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Abstract We study systems with a continuous phase transition that tune their parameters to
maximize a quantity that diverges solely at a unique critical point. Varying the size of these
systems with dynamically adjusting parameters, the same finite-size scaling is observed as
in systems where all relevant parameters are fixed at their critical values. This scheme is
studied using a self-tuning variant of the Ising model. It is contrasted with a scheme where
systems approach criticality through a target value for the order parameter that vanishes with
increasing system size. In the former scheme, the universal exponents are observed in naïve
finite-size scaling studies, whereas in the latter they are not.
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One historical motivation for the study of critical phenomena are the observable effects
of diverging correlation lengths, such as critical opalescence [2]. On a more fundamental
level, universality, the fact that a variety of phenomenologically different systems share the
exact same critical behavior, reveals a deeply engrained mathematical structure in physical
systems.

Universality is well understood in equilibrium systems where renormalization group
methods can be applied. Far-from-equilibrium systems, often only described by dynamical
rules, do not always lend themselves to the same methods of analysis, and as a consequence
the understanding of universality is less complete. Some systems add another complica-
tion: they self-tune. We ask what happens to universality under conditions of self-tuning.
In particular, we investigate in this paper a self-tuning mechanism that reproduces the uni-
versal finite size scaling of thermodynamic observables. While we investigate these issues
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in a near-equilibrium system, the arguments we put forward may well be applicable to the
far-from-equilibrium systems typically studied in the literature on self-organized criticality
(SOC).

The term self-organized criticality has been used with many different meanings in differ-
ent disciplines, often simply to describe a system whose internal dynamics lead to a degree
of scale freedom in global observables. A more specific definition of SOC, which we em-
ploy here, is the spontaneous emergence of critical behavior in systems with continuous
phase transitions. For instance, sandpile models have been described in these terms [5, 8,
16]. In these systems, defined on d-dimensional lattices, local rules demand the toppling
of particles to neighboring sites whenever a threshold value of the local particle density is
exceeded. The boundaries are open such that particles can be dissipated, and a slow drive
is implemented as an addition of a particle whenever the system reaches a globally stable
state (no supercritical local particle densities). In these systems the distribution of avalanche
sizes, defined as the number of local reconfigurations in response to the addition of a parti-
cle, is scale-free. Moments of the distribution show simple finite-size scaling [11], just like
moments of the order-parameter distribution in equilibrium critical phenomena [13].

In 1988 Tang and Bak linked their sandpile model to ordinary non-equilibrium phase
transitions [16]. The overall particle density, ζ , was identified as the tuning parameter and
the density of active sites, ρa , also called the “activity”, as the order parameter. Both are
common observables in continuous phase transitions, and their identification enables the
use of the powerful formalism of critical phenomena. Investigations of avalanche size dis-
tributions, which are characteristic of the smaller body of literature on SOC, have been
developed less extensively. We use a notation inspired by absorbing-state (AS) phase transi-
tions [5], for a review see [6] and references therein. Below a critical value, ζc , of the tuning
parameter, the order parameter tends to zero since local thresholds are rarely surpassed any-
where in the system and hardly any topplings occur. The order parameter shows very good
finite-size scaling, identical to that of corresponding AS phase transitions. In these corre-
sponding models the boundaries are closed, and one measures quasi-stationary values of
activities at fixed particle densities, ζ [4, 7]. In other words, there is ample numerical evi-
dence supporting the fact that standard observables such as the order parameter in sandpile
models respect the universality classes of their corresponding phase transitions. This is also
reflected in the observation that avalanche-size exponents are directly related to the scaling
exponents describing the order parameter, correlation length, and survival time distribution
in the corresponding AS systems [10].

Sandpiles are defined in terms of their microscopic dynamics. It is desirable to mirror
the effect of these dynamics in a general scheme that can be applied to any continuous
phase transition. One of the most natural such schemes is to have the order parameter feed
back on the tuning parameter [6, 8]. Indeed, such coupling can force an approach to the
critical point as the linear system size L diverges [14], and in sandpile models a narrative of
such a coupling seems natural: Driving the system increases the tuning parameter until the
critical point, ζc , is reached and activity ensues. Activity then leads to diffusion-like motion
of particles through the system and to dissipation at the boundaries, that is, a reduction of
the tuning parameter to below its critical value.

