
In solid-state physics, the phenomenon of localization is usu-
ally perceived as arising from extrinsic disorder that breaks

the discrete translational invariance of the perfect crystal lat-
tice. Familiar examples include the localized vibrational
phonon modes around impurities or defects (such as atomic
vacancies or interstitial atoms) in crystals and Anderson lo-
calization of electrons in disordered media.1 The usual per-
ception among solid-state researchers is that, in perfect lat-
tices—those free of extrinsic defects—phonons and electrons
exist only in extended, plane wave states. That notion extends
to any periodic structure, such as a photonic crystal or a pe-
riodic array of optical waveguides. Such firmly entrenched
perceptions were severely jolted in the late 1980s by the dis-
covery that intrinsic localized modes2 (ILMs), also known as
discrete breathers3 (DBs), are, in fact, typical excitations in
perfectly periodic but strongly nonlinear systems.

The past several years have seen this prediction con-
firmed by a flood of experimental observations of ILMs in
physical systems ranging from electronic and magnetic
solids, through microengineered structures including
Josephson junctions and optical waveguide arrays, to laser-
induced photonic crystals. Experimentalists are currently
hot on the trail of ILMs in Bose–Einstein condensates
(BECs) and biopolymers. Hopes are high that these exotic
excitations will be useful in all-optical logic and switching
devices and in targeted breaking of chemical bonds, and will
prove helpful to the understanding of melting processes in
solids and conformational changes in biomolecules. 

In this brief overview, we have attempted to capture
the excitement and to explain the essence of these re-
markable nonlinear excitations. We urge readers to con-
sult some of the several pioneering papers, recent reviews,
and Web sites for more details.2,3

Intuition and theory
A good working definition of ILMs (or DBs) is that they are
spatially localized, time-periodic, and stable (or at least
long-lived) excitations in spatially extended, perfectly pe-
riodic, discrete systems. The existence of two distinct
names for the same phenomenon is an indication that sep-
arate historical paths led to their discovery and provides
key insights into the reasons for their existence. A DB is a
localized, oscillatory excitation that is stabilized against
decay by the discrete nature of the periodic lattice. Box 1

discusses this path to DBs in more de-
tail. An ILM is an excitation that is lo-
calized in space by the intrinsic non-
linearity of the medium, rather than
by a defect or impurity. Box 2 reviews
this path to ILMs.

By the early 1990s, researchers
following these two paths had con-
verged on the insight that stable lo-
calized periodic modes, whether called
ILMs or DBs, were generic excitations

in discrete nonlinear systems, and that to study them sys-
tematically, one should start with a system of uncoupled
nonlinear oscillators—the “anti-continuum limit”—and
treat the coupling as a weak perturbation.

To pursue this insight, consider the simple problem of
a diatomic molecule, or dimer, modeled initially by a clas-
sical system of two coupled anharmonic oscillators. First,
imagine that the interoscillator coupling is switched off;
that leaves two independent nonlinear oscillators. The
nonlinearity of the oscillators means that the frequency of
their motion depends on the amplitude or, equivalently,
the input energy. In the case of the familiar simple but non-
linear plane pendulum, for example, the period varies from
the small oscillation harmonic limit of 2p=++l/g, where l is
the length of the pendulum and g is the acceleration due
to gravity, to infinitely long as the amplitude of the pen-
dulum’s angle approaches p. When the oscillators are com-
pletely uncoupled, we can form a localized mode by excit-
ing only one of the oscillators, and the resulting frequency
can fall anywhere in the range allowed by the form of the
anharmonicity of the individual oscillator.

Now consider exciting one oscillator strongly but the
second one only weakly so that most of the energy is ini-
tially localized at the first oscillator. Because the frequen-
cies depend on the amplitudes, we can, in principle, choose
amplitudes such that the frequencies of each oscillator are
irrationally related. For strictly incommensurate frequen-
cies, no possible resonances exist between any of the os-
cillators’ harmonics. If we now turn on the coupling be-
tween the oscillators, intuition suggests that the transfer
of energy from one to the other must be very difficult, if
even possible.

