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We investigate a suggested path to self-organized criticality. Originally, this path was devised to “generate
criticality” in systems displaying an absorbing-state phase transition, but nothing in its definition forbids the
mechanism to be used in any other continuous phase transition. We used the Ising model as well as the Manna
model to demonstrate how the finite-size scaling exponents depend on the tuning of driving and dissipation
rates with system size. Our findings limit the explanatory power of the mechanism as it is to nonuniversal
critical behavior, suggesting that the explanation of self-organized criticality in terms of absorbing-state phase
transitions is incomplete.

DOI: 10.1103/PhysRevE.73.025106 PACS number�s�: 05.65.�b, 05.50.�q, 05.70.Jk, 64.60.Ht

Self-organized criticality �SOC� refers to the spontaneous
emergence of critical behavior in slowly driven dissipative
systems �1,2�. Examples of physical systems believed to dis-
play SOC are rainfall �3� and earthquakes �4�. Most models
are defined on lattices with local particle numbers zi and
thresholds zi

c. They are driven discretely in time by increas-
ing zi at randomly chosen positions i until such an increase
leads to zi�zi

c somewhere in the system. Particles then
topple to neighboring sites and can trigger avalanches of
local redistribution propagating through the entire lattice.
Dissipation typically takes place at the boundaries, where
particles leave the system. When an avalanche has finished,
the model is driven again �2�. The resulting avalanche size
distributions obey simple scaling. Standard finite-size scaling
�FSS� is expected if the ratio of correlation length and sys-
tem size, � /L is constant or diverges as L increases.

In models displaying absorbing state �AS� phase transi-
tions �5� a tuning parameter, such as the overall particle den-
sity, controls a transition between an inactive phase and a
phase where activity in the system continues indefinitely.

From the introduction of SOC in 1987 �1�, it was believed
that SOC models maneuver themselves to the critical density
between similar inactive and active phases. Tang and Bak
suggested in 1988 that the density of “lattice sites on which
z�zc �¯� may be viewed as the order parameter for this
critical phenomenon” �6�. Such an identification of the activ-
ity with the order parameter implies a link to absorbing state
phase transitions.

This link was formalized and made explicit about
10 years later �7–10�. Dickman et al. �8� introduced periodic
boundaries to SOC systems, thereby turning them into AS
models. Measuring the exponents characterizing the spread-

ing of perturbations �11,12� or the roughness of the associ-
ated interface models �11,13�, it has been observed that at the
critical density the closed-model behavior resembles that of
open SOC models �8,14�.

The resulting interpretation of SOC is obvious �8–10�:
Activity eventually leads to dissipation at the boundaries,
which in turn reduces the particle density to below the criti-
cal value. Driving takes place whenever quiescence has been
reached. SOC models therefore hover around the critical
point, being pushed forth into the active state by driving and
pushed back into the quiescent state by dissipation.

With this simple picture in mind one arrives at an equa-
tion of motion for the particle density � in the system �15,16�

d

ds
��s� = h − �a�s�� , �1�

where s is the time, h is the driving rate and � is called the
�bulk� dissipation rate. The activity �a is the order parameter,
defined as the density of active sites, zi�zi

c, in the active
phase. We will refer to this interpretation of SOC as “the AS
approach.”

Note that in the AS approach the system is not fixed at the
critical point but only approaches it as L increases, implying
no specific behavior of ��L� /L, wherefore simple scaling
might not be expected to work. Furthermore, introducing
bulk drive and bulk dissipation to SOC models does not
result in a full correspondence to AS models, which operate
at a constant density without external drive or dissipation.
Given these difficulties in equating SOC and AS, it is sen-
sible to ask what the limitations of the AS approach might
be.

Clearly, the driving h must be very slow compared to the
dissipation �a�. Otherwise particles would be added while
the system is active, leading to a fluctuating activity rather
than distinct avalanches. The proponents of the AS approach
point out that h, �, and h /� have to be tuned to zero in order
to achieve the desired separation of timescales �7�. While the
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definitions of SOC models typically restrict dissipation to
boundary sites and result in diverging avalanche sizes in the
thermodynamic limit, leading to appropriately vanishing
��L� and h�L�, so far no statement has been made as to how
the limiting behavior is approached. But this turns out to be
the all-important piece of information: The FSS behavior, the
only scaling available in SOC, depends entirely on the scal-
ing of the driving and dissipation rates with system size.
Choosing h�L� and ��L� freely, arbitrary scaling behavior is
produced.

In the following the relation between the scaling of h and
� and the resulting FSS is analyzed, using the two-
dimensional Ising model as an example. However, the analy-
sis is generally applicable and works equally well for stan-
dard SOC models and their AS counterparts, which is
confirmed by simulations of the Manna model �13,17�.

