Fractionalization of the electron

Claudio Chamon

PY 482 Lecture

Boston, April 4, 2013

Fractionalization in Polyacetelene

R. Jackiw and C. Rebbi, Phys Rev. D13, 3398 (1976)
W. P. Su, J. R. Schrieffer and A. J. Heeger, PRL 42, 1698 (1979); PRB 22, 2099 (1980)

Fractionalization in Polyacetelene

R. Jackiw and C. Rebbi, Phys Rev. D13, 3398 (1976)
W. P. Su, J. R. Schrieffer and A. J. Heeger, PRL 42, 1698 (1979); PRB 22, 2099 (1980)

Fractionalization in Polyacetelene

R. Jackiw and C. Rebbi, Phys Rev. D13, 3398 (1976)
W. P. Su, J. R. Schrieffer and A. J. Heeger, PRL 42, 1698 (1979); PRB 22, 2099 (1980)

Fractionalization in Polyacetelene

R. Jackiw and C. Rebbi, Phys Rev. D13, 3398 (1976)
W. P. Su, J. R. Schrieffer and A. J. Heeger, PRL 42, 1698 (1979); PRB 22, 2099 (1980)

Fractionalization in Polyacetelene

R. Jackiw and C. Rebbi, Phys Rev. D13, 3398 (1976)
W. P. Su, J. R. Schrieffer and A. J. Heeger, PRL 42, 1698 (1979); PRB 22, 2099 (1980)

Fractionalization in Polyacetelene

R. Jackiw and C. Rebbi, Phys Rev. D13, 3398 (1976)
W. P. Su, J. R. Schrieffer and A. J. Heeger, PRL 42, 1698 (1979); PRB 22, 2099 (1980)

Counting the charge

Counting the charge

Counting the charge

- - ○ • ○ • ○ • ○ • ○ • ○ e-

Counting the charge

Counting the charge

 $$
Q=-1 / 2
$$
 $$
Q=-1 / 2
$$

Counting the charge

$$
\begin{aligned}
& Q=-1 / 2 \\
& Q=-1 / 2
\end{aligned}
$$

Fractional charge!

What are zero modes?

$\overline{\bar{\equiv}} E$
 $H \Psi(x)=0$

$$
\Psi_{E}(x) \stackrel{C}{\longleftrightarrow} \Psi_{-E}(x)
$$

Energy eigenvalues always come in pairs. So unpaired states are only allowed at

$$
E=0
$$

Dirac Hamiltonian

$$
\begin{gathered}
H=p \sigma_{1}+\Delta \sigma_{2}=\left(\begin{array}{cc}
0 & p-i \Delta \\
p+i \Delta & 0
\end{array}\right) \\
E= \pm \sqrt{p^{2}+\Delta^{2}} \\
\overline{\overline{\bar{\omega}}} \\
E \\
\hline
\end{gathered}
$$

Dirac Hamiltonian

$$
\begin{gathered}
H=p \sigma_{1}+\Delta \sigma_{2}=\left(\begin{array}{cc}
0 & p-i \Delta \\
p+i \Delta & 0
\end{array}\right) \\
E= \pm \sqrt{p^{2}+\Delta^{2}} \\
\overline{\overline{\bar{y}}} \\
E \\
\\
\hline \bar{\square}-E
\end{gathered}
$$

$$
\sigma_{3} H \sigma_{3}=-H
$$

$$
\Psi_{-E}(x)=\sigma_{3} \Psi_{E}(x)
$$

Spatially dependent masses and zero modes

R. Jackiw and C. Rebbi, Phys Rev. D13, 3398 (1976)

$$
\begin{gathered}
\text { (者 } \\
{\left[-i \sigma_{1} \partial_{x}+\Delta(x) \sigma_{2}\right] \Psi=E \Psi} \\
E=0 \Rightarrow\left(\begin{array}{cc}
0 \\
-i \frac{\partial}{\partial x}+i \Delta(x) & -i \frac{\partial}{\partial x}-i \Delta(x) \\
0
\end{array}\right)\binom{u(x)}{v(x)}=0
\end{gathered}
$$

Zero mode is localized

$$
\left(\begin{array}{cc}
0 & -i \frac{\partial}{\partial x}-i \Delta(x) \\
-i \frac{\partial}{\partial x}+i \Delta(x) & 0
\end{array}\right)\binom{u(x)}{v(x)}=0
$$

solution I

$$
\begin{gathered}
u(x) \propto e^{\int_{0}^{x} d x^{\prime} \Delta\left(x^{\prime}\right)} \\
v(x)=0
\end{gathered}
$$

$$
\begin{gathered}
u(x)=0 \\
v(x) \propto e^{-\int_{0}^{x} d x^{\prime} \Delta\left(x^{\prime}\right)}
\end{gathered}
$$