That heuristic result can be formalized by the power-
ful Kolmogorov-Arnold-Moser (KAM) theorem of nonlinear
dynamical systems, which establishes that the incom-
mensurate motions do remain rigorously stable for suffi-
ciently weak coupling and ensures that the excitation en-
ergy remains localized on the first oscillator. 

Next consider embedding the two nonlinear oscillators
in an infinite chain of similar ones; that is, physically place
the dimer molecule in an infinite molecular crystal of similar
dimers.4 The following model is an example of such a system:

Here vn(t) represents the displacement of a nonlinear “quar-
tic” oscillator at lattice site n, so that the equation represents
an infinite one-dimensional array of anharmonic oscillators
coupled to their nearest neighbors with a coupling
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strength given by 1/(Dx)2. The notation is a deliberate re-
minder that our model includes a finite spacing between
molecules; the formal continuum limit is obtained by tak-
ing Dx O 0, in which case the entire second term in the
equation becomes ]2v (x, t) /] x2. As usual, we start by
studying the system’s small (linear) oscillations. The local
oscillator at each site corresponds to a double-well poten-
tial, with degenerate minima at vn ⊂ �1. Expanding
around the minimum at vn ⊂ 1, we obtain the spectrum of
the linear waves, wq

2 ⊂ 2 ⊕ (2/Dx)2 sin2(q/2). The linear
spectrum consists of a band that is limited by two cutoff
frequencies, 2 < wq

2 < 2 ⊕ (2/Dx)2, and is bounded above and
below; the upper cutoff arises solely from the effect of 
discreteness.

As with the plane pendulum, the double-well quartic
oscillator has a frequency that, for small oscillations
around the minimum, decreases with increasing amplitude
of the motion. That means one can create a localized peri-
odic oscillation at a frequency wb lying below the spectrum
of linear oscillations, as shown in the bottom panels of fig-
ure 1. Setting just one of the nonlinear oscillators in mo-
tion at a fairly small amplitude will do the job, so that its
frequency is just smaller than the smallest allowed linear
frequency. Then if the coupling between the sites is weak
enough—Dx is large, producing a very narrow band—not
only will the fundamental frequency wb of this ILM be below
the band of allowed linear excitations, but all harmonics of
wb will be above the band. Hence, there will be no possibil-
ity of a linear coupling to the extended modes, even in the
limit of an infinite system when the spectrum wq becomes

dense. This means that the ILM cannot decay by emitting
linear waves (that is, phonons) and is hence linearly sta-
ble. 

To understand the high-energy ILMs that also occur
and are shown in the top panels of figure 1, consider again
the limit of large Dx, which creates a weak coupling be-
tween the oscillators. If we set a single oscillator in mo-
tion, but now with large amplitude, the quartic nature of
the potential implies that the frequency of the ILM will in-
crease with increasing amplitude. For large enough am-
plitude, the frequency will move above the highest fre-
quency in the very narrow—because Dx is large—band of
linear excitations. For this large-amplitude ILM, all
higher harmonics lie above the band because the funda-
mental frequency does, and so the excitation is linearly
stable.

The simple quartic model illustrates how the two crit-
ical components—nonlinearity and discreteness—can
combine to make ILMs possible. Nonlinearity allows
strongly excited local modes to have a fundamental fre-
quency outside the spectrum of small oscillations, and the
finite extent of the spectrum in a discrete system allows
all higher harmonics of the ILM also to lie outside the lin-
ear spectrum. The locations of these frequencies prevent
the resonances that, in general, destroy the continuum
breathers discussed in box 1. This intuitive understanding
of the origin of ILMs/DBs in discrete nonlinear systems
was presented in the pioneering paper of Albert Sievers
and Shozo Takeno in 1988.2