Translating Eq. �1� into magnetic language, � corresponds
to the inverse temperature � and the activity �a to the modu-
lus of the magnetization density �m�. The parameters h and �
become cooling and heating rates, so that the temperature T
is increased for large magnetizations and lowered otherwise,

d

ds
��s� = h − �m�s��� . �2�

The resulting model is an Ising model where the temperature
is dynamically adapted according to the equation of motion
�2�. Therefore, the configurations are not sampled with
Boltzmann-weight and the resulting “dynamical ensemble”
is not canonical. However, by multiplying �2� by a small
prefactor, corresponding to rescaling the time, the distribu-
tion of temperatures can be made arbitrarily narrow. For the
sake of the following analysis, it is assumed that this “dy-
namical Ising model” is well characterized by a single effec-
tive �reduced� temperature, teff, allowing the formalism of
FSS functions �18� to be brought to bear.

For the FSS analysis presented below we define the
exponents � and 	 through the leading order approach of
h ,�→0 via

h = h0L−� and � = �0L−	, �3�

where � ,	�0. Assuming that the AS approach produces
scale-free behavior requires h�L� /��L� to be a power law. Its
physical motivation stems from the scaling of the density of
�dissipative� boundary sites �
L−1� and of the driving rate,
which is bounded from above via the system-size dependent
cutoff of avalanche durations. In the stationary state,
��d /ds���=0, �2� yields ��m��= �h0 /�0�L	−� with � � denoting
the average over the dynamical ensemble introduced above.
Clearly one must choose ��	. To attain the prescribed
��m���L� the system settles at the effective �reduced� tempera-
ture �T−Tc� /Tc� teff�L�
L−1/� to leading order, see Fig. 1.
Via teff�L� all thermodynamic quantities depend only on L,
which can be mistaken for standard FSS at temperature
T=Tc. For the study of SOC models, it is vital to understand
the difference because SOC systems are always critical,
wherefore FSS is the only scaling available.

Around the critical point of a continuous phase transition,
characterized by critical exponents �, �, , �, etc., the sin-
gular part of the free energy leads to a simple scaling behav-
ior of the magnetization density �18,27�,

��m�� = − khL−�/�Y��kttL
1/�� , �4�

where t is the reduced temperature, negative in the low tem-
perature phase �LTP� and positive in the high temperature
phase �HTP�, kh and kt are metric factors, and Y��x� is a
universal scaling function, which becomes dependent on the
boundary conditions and the geometry of the system in the
limit of small arguments, case �5b� below. There are three
qualitatively different �asymptotic� regimes

Y��x� → 	
 �x�� for x → − � �a�
const for x → 0 �b�

 x−/2 for x → � �c� ,


 �5�

where in the Ising model =�d−2�.
The first line describes the asymptotic behavior of the

magnetization in the LTP, the second line represents FSS,
and the third line describes the HTP.

Setting ��m��
L	−�, the different regimes of �5� are ac-
cessed by three qualitatively different choices of 	−�, that is
speeds at which ��m�� approaches zero:

�i� 	−��−� /� �“too slow”�: In this case the magnetiza-
tion approaches 0 slower than in a standard Ising model kept
at temperature T=Tc as the system size increases, so that
Y��ktteff�L�L1/��
L	−�+�/� is divergent in L. The only way to
obtain a divergent Y��x� is via �5a�, which requires a nega-
tively divergent argument x→−�. The effective temperature
is therefore negative and scales like �teff�L���
L	−�. Using
teff�L�
L−1/� leads to

FIG. 1. Finite size behavior for the magnetization �m� vs
the temperature T in the regular, two-dimensional �2D� Ising model
for L1=80 �squares� and L2=160 �circles�. The dashed line shows
Yang’s solution �19�. In the dynamical Ising model, the cooling
and heating rates, h�L� and ��L� prescribe the magnetization
�m�L��=h�L� /��L�
L	−�, indicated by horizontal lines. The system
is forced to move to an effective temperature teff�L�, indicated by
arrows.
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� = �/�� − 	� � � . �6�

This implies that teff�L� finally leaves the FSS region, whose
width scales like L−1/�, toward the LTP.

�ii� 	−�=−� /� �“correct”�: In this case Y��x� remains
constant, so that its argument either remains constant or van-
ishes, according to �5b�. Thus teff�L� decays at least as fast as
L−1/�, i.e. ���. To the order considered here the equality
applies.

�iii� 	−��−� /� �“too fast”�: Y��x� vanishes, following
�5c�. For Y��ktteff�L�L1/��
L	−�+�/� and teff
L−1/� this
implies

� =
�

2��	 − � + �/�� + 
� � , �7�

provided that the denominator of Eq. �7� is positive. Hence
the model leaves the FSS region toward the HTP. The special
case of negative �, implying divergent effective temperature,
will be ignored.

Crucially, only for 	−�=−� /� �case �ii�� does the model
remain in the FSS region. To achieve this, the SOC system
must tune h /� exactly in the way the order parameter scales
in a system displaying standard FSS while fixed at the criti-
cal temperature, ��m��
L−�/�. In all other cases the scaling of
the effective temperature eventually drives the model out of
the FSS region: � /L vanishes in the thermodynamic limit.
Nevertheless, �T� converges to Tc, so that the correlation
length,

� 
 L�/�, �8�

diverges. With this scaling of � all observables will show
standard finite-size scaling with � replaced by � �28�.