Zero mode is localized

$$
\left(\begin{array}{cc}
0 & -i \frac{\partial}{\partial x}-i \Delta(x) \\
-i \frac{\partial}{\partial x}+i \Delta(x) & 0
\end{array}\right)\binom{u(x)}{v(x)}=0
$$

solution I

$$
\begin{gathered}
u(x) \propto e^{\int_{0}^{x} d x^{\prime} \Delta\left(x^{\prime}\right)} \\
v(x)=0
\end{gathered}
$$

$$
\begin{gathered}
u(x)=0 \\
v(x) \propto e^{-\int_{0}^{x} d x^{\prime} \Delta\left(x^{\prime}\right)}
\end{gathered}
$$

Counting the charge

$$
\sum_{E} \rho(E, x)=\sum_{E} \psi_{E}(x) \psi_{E}(x)=1 \quad\left(\text { ie } \sum_{E}(f|E\rangle\langle(E \mid x)=1)\right.
$$

Counting the charge

$$
\begin{aligned}
& \quad \sum_{E} \rho(E, x)=\sum_{E} \psi_{E}^{\dagger}(x) \psi_{E}(x)=1 \quad\left(\text { i.e. } \sum_{E}\langle x \mid E\rangle\langle E \mid x\rangle=1\right) \\
& \sum_{E} \rho^{\text {kink }}(E, x)=\sum_{E} \rho^{\text {no kink }}(E, x)
\end{aligned}
$$

Counting the charge

$$
\begin{aligned}
& \quad \sum_{E} \rho(E, x)=\sum_{E} \psi_{E}^{\dagger}(x) \psi_{E}(x)=1 \quad\left(\text { i.e. } \sum_{E}\langle x \mid E\rangle\langle E \mid x\rangle=1\right) \\
& \sum_{E} \rho^{\mathrm{kink}}(E, x)=\sum_{E} \rho^{\mathrm{no} \mathrm{kink}}(E, x) \\
& \sum_{E \neq 0} \rho^{\mathrm{kink}}(E, x)+\left|\psi_{0}(x)\right|^{2}=\sum_{E \neq 0} \rho^{\mathrm{no} \mathrm{kink}}(E, x) \\
& \sum_{E \neq 0} \delta \rho(E, x)=-\left|\psi_{0}(x)\right|^{2}
\end{aligned}
$$

Counting the charge

$$
\sum_{E} \rho(E, x)=\sum_{E} \psi_{E}^{f}(x) \psi_{E}(x)=1 \quad\left(\text { ie. } \sum_{E}\langle x \mid E\rangle\langle E \mid x\rangle=1\right)
$$

$$
\sum_{E} \rho^{\mathrm{kink}}(E, x)=\sum_{E} \rho^{\mathrm{no} \mathrm{kink}}(E, x)
$$

$$
\sum_{E \neq 0} \rho^{\mathrm{kink}}(E, x)+\left|\psi_{0}(x)\right|^{2}=\sum_{E \neq 0} \rho^{\text {no kink }}(E, x)
$$

$$
\sum_{E \neq 0} \delta \rho(E, x)=-\left|\psi_{0}(x)\right|^{2}
$$

$$
2 \sum_{E<0} \delta \rho(E, x)=-\left|\psi_{0}(x)\right|^{2}
$$

$$
\delta \rho(x)=-\frac{1}{2}\left|\psi_{0}(x)\right|^{2}
$$

$$
Q=-1 / 2
$$

Fractionalization in 2D Dirac fermion systems

C.-Y. Hou, C. Chamon, M. Mudry, PRL 98, 186809 (2007)

2D Dirac fermions in condensed matter systems

Bipartite lattices A and B - hopping between these

The hopping texture leading to Δ :

Kekule Distortions:

KEKULE
C. Chamon, PRB 62, 2806 (2000)

"Molecular graphene"

H. Manoharan 's lab:
K. K. Gomes et al., Nature 483, 306 (2012)
b $\quad z(A ̊) \quad 0 \square 0.5$

"Molecular graphene"

H. Manoharan 's lab:
K. K. Gomes et al., Nature 483, 306 (2012)

Kekulé

Kekulé-vortex

A "picture" of a fractional charge