This general scheme can be summarized by the equation of motion [5]

∂t ζ = h − ερa(ζ, t;L), (1)

where h is a driving rate and ε represents a coarse-grained, or bulk, dissipation. The activity,
ρa , depends on time t , and is treated as a noise term. The average order parameter 〈ρa〉 = h

ε
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is readily obtained from the stationary state of this equation. As long as 〈ρa〉 vanishes in
the thermodynamic limit, L → ∞, criticality can be reached. However, the description of
SOC as a result of a linear coupling between order and tuning parameter does not constrain
the dynamics sufficiently to explain the identity of scaling behaviors. In this scheme (unlike
in sandpile models), naïve finite-size scaling analyses of thermodynamic observables do
not show the universal scaling exponents. By “naïve” we mean straight-forward numerical
measurements of observables like 〈ρa〉 (L), as performed in SOC sandpiles, without taking
into account (or knowledge of) the scaling of the driving and dissipation, see below. To
naïvely observe universal finite-size scaling without having to account for the details of the
tuning dynamics it would be necessary that 〈ρa(L)〉 ∝ L−β/ν , where β and ν are the expo-
nents of the underlying phase transition. This can only be true if the system-size dependence
of h and ε (introduced by the facts that the density of dissipating boundary sites vanishes
as L−1 and avalanche durations increase with L such that limL→∞ h(L) = 0) is such that
h(L)/ε(L) ∝ L−β/ν . In the coarse-grained description of coupled order and tuning para-
meters there is no reason why this last condition should be fulfilled. Assuming power laws
h(L) = h0L

−κ and ε(L) = ε0L
−ω , we obtain scaling but not with the universal exponents

(assuming any functional form other than power laws produces no scaling at all). There is
an undetermined parameter, κ − ω, which must be chosen by design to force the universal
finite-size scaling exponents of the underlying phase transition upon the self-tuning sys-
tem. Paradoxically, the scheme produces a system whose tuning parameter does assume its
critical value in the thermodynamic limit, yet the exponents derived from naïve finite-size
scaling analyses are non-universal. This problem was described in detail in [14], and fur-
ther discussed in [1, 15]. Exponents estimated at criticality, e.g. from the spatial decay of
correlation, or from critical scaling need not be affected by an arbitrary choice for κ − ω.

In the present study we explore a scheme that achieves two goals: The tuning parameter
reaches the critical point in the thermodynamic limit, and the exponents derived from naïve
finite-size scaling analyses are identical to those of the underlying phase transition. Our goal
is to understand the interplay between naïvely observed universality and the dynamics of
self-tuning in generic systems. Here we choose a near-equilibrium system, but the findings
may also be informative for far-from-equilibrium systems, like sandpile models.

The problem with coupling the tuning parameter to the order parameter can be under-
stood as follows. The system adjusts its tuning parameter according to (1) to achieve, in
the thermodynamic limit, the order parameter zero. For finite systems, however, a non-zero
value is targeted, which is arbitrary to the extent that h(L)/ε(L), or equivalently κ − ω, is
arbitrary. The finite value is necessary because at the level of description of (1) fluctuations
in ρa(t;L) ensure that 〈ρa〉 (L) is always finite, even for ζ = 0, for finite systems. Targeting
zero (setting h/ε = 0) would drive the system to zero tuning parameter and make SOC im-
possible. It may be argued that this constitutes a problem in the level of description and that
in sandpile models the value ρa = 0 is reached in finite systems since the absorbing phase
(unlike the high-temperature phase in an Ising model) has no fluctuations. Typically, how-
ever, the order parameter ρa , is defined as the asymptotic (long time average) value of the
density of active sites, conditioned on the existence of active sites, see e.g. [7]. It is therefore
always non-zero. In other words a “complete descripition” would require a re-definition of
ρa and a revision of the entire formalism developed so far. Our approach is independent of
the presence of fluctuations in the phase of vanishing order parameter.

Tuning the order parameter to zero as L diverges leaves an undesired arbitrariness in
the intermediate values. Instead, we use the most prominent signals of criticality, i.e. the
critical singularities (e.g. susceptibility, heat capacity, correlation length). The advantage
of coupling the tuning parameter to such a singularity is that naïve finite-size scaling is
universal, as numerical evidence suggests to be the case in SOC. This will be shown below.
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For example we could couple the temperature T of a magnetic system to the suscepti-
bility, χ(T ;L) which diverges uniquely at the critical point, χ(T ;L → ∞) ∝ |T → Tc|−γ .
This could be described by an equation of motion for the temperature

