/11/P11030 6
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Figure 3. (a) Event size distributions shifted along the supposed power laws to
collapse the loci of the cutoffs. (b) Inferred scaling function Gs, using τs = 1.17
for all data sets. By far the largest deviations from a common scaling function are
observed for the unreliable data sets, Alaska (NSA) and Southern Great Plains
(SGP).

Assuming that we have observations from an SOC system, and that a significant part
of the observed avalanche sizes are in the region sl < s & sξ, we expect to find a range of
scales where the power law

Ps(s) = Gs(0)s−τs (3)

holds. Under sufficiently slow drive the exponent τs is believed to be robust in SOC
models [17, 18]. We infer event size distributions as in [2] from measurements in different
locations and compare values for the apparent avalanche size exponent τs. As a first step
to assess the validity of (3) we produce log–log plots of Ps(s) versus s and look for a linear
regime, figure 2. Since the study of critical phenomena is a study of limits that cannot be
reached in physical systems, the field is notorious for debates regarding the significance of
experimental work, which is especially true for SOC. While an element of interpretation
necessarily remains, we devise methods to maximize the objectivity of our analysis.

In our data sets, time series of rain rates from different locations, we interpret the
upper limit sξ of the scale-free range as an effective system size. We cannot control
this size; nonetheless the scaling hypothesis, (2), can be tested using appropriate moment
ratios [19]. For instance, sξ ∝ 〈s2〉/〈s〉, provided sl & sξ. Hence, to account for changes in
effective system sizes the s-axis in figure 2 can be rescaled to s〈s〉/〈s2〉, see figure 3(a). This
collapses the loci of the large-scale cutoffs. The Ps(s)-axis is rescaled by 〈s2〉2/〈s〉3 ∝ sτ

ξ ,
so that figure 3(a) shows the curves of figure 2 shifted along their supposed power laws,
without having to estimate any parameters. The curves are neither normalized nor do
they collapse vertically—the degree of vertical collapse is comparable to that in figure 2.
Plotting Ps(s)sτs against the rescaled variable s〈s〉/〈s2〉 produces figure 3(b) of the scaling
function Gs(s/(asξ)), where a is the proportionality constant relating sξ to the moment
ratio. This has the advantage of reducing the logarithmic vertical range, which makes it
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Table 2. Avalanche size exponent τs for all sites (last column). Lower and upper
end of fitting range (in mm), logarithmic range smax/smin, number of events N ,
number of events in the fitting range, N̄ , and a moment ratio proportional to the
cutoff sξ are shown. Brackets ( ) denote errors in the last digit, determined by
jackknife [22].

Site smin smax smax/smin N N̄ 〈s2〉/〈s〉(er) τs(er)

Manus 0.0069 18.7 2 719 11 981 9320 53(1) 1.19(1)
Nauru 0.0066 4.7 704 5 134 3996 37(1) 1.14(1)
Darwin 0.0067 21.6 3 230 2 883 2410 50(1) 1.16(1)
Niamey 0.0041 55.0 13 500 262 232 25(2) 1.19(3)
Heselbach 0.0072 1.4 195 2 439 1764 13(1) 1.18(2)
Shouxian 0.0037 2.5 677 480 406 39(2) 1.19(3)
Graciosa 0.0069 1.0 148 3 066 2260 14.4(3) 1.16(1)
NSA 0.0205 5.9 288 9 097 6030 47(1) 1.01(1)
Pt. Reyes 0.0062 66.7 10 796 579 427 37(2) 1.40(2)
SGP 0.0062 58.8 9 463 1 624 1196 27(1) 1.40(2)

possible to see differences in the distributions that would otherwise be concealed visually.
Figure 3(a) covers nine orders of magnitude vertically, whereas figure 3(b) covers little
more than two.

5. Exponent estimation and goodness of fit

For a detailed discussion, see appendix A. We apply a form of Kolmogorov–Smirnov
(KS) test [20] similar to that in [21]. First, a fitting range [smin, smax] is selected. In
this range the maximum-likelihood value for τs in (3) is found. Next, the maximum
difference between the empirical cumulative distribution in this range and the cumulative
distribution corresponding to the best-fit power law is found. The same measure is applied
to synthetic samples of data (each with the same number of instances), generated from
the best-fit power-law distribution. This yields the ‘p’-value, i.e. the fraction of samples
generated from the tested model (the best-fit power law) where at least such a difference
is observed. We stress that each synthetic data set is compared to its own maximum-
likelihood power-law distribution, i.e. an exponent has to be fitted for each sample, so
that no bias be introduced.

We keep a record of the triplet (smin, smax, τs) if the p-value is greater than 10% (our
arbitrarily chosen threshold). After trying all possible fitting ranges with smin and smax

increasing by factors of 100.01, we select the triplet which maximizes the number N̄ of
data between smin and smax.