Over the intervening years, both analytic and numer-
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Figure 1. The frequency versus
wavenumber plane shows the 
spectrum of linear oscillations
wq ⊂ =2⊕(2/Dx)2sin2(q/2) (green) for
Dx ⊂ =10++ and two isolated frequen-
cies wb from the range of possible fre-
quencies corresponding to the types
of ILMs—four of which are shown—
that exist in the equation on page 43.
The middle area (gold) exhibits the
full spectrum of linear excitations
which extends from =2+ to about 1.55
for this Dx. The ILM frequencies wb
clearly lie outside the linear band.
Red circles indicate the particle dis-
placements for the given ILM solution,
with all velocities equal to zero. The
scale inset between panels indicates
amplitudes of the motion, and blue
lines are guides for the eye. The high-
frequency ILMs (wb � 1.66) occur for
large amplitude, high-energy motion
of optical phonon character (adjacent
particles moving out of phase),
whereas the low-frequency ILMs
(wb � 1.26) occur for small amplitude,
low-energy motion of acoustic
phonon character (adjacent particles
moving in phase).



ical studies have explored the existence and properties of
ILMs in a variety of nonlinear mathematical models of
physical systems. Robert MacKay and Serge Aubry, for ex-
ample, rigorously proved the existence of DBs in networks
of weakly coupled anharmonic oscillators.5 Remarkably,
their theorems are insensitive to the lattice dimension:
Unlike continuum breathers (see box 1), which occur only
in highly constrained 1D systems, DBs are equally com-
mon in two and three dimensions. 

Additional analytic results established that ILMs
occur in one-parameter families, are dynamically stable
with respect to perturbations, and are structurally stable
with respect to changes of the equations of motion.3 Com-
bined analytic and numerical studies showed that ILMs
act as strong, frequency-dependent scatterers of plane
waves and can be quantized. Theoretical studies by Ding
Chen (Saclay) and his collaborators gave an explicit algo-
rithm for moving ILMs along the lattice, and calculations
of Michel Peyrard (ENS, Lyon) established that ILMs can
be generated from thermal fluctuations.6 The Chen and
Peyrard results suggest that ILMs may play critical roles
in the transport of energy and other dynamical properties
of nonlinear discrete systems, such as melting transitions
in solids and folding in polypeptide chains.

Experimental observations of ILMs
Much of the present excitement surrounding ILMs comes
from numerous recent experimental observations in phys-
ical systems. Those systems range from solid state mixed-
valence transition metal complexes7 and quasi-1D antifer-
romagnetic chains,8 through arrays of Josephson
junctions9 and micromechanical oscillators,10 to optical
waveguide systems11 and 2D photonic structures.12 We look
briefly at the nature of ILMs in several of these distinct
systems.
� Solids. The natural periodicity of solid-state materials
makes them obvious targets to search for ILMs. But their
small length scales and quantum effects make observing
or visualizing the excitations experimentally challenging.
As discussed in box 3, one quantum manifestation of lo-
calization is a redshift in the frequencies of many-phonon
excited vibrational states. In recent experiments, Basil
Swanson (Los Alamos National Laboratory) and col-
leagues and K. Kisoda (Wakayama University) found
strong evidence for the existence of ILMs in the charge-
transfer solid PtCl by measuring resonance Raman spec-
tra.7 The redshift in the resonances was obtained for up to
seven participating optical phonons, indicating the local-
ized excitation of Pt–Cl bonds. 

Using a phenomenological model, theorists including
Konstantin Kladko (Ingrian Networks) and Nikos Vulgar-
akis (University of Crete) and their collaborators have
reached quantitative agreement with those experiments.7
But challenges remain for theorists to develop a more mi-
croscopic model and for experimentalists to measure ex-
plicitly the spatial extent of the ILM. Raman spectroscopy
measures only frequency shifts, from which one infers lo-
calization. 