∂tT = k∂T χ(T , t;L), (2)

where k is a constant that is related to the relaxation time and needs to vanish in the thermo-
dynamic limit to prevent destabilization. Under sufficiently slow dynamics, the stationary
temperature of (2) will be that of maximum susceptibility, where ∂T χ(T ;L) = 0. As is well
known, the position in T of the peak of the susceptibility, Tχmax(L), approaches the critical
point as |Tχmax(L) − Tc| ∝ L−1/ν . A derivation of this result from scaling arguments based
on the renormalization group can be found in [3], p. 72. The prefactor determining the shift
in Tχmax(L) for finite L depends on the boundary conditions of the system, but for our ar-
gument only the scaling behavior is important. If the system is well characterized by the
average temperature it assumes under these dynamics, 〈T 〉, it will be equivalent to a system
approaching Tc with the exponent needed to naïvely observe the universal scaling behaviour,
i.e. that of a system fixed at temperature T = Tc , while L diverges. In Monte Carlo studies of
systems with unknown critical tuning parameter values, e.g. [9], similar arguments ensure
that scaling exponents can be derived numerically.

With T (L) − Tc ∝ L−1/ν , we find 〈|m|〉 (T (L)) ∝ (T (L) − Tc)
β ∝ L−β/ν , which is the

universal scaling behavior. The same argument holds for all other thermodynamic observ-
ables, and equivalent results are obtained if we couple to any other quantity that diverges
uniquely at Tc . Thus, by coupling the tuning parameter to the susceptibility the naïve finite-
size scaling becomes fully universal.

The above ideas are implemented by modifying a 2-d Ising model and allowing it to
adjust its dimensionless coupling constant, K = J/(kBT ), where J is a ferromagnetic Ising
coupling, and kB is Boltzmann’s constant. Physically, this corresponds to adjusting the tem-
perature. We want to design a system that finds the maximum of the susceptibility with a
precision that only depends on one scale, which may be linked to the system size. Instead
of measuring the first derivative ∂T χ required in (2) we choose the more robust method of
bracketing to approach the maximum, see e.g. [12], Chap. 9. To this end, three systems of
equal size and shape but different initial temperatures K1 < K2 < K3 are run simultaneously
for tmax Monte Carlo steps. The first half of this time is used for equilibration; in the second
half the first and second moments of the magnetization are recorded, and from them the
susceptibilities χ(Ki) are calculated.

Ordering the temperatures by the corresponding susceptibilities, there are now 3! = 6
possible scenarios. These can be grouped into two cases:

If the ordering of temperatures indicates that the maximum has not been bracketed,
i.e. Kχmax > K3 or Kχmax < K1, then the search range is widened by reassigning the tem-
perature furthest away from Tχmax . For example, if Kχmax > K3, then K1 is shifted to
K ′

1 = K3
√

K2K3/K1. Other choices are possible, e.g. (K3)
2/K1. The only requirements

are that the reassignment not introduce any special scales (as would be the case e.g. for the
choice K3 ++K with a fixed +K) and that it widen the search range. The choice made here
is convenient for its numerical stability.

If the maximum appears to be bracketed, i.e. K1 < Kχmax < K3, the search range is
narrowed by halving the distance in log-space between the middle-temperature and the
temperature furthest away from it. For example, if K3 is to be reassigned, it is shifted to
K ′

3 = √
K2K3.

Iterating this method the system (consisting of three Ising models) will shrink its search
range until the accuracy with which χ is estimated during tmax Monte Carlo steps forces
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Fig. 1 Self-organizing couplings in a system of size L = 64. Each time step consists of an equilibration of
388 scans over the lattice and another 388 scans during which the susceptibility is determined. At t = 1191,
the maximum is not bracketed and the search range is widened. In the next time step it is bracketed, and
the range shrinks. Initially three temperatures far from criticality (Kc ≈ 0.44068) are chosen that bracket
the maximum, K1 = 0.3,K2 = 0.5,K3 = 0.6. The systems converge near the temperature of maximum
susceptibility. Statistics are collected after 1000 equilibration time steps

Fig. 2 The distribution of
self-organized temperatures, can
be made arbitrarily narrow by
increasing tmax, see main graph,
where tmax = 0.4 × 322.15,