The distributions in figure 2 are visually compatible with a power law (black
straight line) over most of their ranges. The procedure consisting of maximum-likelihood
estimation plus a goodness-of-fit test confirms this result: over ranges between 2 and 4
orders of magnitude, all data sets are consistent with a power-law distribution and the
estimates of the apparent exponents are in agreement with the hypothesis of a single
exponent τs = 1.17(3), brackets indicating the uncertainty in the last digit, except
for the three problematic data sets from Point Reyes, the Southern Great Plains and
Alaska. The complete results are collected in table 2. While the best-fit exponents in
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(a) (b)

Figure 4. (a) Color map showing the best-fit value for the exponent τs for all pairs
of smin and smax, (lower and upper ends of the chosen fitting range in mm) for
the Manus dataset. The large plateau corresponds to τs ≈ 1.17. (b) Analogous
plot for the p-value.

this table are surprisingly similar (given the climatic differences between the measuring
sites), the error estimates are unrealistically small. Taking the statistical results literally,
we would have to conclude that the exponents are very similar but mutually incompatible
(e.g. τManus

s = 1.18(1) and τNauru
s = 1.14(1)) suggesting that τs is not universal. On

physical grounds we do not believe this conclusion because systematic errors arising from
the measurement process, the introduction of the sensitivity threshold, binning during
data recording etc, are likely to be much larger than the purely statistical errors quoted
here. For example, [2] used a different type of measurement with a smaller sensitivity
threshold and led to a best estimate for the exponent of 1.36. Furthermore, the apparent
exponent can only be seen as a rough estimate of any true underlying exponent. We
tested that, fixing τs = 1.17, all data sets yield p > 10% over a range larger than two
and a half orders of magnitude, except for the three problematic data sets. A two-sample
Kolmogorov–Smirnov test for all pairs of datasets further confirms the similarity of the
distributions for the different sites, appendix B.

In figure 4(a) we show a color plot of all triplets (smin, smax, τs), corresponding to the
Manus dataset. There is a large plateau where τs ≈ 1.17, indicating that this value is the
best estimate for many intervals. Figure 4(b) is an analogous plot for the p-value, showing
that the goodness of the fit is best in the region of the plateau.

Climatic differences between regions are scarcely detectable in event size distributions,
which may be surprising on the grounds of climatological considerations. However, the
cutoff sξ, representing the capacity of the climatic region around a measuring site to
generate rain events, changes significantly from region to region, confirming meteorological
intuition. This is difficult to see in the logarithmic scales of figure 2 but is easily extracted
from the moments of the distributions, table 2. Thus, the smallest cutoff (and likely
maximum event size) in the ARM data is found in Heselbach (mid-latitudes), whereas
the largest is in Manus (Western Pacific warm pool). We note that 〈s2〉/〈s〉 is only

doi:10.1088/1742-5468/2010/11/P11030 9
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Figure 5. (a) Probability densities for dry spell durations (in min). The diurnal
cycle is most pronounced in Niamey, otherwise the distributions are similar.
(b) Distributions collapsed onto their scaling function, similar to figure 3(b).

proportional to the actual cutoff sξ. Assuming a box function for the scaling function
and using the value τs = 1.17, we can estimate the proportionality constant and find
sξ ≈ 2.2〈s2〉/〈s〉. With this estimate, none of the fitting ranges extends beyond the cutoff.

6. Dry spells

The durations of precipitation-free intervals have also been reported to follow an
approximate power law [23, 2]. We therefore repeat for dry spell durations the same
analysis as for the event sizes. Figure 5(a) shows the distributions, with a collapse
corresponding to figure 3(b) in figure 5(b). We notice the different strengths of the diurnal
cycle, here visible as a relative peak near one day dry spell duration. Exponents fitted to
the distributions are similar, see table 3. They also agree with the analyses in [23], where
a double-power-law fit was performed. For dry spell durations between a few seconds and
a few hours the authors found an exponent value of 1.35. The second, smaller, exponent
for longer dry spells found in that study may reflect the signal from the diurnal cycle.
This signal is strong in [2], where a single-power-law fit yielded an exponent estimate of
1.42.