In magnetic solids, one expects to find localized spin-
wave modes that are the direct spin analogs of the ILM
phonon modes. Ulrich Schwarz (Cornell University) and
his collaborators8 studied the quasi-1D biaxial antiferro-
magnet (C2H5NH3)2CuCl4 by driving it with a microwave
pulse at the lowest antiferromagnetic resonance frequency
of 1.5 GHz. High-intensity microwave pulses drive the spa-
tially uniform antiferromagnetic resonance into a nonlin-
ear region, where it becomes unstable. According to nu-
merical simulations, the resonance decays into a broad
spectrum of ILMs, which correspond to localized spin
states. Measuring the time-delayed absorption spectra re-
veals the corresponding redshifts together with observable
lifetimes of ILMs up to milliseconds. As in the case of the
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Figure 2. Experimental and schematic images of intrinsic 
localized modes in an annular Josephson ladder driven by a
DC current. In the schematics, Josephson junctions (each
about 3 mm wide) lie at the midpoints of each green line seg-
ment that signifies superconducting leads connecting the
junctions. A pure green ladder in the schematic and a pure
green background in the data would signal the superconduct-
ing state of all junctions at low DC current—the linear
regime. But a large DC current switches some of the junc-
tions into a resistive state that supports a voltage across the
junction; in the schematic, red and yellow dots denote 
resistive junctions having different voltages. These resistive
junctions are discrete breather excitations localized at various
sites on the ladder, here imaged using a scanning laser micro-
scope. Among the many possible DB states, these data show
four: (a) a highly excited, spatially homogeneous resistive
state and (b–d) localized states corresponding to several dis-
tinct DBs. (Figure adapted from A. Ustinov, ref. 9.) 



PtCl chains, explicit measurements of the spatial local-
ization are needed to confirm the expectations from simu-
lations.
� Josephson ladders. Following theoretical sugges-
tions of Louis Floria (University of Zaragoza) and his col-

laborators, Enrique Trias (MIT), Peter
Binder (University of Erlangen), and
their collaborators have made some of
the most visually striking observa-
tions of DBs yet found.9 Their experi-
ments involved periodic structures
consisting of an annular array of cou-
pled Josephson junctions (see figure 2). 

The excitations arise from the
spatially localized voltage drops that
occur at particular junctions, as a ho-
mogeneous DC bias current threads
the ladder. A few junctions are in the
resistive state, while the others are su-
perconducting. The superconducting
junctions generate AC voltages due to
their coupling to the resistive junc-
tions. The dynamical effects produce a
variety of resonances and hysteresis
loops in current–voltage characteris-
tics of the ladder.
� Optical waveguides and pho-
tonic crystals. Optical and photonic
systems have proven to be fertile
grounds for the creation and observa-
tion of ILMs. Indeed, one of the first
experimental confirmations of ILMs
was the observation of discrete spatial
solitons excited in optical waveguide
arrays.11 The periodic structure of the

arrays produces the discreteness effects. The nonlinearity
arises from the Kerr effect (the dependence of the index of
refraction on the intensity of the light pulse), which in a
bulk medium or slab waveguide can produce spatial opti-
cal solitons that correspond to propagating self-trapped
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The term “breather” was first applied to a particular solu-
tion of the celebrated sine–Gordon equation (SGE)

which is one of the now famous “soliton” equations (the
name coined by Norman Zabusky of the University of Pitts-
burgh and Martin Kruskal of Rutgers University).16 Despite
their nonlinearity, such equations are essentially solvable an-
alytically because they correspond to completely integrable,
infinite-degree-of-freedom Hamiltonian systems. To appreci-
ate the properties of the nonlinear equation, consider the ex-
plicit form of the SGE breather solution:

Straightforward but tedious differentiation shows that qb(x, t)
solves the SGE exactly for any value of e. Because the solu-
tion qb is clearly periodic in time and exponentially localized
in space around x ⊂ x0, it satifies the definition of a breather
given in the introduction.