0.4 × 642.15, 0.4 × 1282.15, and
L = 32,64,128, where K is
adjusted after a fixed
tmax = 0.1 × 1282.15

it to widen the search range. Due to fluctuations and the finiteness of tmax, the measured
χ(Ki) remain stochastic variables, and the three temperatures will fluctuate around the true
Tχmax for any given system size as exemplified in Fig. 1. Importantly, however, the range
of these fluctuations can be made arbitrarily small by increasing tmax, see Fig. 2. As L

increases, the most likely and average temperatures approach Tc , while the distributions
become narrower. Holding tmax fixed, one observes the expected finite-size scaling of the
temperature, i.e. | 〈T 〉 − Tc| ∝ L−1/ν and all other thermodynamic observables, e.g. 〈|m|〉 ∝
L−β/ν , up to a certain system size where the accuracy with which Tχmax is estimated becomes
insufficient. Eventually the system becomes unstable as the assumption tmax + equilibration
time becomes invalid. In order for naïve finite size scaling to be universal without a bound
on L, we require that tmax increase sufficiently fast. The exact minimum speed at which
tmax must diverge with L depends on the chosen dynamics and is given by the dynamical
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Fig. 3 The average
self-organized temperature
(triangles), magnetization
(squares), and susceptibility
(circles) in systems ranging from
L = 4,8,16, . . . ,512. Straight
lines represent power laws with
the known exponents of the 2-d
Ising universality class, symbols
are measurements

exponent z. We require

tmax ∝ Lx, (3)

where x ≥ z. This was only superficially confirmed by estimating the maximum equilibra-
tion times that destabilized systems of different sizes. In Fig. 3 numerical results of the most
prominent observables are presented for system sizes up to L = 512, where x = 2.15 was
used. For the single-spin flip dynamics used here, z = 2.13(3) [17]. Strictly speaking, the
macroscopic time referred to in Fig. 1 to estimate the position of the peak of the temperature
distribution also has to increase with L. In the present study we are always far from the limit
where this issue becomes important. Our situation is fundamentally different from that of the
order parameter coupled to the tuning parameter, where there was only one special choice
for the exponent κ − ω that reproduced the known finite-size scaling exponents. The new
scheme is more robust since the exponent x ≥ z is only restricted to a semi-infinite range.
This situation is very similar to sandpiles in the following sense: For a sandpile to display
proper scaling for all system sizes, the intervals (measured in a microscopic time scale of
individual topplings) between additions of grains must diverge with system size fast enough.
However, it is impossible to drive a sandpile “too slowly”. If the drive is slower than neces-
sary, then the sandpile will be inactive for a while between avalanches, but the avalanches
and associated order-parameter properties will still obey the universal scaling laws.

The idea for the present study emerged from a discussion of biological evolutionary
systems that are believed to maximize a form of susceptibility, as they balance the need for
rigidity to store information (for example in the form of DNA) against the need for flexibility
to respond to new situations. While the use of multiple copies of a system may seem curious
in the context of sandpiles, it is unavoidable in the context of evolution.

The correlation length, ξ , which also diverges at criticality, seems the most natural means
to discuss the relevance of the proposed mechanism to sandpile models. It has been specu-
lated that the correlation length plays an important role in the feedback between order- and
tuning parameter [8]. The correlation length measures the spatial distance over which per-
turbations to a system can be communicated. In thermal systems ξ needs to be inferred from
the spatial decay of correlation functions. In sandpiles, on the other hand, the length over
which perturbations are communicated is dictated directly by the dynamics. Any particle
added to a sandpile must be transported to the boundaries to be dissipated. The assump-
tion of stationarity thus implies that perturbations can be felt across the entire system, i.e.
ξ ∝ L. Clearly, this corresponds to the maximization of ξ for any L. Imposing this relation,
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just like maximizing the susceptibility, leads to the preservation of naïvely observed uni-
versality, see also [14]. Therefore, thinking of sandpile models as correlation-maximizers
rather than activity-minimizers, observations of the universal scaling exponents become the
expectation rather than the surprise.

In conclusion, a mechanism has been investigated which does more than bring a system to
the critical point. It reproduces the scaling exponents observed in finite-size scaling studies
where a corresponding model is fixed at criticality. Thus the mechanism preserves univer-
sality in naïvely performed finite-size scaling analyses under conditions of self-tuning. This
was achieved by letting the tuning parameter maximize a quantity that diverges uniquely
at criticality. In contrast to a coupling between order and tuning parameter, this allows us
to use the well-defined maximum rather than an arbitrary small parameter for orientation.
The Ising model was used to show that the process is indeed capable of recovering both the
well-known scaling exponents and the critical temperature.
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