7. Event durations

Precipitation event duration distributions are broad for all locations. Durations provide a
link to studies of geometric properties of precipitation fields. Numerous studies of tropical
deep convective rain fields [24], shallow convection fields [25], clouds [26]–[29], and model
data from large eddy simulations [30] have reported the distributions of ground covered
by events (in radar snap shots etc) to be well approximated by power laws. We note that

doi:10.1088/1742-5468/2010/11/P11030 10
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Table 3. Dry spell exponent (last column). Lower and upper end of fitting range
(in min), logarithmic range tdmax/tdmin, number of dry spells in data set, N , and
number of dry spells in the fitting range, N̄ , and a moment ratio proportional
to the cutoff are shown. Brackets ( ) denote errors in the last digit, determined
by jackknife. The number of dry spells need not be within ±1 of the number of
events, as our definition of an event (and a dry spell) implies that it can be split
in two if it contains an erroneous measurement. Note the magnitude of this effect
in the NSA data set.
Site tdmin tdmax tdmax/tdmin N N 〈td2〉/〈td〉(er) τd(er)

Manus 24.4 1 363.1 55.8 11 992 4505 2 149(20) 1.16(2)
Nauru 7.5 1 027.5 137.7 5 126 2912 3 557(50) 0.99(2)
Darwin 8.5 3 660.6 432.6 2 892 1595 19 477(368) 1.17(1)
Niamey 2.4 1 774.0 726.1 262 135 26 386(1699) 1.33(5)
Heselbach 9.5 5 748.0 605.4 2 441 1035 2 043(34) 1.37(2)
Shouxian 2.7 13 488.5 4957.1 478 365 8 776(404) 1.27(3)
Graciosa 14.6 415.2 28.5 3 068 1185 2 943(49) 1.28(3)
NSA 12.2 9 033.2 739.7 3 440 1531 4 293(73) 1.3(2)
Pt. Reyes 3.6 17 141.0 4826.3 579 379 5 513(233) 1.27(2)
SGP 8.4 2 248.7 268.5 1 625 523 17 243(463) 1.46(3)

Table 4. Duration exponent (last column). Lower and upper end of fitting range
(in min), logarithmic range twmax/twmin, number of events in data set, N , and
number of events in the fitting range, N̄ , are shown. Brackets ( ) denote errors
in the last digit, determined by jackknife.

Site twmin twmax twmax/twmin N N̄ 〈tw2〉/〈tw〉 τw(er)

Manus 34.4 641.9 18.7 11 981 1200 122(1) 2.12(4)
Nauru 25.4 437.5 17.2 5 134 540 106(1) 2.09(6)
Darwin 17.87 89.30 5.00 2 883 554 109(2) 2.0(1)
Niamey 2.7 211.8 78.4 262 157 79(5) 1.39(7)
Heselbach 18.2 1005.0 55.1 2 439 388 261(5) 1.97(6)
Shouxian 7.7 197.5 25.5 480 172 84(4) 1.73(9)
Graciosa 12.7 424.0 33.4 3 066 512 60(1) 2.12(6)
NSA 75.2 103.3 1.4 9 097 16 49(1) 6(3)
Pt. Reyes 5.7 784.0 138.6 579 178 272(1) 1.71(7)
SGP 9.4 278.2 29.7 1 624 303 143(4) 1.74(7)

in the clustering null model of critical two-dimensional percolation, clusters defined in
one-dimensional cuts, akin to durations, do not scale, whereas two-dimensional clusters,
akin to cloud-projections, do.

Applying to the durations the methods we used for the event sizes, we find
comparatively short power-law ranges, see table 4. The scaling range, if it exists, is
expected to be smaller than for event sizes, as the size distribution is a complicated
convolution of the event duration and precipitation rate distributions, figure 1, whose
product covers a broader range than either of the distributions alone. The event size
distribution is broader than the duration distribution also because long events tend to be
more intense (not shown).
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Figure 6. (a) Probability densities for event durations (in min) are broad for all
data sets. From a few min up to a few hundred min a power law with an exponent
τm ≈ 2.0 roughly describes the data. (b) Collapsed distributions, similar to
figure 3(b).

8. Conclusions

We find that the apparent avalanche size exponents, measured with identical instruments
in different locations, are consistent with a single value of τs = 1.17(3) for all reliable data
sets. We note that the data sets from Point Reyes and from the Southern Great Plains are
similar in many respects, despite the different reasons for treating them with suspicion.

The statistical error in this estimate is surprisingly small, but neither the value
itself nor the error change much using different fitting techniques or introducing different
sensitivity thresholds (not shown). Nonetheless we believe systematic errors to be larger.
Thus, the analysis gives an impression of the universality of the result but not necessarily
the physical ‘true’ value of the exponent. This does not contradict the climatological
situation—tropical regions, for instance, are expected to support larger events than mid-
latitude locations, which could be realized as a smaller exponent value τs. While the
exponents are not significantly different, the larger tropical events are reflected in the
greater large-scale cutoff of the tropical distributions. Similarly, the dry spell durations
seem to follow another power law with τd = 1.2(1), and regional differences can be seen
in the strength of the diurnal cycle and the cutoff dry spell duration. The broad range
of event durations, figure 6, suggests a link to the lack of characteristic scales in the
mesoscale regime, where approximately scale-free distributions of clusters of convective
activity, for example cloud or precipitation, have been observed to span areas between
O(1 km2) and O(106 km2) [25, 24, 30, 28, 26]. The observation of scale-free rainfall event
sizes suggests long-range correlation in the pertinent fields, a possible indication of critical
behavior near the transition to convective activity. Direct measurements of the behavior
of the correlation function for the precipitation field under changes of the (much more
slowly varying) background fields of water vapor and temperature are desirable to clarify
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whether the long-range correlation is a consequence of the flow field, of the proximity to
a critical point, or of a combination of both.
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Appendix A. Fitting procedure