In the limit of small values of q, for which sin q � q, the
SGE reduces to a linear Klein–Gordon equation, the excita-
tions of which are extended plane waves characterized by
the dispersion relation w(q) ⊂ =1 ⊕ q2. Notice that the
spectrum of these plane-wave excitations has a gap and ex-
tends to infinite frequency as q O F. The fundamental fre-
quency wb of the breather qb always lies in the gap of the lin-
ear spectrum: wb ⊂ 1/=1 ⊕ e2 < 1. However, independent of

the value of e, sufficiently high harmonics of the fundamental
frequency must always lie within the spectrum of the linear ex-
citations. And because qb(x, t ) contains all odd harmonics of
wb, that localized mode would appear to couple (albeit in high
orders of e) to the delocalized plane waves. In fact, these cou-
plings all vanish, and the SGE breather remains stable.

Early in the study of solitons, the question arose whether
continuum equations other than the SGE could possess
exact breather solutions. The most studied case was that of
the so-called v4 equation, which is just the continuum ver-
sion of the equation on page 43, a model of coupled non-
linear oscillators. 

Is there a breather in v4? That seemingly simple question
launched a multiyear odyssey in computational and mathe-
matical physics. Most of the soliton community argued that
there could not be a breather in v4 because it was not com-
pletely integrable, but most of the computational physicists
said there could be, based on evidence from their numerical
simulations.17 An expansion to all orders in e suggested the
existence of a v4 breather, but a “beyond-all-orders” analy-
sis16 showed that terms proportional to exp(⊗1/e) produced
a coupling to linear plane-wave excitations and caused the
putative breather to decay. Subsequently, rigorous results es-
tablished that the SGE was indeed exceptional and that sta-
ble breathers did not exist in other continuum Klein–Gordon
theories. But computer simulations in which continuum
equations were discretized to be solved numerically pro-
vided strong hints that, for a sufficiently large discretization,
discrete breathers might well exist. That insight helped moti-
vate the studies described in the main text.

Box 1. From Continuum to Discrete Breathers
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Figure 3. An intrinsic localized mode (ILM) emerges in the output of an optical 
planar waveguide array (shown on edge) as the power from input laser light in-
creases into the strongly nonlinear regime. Each waveguide of the array extends 
out of the page, with the laser input (from behind the page) focused near the cen-
ter. (a) For a laser power of 70 W, linear propagation occurs and the excitation of
modes diffracts over the entire array. (b) At intermediate power (320 W), the output
pulse narrows, showing increased localization effects. (c) At high power (500 W),
the nonlinear nature of the optical medium localizes the output in an ILM located
around the input waveguide. (Figure adapted from H. S. Eisenberg et al., ref. 11.)



optical beams. Theoretical analysis has established11 that
this system is well described by a variant of the discrete
nonlinear Schrödinger equation (DNLSE) discussed in box
2. The discrete variable n of box 2 represents the position
of one of the waveguides and the continuous variable (time
in the equation in box 2) corresponds to the spatial coor-
dinate along the waveguide.

In the experiment, the individual waveguides are
made from aluminum gallium arsenide and are 4 mm
wide and a few millimeters long. Arrays contain typically
40–60 waveguides; the strength of the coupling between
neighboring waveguides is controlled by their spacing,
which varies from 2 to 7 mm. Yaron Silberberg (Weizmann
Institute) and his collaborators injected light from a syn-
chronously pumped laser into a single waveguide on the
input side of a 6-mm-long sample and recorded the light
distribution registered at the output facets (see figure
3).11 At low light power, the propagation is linear, and the
light expands over all waveguides at the output. As the
input power increases above a threshold, the width of the
output distribution shrinks. And at a power greater than
500 W, the highly localized nonlinear mode confines the
light to about three waveguides around the input wave-
guide; that light output is the signature for an ILM,
which, in this context, has been called a discrete soliton.