To illustrate the above analysis we performed simulations
of an Ising model with dynamics as described: Using Me-
tropolis updating, the absolute magnetization density is cal-
culated after each scan over the lattice. According to �2� a
new temperature is then calculated to be used in the next

sweep, Ṫ=−h+ ��m���. Starting from T=2.27, systems of size
L=40,80¯640 were updated at least 106 times as transient
and at least another 106 times for statistics.

Our numerical simulations fully confirm the above analy-
sis: We observe the standard FSS exponents with � replaced
by � for any reasonable choice of 	−�. The new scaling
exponent � �and Tc� can be determined from �T�−Tc


L−1/�. Using it in an FSS analysis allows us to identify all
standard critical exponents.

For two reasons the method is very sensitive to the choice
of �0 and h0 in Eq. �3� �29�: Firstly, the amplitudes of the
fluctuations in the effective temperature depend directly on h
and �; choosing h0 and �0 too large, the system destabilizes.
One can estimate these fluctuations by analyzing �2� and de-
rive a lower bound for 	 ,�. Secondly, if h and � initially
place the system close to Tc or in the wrong phase, the scal-
ing function reaches its asymptotic behavior ��5a� or �5c��
only for very large system sizes.

Figure 2 shows the scaling of the effective temperature for
the three qualitatively different choices of the driving expo-
nents discussed above. The values of � and  derived from

these data confirm the calculations. Depending on the choice
of 	−�, the value of � immediately determines either �, Eq.
�6�, or , Eq. �7�. The FSS of specific heat and susceptibility
produces the expected values of � /� and  /�.

Since our interest in the AS approach is due to its pro-
posed role as an explanation for SOC, we repeated the analy-
sis for a variant of the two-dimensional Abelian Manna
model. This sandpilelike model has been used to exemplify
the link between SOC and AS �11�. It is driven in the bulk
and implements bulk dissipation, as suggested by �1�. We
were able to confirm the key equation �4�, using the closed
model values of �=0.64�1� and �=0.82�3� �11� and measur-
ing �0.34. We then obtained � from �6� and �7�. Unlike in
the Ising model, the Manna model can get stuck when hitting
an inactive state. This complicates the measurements espe-
cially of the susceptibilty in the third case discussed above.
For all other cases the asymptotic behavior of
�a
L−�/� and �
L/� was reached for system sizes smaller
than L=1000. In the AS approach also the avalanche size
exponents show a clear, immediate dependence on the choice
of the two exponents 	 and �.

The present study shows that the proposed explanation of
SOC as “self-organized” AS criticality �8–10� needs to be
supplemented with a mechanism that necessitates the “cor-
rect” value of �−	, namely � /�, in order to explain univer-
sality. The identification of this mechanism, which amounts
to an explanation of SOC, should be the subject of future
research.

The question whether or not SOC models have universal
features is very important. Universality is a major justifica-
tion for studying simple models and for disregarding the de-
tails of the physical processes they describe. Despite the im-
portance of this issue, it is still unclear whether SOC systems
can be grouped into universality classes; in fact, exponents
can change due to small changes in the update rules �e.g.,
�20,21��, and SOC is notorious for its wide variety of critical
exponents. Accepting the AS approach, this would be a con-
sequence of implicitly setting the scaling of external drive
and dissipation by the dynamical rules of the different
models.

However, there is strong evidence in favor of universality

FIG. 2. The scaling of the effective temperature teff �filled sym-
bols, full lines� and the susceptibility � �open symbols, dashed
lines� in the Ising model for different choices of the exponent 	 and
�=1. The symbols are numerical simulations, the lines show the
slopes expected from theory.
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in SOC. Many changes of the detailed dynamics do not af-
fect the critical behavior �22–25�. Moreover, the ratio � /L
appears to remain constant in direct measurements of some
models �26� so that the “correct” FSS exponents are ob-
served, which is in stark contrast to �8�; similarly, simula-
tions suggest that indeed �−	=� /�.

Observations of the same exponents in SOC and AS mod-
els �such as �11,12,14�� suggest a link between the two.
While the AS approach does establish a link between SOC
and AS, it does not explain this identity. Quite the contrary,
without further details the AS approach predicts almost
surely �apart from case �ii�� a difference in exponents. Our
investigation demonstrates clearly that the AS approach
is incomplete and universality in SOC still needs an expla-
nation. The key question is as follows: What forces the driv-
ing and dissipation rates to scale precisely so as to produce
universality?

We have calculated the FSS behavior of a system ap-
proaching its critical point through a feedback mechanism
between order parameter and tuning parameter. It works in
the sense that it drives the models to the critical point and

FSS is observed. Yet, � /L vanishes in the thermodynamic
limit and the observed “critical behavior” is not universal.
While scale-free distributions of responses such as those ob-
served in the case of rainfall �3� or earthquakes �4�, can be
produced by such a process, it only yields critical behavior
strongly dependent on the detailed dynamical rules of SOC
models. There would be no universality and robustness
against small changes in the dynamical rules. While the AS
mechanism in its present form may produce further insight
into potentially nonuniversal critical phenomena as observed
in field experiments, it fails to explain the apparent univer-
sality of SOC models and is thus more limited than was
previously thought.
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