In order to obtain reliable values of, for example, the exponent τs, independent of the
binning procedure used for the plots of Ps(s), we use maximum-likelihood estimation. We
assume a power-law distribution Ps(s) = aτss

−τs , with support [smin, smax]. Normalization
yields aτs = (1 − τs)/(s1−τs

max − s1−τs
min ) for a given value of τs.

We compute the log-likelihood function,

L := ln
N̄∏

i=1

Ps(si) =
N̄∑

i=1

ln
(
aτssi

−τs
)

(A.1)

where the index i runs over all N̄ events whose size si is between smin and smax. Holding
smin and smax fixed, the value of τs which maximizes L is the maximum-likelihood estimate
of the exponent. Uncertainties in τs are determined using the jackknife method.

The goodness of the fit is assessed by a Kolmogorov–Smirnov (KS) test [20]. The KS
statistic, or KS distance, d, is defined as

d := max
smin≤s≤smax

|SN̄(s) − Fs(s)| (A.2)

where SN̄(s) denotes the empirical cumulative distribution, defined as the fraction of
observed events with a size smaller than s, in the interval [smin, smax]. Thus, ordering
the observed values by size, s1 ≤ · · · ≤ si ≤ si+1 · · · ≤ sN̄ , we have SN̄ (s) = i/N̄
if si < s ≤ si+1; Fs denotes the cumulative distribution of the maximum-likelihood
distribution, Fs(s) :=

∫ s
smin

Ps(t) dt.
The KS distance translates into the p-value. The p-value is the probability that

synthetic data, here drawn from a power-law distribution with exponent τs, result in a KS
distance of at least d. For instance, p = 10% means that for power-law-distributed data
with exponent τs there is a probability of 0.90 that the KS distance takes a value smaller
than d. Thus, if the data really are generated by a power law and we decide to reject the
power law as a model if p < 10%, we will reject the correct model in 10% of our tests.
Conversely, decreasing the limit of rejection in the p-value implies that we accept more
false models.
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In our implementation of the KS test the distribution to be tested, Ps(s), is not
independent of the empirical data. This is because the exponent τs is obtained from the
data that are later used to test the distribution. We therefore cannot use the standard
analytic expression for p(d), see [20], chapter 15. Instead, we determine the distribution
of the KS distance and therefore the p-value by means of Monte Carlo simulations: we
generate synthetic power-law-distributed data sets between smin and smax with exponent
τs and number of data N̄ (see table 2), and proceed exactly in the same way as for the
empirical data, first obtaining a maximum-likelihood estimate of the exponent τs and then
computing the KS distance between the empirical distribution of the simulated data and
the fitted distribution containing the estimated value of τs. The p-value is obtained as the
fraction of synthetic data sets for which the KS statistic is larger than the value obtained
for the empirical data.

The final step is to compare results for different ranges [smin, smax]. We try all possible
fitting ranges with smin and smax increasing by factors of 100.01 ≈ 1.023. We choose to
report those intervals [smin, smax] that contain the largest number of events N̄ with a
corresponding p-value larger than 10%.

Appendix B. Two-sample Kolmogorov–Smirnov tests

A two-sample Kolmogorov–Smirnov test was performed for each pair of data sets, i, j to
test whether the two underlying event size probability distributions differ. This test does
not assume any functional form for the probability distributions [20]. As in the fitting of
the exponent, we vary the testing ranges [smin, smax], keeping those which yield p > 10%.
We report the range with the maximum effective number of data, N̄eff ≡ N̄iN̄j/(N̄i + N̄j).
The results, shown in table B.1, confirm that the pairs of distributions from the reliable
data sets are similar over broad ranges.

Table B.1. Maximum range smax/smin over which the p-value of a two-sample
KS test is greater than 10%.

Nauru Darwin Niamey Heselbach Shouxian Graciosa NSA Pt. Reyes SGP

Manus 5386 16 257 16 386 679 6 355 638 14 32 8
Nauru — 6 753 13 495 236 221 342 27 19 7
Darwin — — 12 247 236 271 575 27 16 5
Niamey — — — 3466 16 420 2 358 1599 668 253
Heselbach — — — — 14 600 13 265 18 20 5
Shouxian — — — — — 26 440 13 65 39
Graciosa — — — — — — 11 17 589
NSA — — — — — — — 10 3
Pt. Reyes — — — — — — — — 19 916
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