Photonic crystals13—periodic materials in which the
propagation of photons of certain wavelengths is forbid-
den—are another important optical system in which the-
oretical studies have predicted the existence of ILMs.12

The optical analog of semiconductors, these artificial crys-
talline structures provide novel and unique ways of con-
trolling many aspects of electromagnetic radiation, in-
cluding the exciting possibility of light-induced radiation
control—that is, the use of light to switch and channel
light. Two years ago, Sergei Mingaleev (now at the Uni-
versity of Karlsruhe) and one of us (Kivshar) predicted the
nature of the ILMs that could occur in a composite pho-
tonic crystal formed by a regular 2D lattice of rods of two
different types of semiconductors. That work awaits ex-
perimental confirmation. However, experimental groups
led by Mordechai Segev (Technion) and Zhigang Chen
(San Francisco State University) have recently used opti-
cal induction in a homogeneous nonlinear medium to con-
firm the existence of this type of ILM in an analog of a 2D
nonlinear photonic crystal. Segev’s group used a photore-
fractive crystal with a strong electro-optic anisotropy to
create a lattice with a polarization in the nonelectro-optic

direction and orthogonal to that of a probe beam. They ob-
served the light localization in the form of 2D discrete soli-
tons. Similarly, Chen’s group used a nonlinear lattice, cre-
ated by partially incoherent light, to observe strong
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Box 2. Defect Modes Versus Self-Trapping

Bloch’s theorem guarantees that electrons moving in per-
fectly periodic, rigid lattices will exist in spatially ex-

tended states. But if the lattice is deformable and perfect pe-
riodicity lost, the theorem does not apply. In a brief note
published in 1933, Lev Landau first described what later be-
came known as the polaron by noting that an electron
could be trapped at a strongly distorted location of the lat-
tice. Importantly, Landau did not distinguish between a dis-
tortion caused by an extrinsic defect or impurity and one
caused by the intrinsic self-trapping of an electron due to
the effective nonlinearities that arise from strong coupling to
the lattice phonons; either distortion could cause localiza-
tion. In 1959, Ted Holstein developed an explicit model for
this nonlinear self-trapping in one-dimensional lattices and
established within certain approximations that the elec-
tron’s wavefunction obeyed an equation now known as the
discrete nonlinear Schrödinger equation (DNLSE):

where cn is the component of the electron’s wavefunction
at lattice site n, J represents the electron transfer (hopping)
between adjacent lattice sites, and the nonlinear term pro-
portional to k arises from the coupling of the electron to the
lattice, which is assumed to be deformable.

The literature on the polaron and the DNLSE is volumi-
nous, so we confine ourselves to just two points that are
most relevant to intrinsic localized modes. First, in the final
term of this equation, if +cn+

2 is replaced by a potential, Vn ,
the equation becomes a discrete version of the standard
time-dependent Schrödinger equation. If that potential Vn
is localized around some lattice site n0, then it becomes in
essence an intrinsic defect that acts just like an extrinsic de-
fect or impurity, able to produce an electronic bound state
localized around n0. This self-trapped object is precisely
the polaron. Second, the nature of nonlinearity in the
DNLSE allows for solutions of the form eiwt. The absence of
higher harmonics means that the spatially localized, time-
periodic solutions to the equation are trivial examples of
discrete breathers.
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Figure 4. A two-dimensional intrinsic localized mode forms in a photonic lattice that was created by optical induction in a pho-
torefractive crystal. A second laser beam provides the input, which is centered on a single site in the photonic lattice. The 3D per-
spectives show (a) the input intensity; (b) the linear diffraction output that occurs in the absence of a photonic lattice; (c) the dis-
crete linear diffraction, induced by the photonic lattice for weak nonlinearity; and (d) an ILM that occurs at larger nonlinearity.
(Figure adapted from H. Martin et al., ref. 12.)
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localization in the regime of large nonlinearities (see fig-
ure 4). Both sets of results illustrate the tremendous
promise for optically excited and controllable nonlinear
localized states as elements of future all-optical logic and
switching devices.

The best is yet to be
Armed with the fundamental understanding of the origin
of ILMs, experimentalists are becoming increasingly pro-
ficient at discovering—or creating—new physical systems
in which to study ILMs and their properties. For instance,
in a recent experiment designed to explore the important
issues of creation, transport, mobility, and interactions of
ILMs, a group led by Sievers constructed an array of mi-
cromechanical oscillators.10 Nearly identical initial exper-
imental conditions led to ILMs located at widely different
sites, an important confirmation that ILMs are in fact lo-
calized by intrinsic nonlinear effects rather than by disor-
der or impurities.

The ability to create periodic optical lattices in which
to trap BECs immediately suggests the possibility of cre-
ating and observing ILMs in those systems.14 Analytic and
computational studies of the dynamical phase diagram of
a dilute BEC trapped in a multiwell periodic potential re-
veal that, in the framework of the Gross–Pitaevsky equa-
tion (the standard equation used to study BECs), the dy-
namics are governed by a variant of the DNLSE (see box
2). ILMs can therefore be created even if the BEC’s inter-
atomic potential is repulsive. Recent experiments by
Francesco Cataliotti and colleagues strongly suggest that
an increase of the BEC density will lead to the generation

of ILMs in these systems.
The possible roles of ILMs in biopolymers have also

been a focus of concerted theoretical and experimental ef-
forts.15 For instance, the conformational changes and buck-
ling of long biopolymer molecules may occur in response to
the excitation of nonlinear localized modes. Conforma-
tional flexibility is a fundamental property that differen-
tiates polymers from small molecules and gives rise to
many of their remarkable properties. A distinctive feature
of biological polymers is the complex structure of their el-
ementary sub-units; that structure can support long-lived
nonlinear excitations. ILM excitations have been dis-
cussed in connection with the storage and transport of the
energy released during adenosine triphosphate hydrolysis,
with the local opening of the DNA double-helix, and with
the buckling, folding, and collapse of a biopolymer chain
to a compact coil, as shown in figure 5. Theoretical results
predict that these effects survive in the presence of viscous
damping. Thus, although it is speculative, this application
of ILMs may prove to be crucial in the kinetics of confor-
mational phase transitions of semiflexible biopolymers in
solutions.

The recent theoretical, numerical, and experimental
results, and the innovative concepts associated with the
physics of ILMs have shed considerable light on the com-
plex dynamics, properties, and functions of nonlinear dis-
crete physical systems—from the nanoscale to the
macroscale. The study of such systems, and the ILMs they
support, underpins applications ranging from smart ma-
terials that respond collectively to external stimuli in a co-
herent, tunable fashion to light-induced, all-optical net-
works. Only a few years ago, ILMs were almost exclusively
the province of theorists. Today, the rapidly expanding list
of experimental observations not only establishes the ubiq-
uity of intrinsic localized modes in nonlinear, discrete
physical systems but also generates exciting possibilities
for future applications both in fundamental science and in
technology. Clearly, for ILMs, the best is yet to be.

We have enjoyed many helpful discussions with our colleagues
and coauthors who contributed to the field discussed in this
article. In particular, we recognize Serge Aubry, Alan Bishop,
Oleg Braun, Zhigang Chen, Konstantin Kladko, Arnold Kose-
vich, Robert MacKay, Sergei Mingaleev, Elena Ostrovskaya,
Alexander Ovchinnikov, Michel Peyrard, Al Scott, Mordechai
Segev, Al Sievers, Yaron Silberberg, Andrey Sukhorukov,
Shozo Takeno, George Tsironis, and Alexey Ustinov.
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Figure 5. A biopolymer chain buckles
and folds in on itself due to an insta-
bility produced by a moving nonlinear
localized mode. That mode started as
a single-particle excitation at the left
end of the 30-particle chain and propa-
gated to the middle. Marked particles 
indicate the location of the moving
ILM excitation as a function of
the time t (in dimensionless
units). (Figure adapted from 
S. Mingaleev et al., 
ref. 15.)
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