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Fractional charge!



H Ψ(x) = 0

What are zero modes?

ΨE(x)←C−→ Ψ−E(x)

E

−E

Energy eigenvalues always come in pairs.
So unpaired states are only allowed at

E = 0
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Spatially dependent masses and zero modes
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2D Dirac fermions
in condensed matter systems

Bipartite lattices A and B - hopping between these
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The hopping texture leading to Δ:

Kekule Distortions:

C. Chamon, PRB 62, 2806 (2000)



A completed ‘flake’ of molecular graphene is shown in topographic
form in Fig. 1b, demonstrating a perfect internal honeycomb lattice
and discernable edge effects at the termination boundaries. The spec-
trum shown in Fig. 1c was measured at the lattice C sites near the
centre of a lattice built using 271 COmolecules separated by a distance
d5

ffiffiffi
3

p
a5 19.23 Å. The spectra in all the figures show surface-state

conductance, ~g(E,r), where r denotes the measurement position.
(Henceforth, ‘tilde’ quantities refer to continuum properties of the
Dirac fermions.) These spectra are measured by taking the ratio, gR,
between the measured differential tunnelling conductance and the
spatially averaged value acquired on clean Cu(111) (Supplementary
Fig. 2). This normalization removes the featureless slope present in the
bare Cu spectrum and cancels the effect of possible energy-dependent
tunnellingmatrix elements thatmay vary between differentmicroscope
tips. The jump in differential conductance at the two-dimensional band
edge, g2D5m*/pB2 5 1.585 eV21 nm22, additionally provides a
quantitative calibration of the surface density of states (DOS) and is
used to scale gR to meaningful units (Supplementary Information).
The edge of the gap at the M point in momentum space (Fig. 1c) is

marked by the peak in conductance at EM52104meV. The Dirac

a

50
d

Bt

E 
(m

eV
)

˜

0

50
A

–50
–0.4 –0.2 0.2 0.40

↓〉

↑〉

↑〉

↓〉

sgn(sz)sgn(E)g (eV–1nm–2)     ˜ ˜

b z (Å) 0.50

1.0c
2 nm

K

0.5 ED

M ED

EM

–200 0 200

0.0

5 
nm

g 
(e

V–1
 n

m
–2

)
˜

V (mV)

Figure 1 | Dirac fermions in molecular graphene. a, Sequence of constant-
current topographs during the assembly of a molecular graphene lattice
(V5 10mV, I5 1 nA). b, Topograph of a molecular graphene lattice
composed of 149 CO molecules (lattice constant, d5 8.8 Å). c, Spatially
averaged, normalized differential conductance spectrum, ~g(V) (solid line),
measured on the top sites near the centre of quasi-neutral molecular graphene
(d5 19.2 Å), accompanied by a tight-binding DOS fit (dashed line) with
hopping parameters t5 90meV and t95 16meV. Inset, resulting Dirac cone
realized in reciprocal space (corresponding to fit parameters). The tight-
binding spectrum is calculated by finding energy eigenvalues of a finite
graphene lattice with Lorentzian basis functions (to model the finite lifetime
due to scattering to bulk states and coupling to the two-dimensional continuum
at the graphene edges, we used an electron self-energy S5C/2, where the
linewidth is C5 40meV from observed broadening of states near EF).
d, Linearly dispersing quasi-particles revealed by the conductance spectra
~g(~E,r), plotted individually for sublattice A (filled circles: pseudospin sz511/
2, |"æ) and sublattice B (open circles: pseudospin sz521/2, |#æ), measured at
locations r illustrated in the inset. Points for |~E | = eVrms, where Vrms is the
modulation voltage, are excluded from this plot because this instrumental
broadening prohibits their accurate measurement.
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Figure 2 | Dirac point engineering in a p–n–p junction. Spectroscopic
measurements made from a p–n–p lattice with alternating lattice spacings: d
changes abruptly from 17.8 to 20.4 Å and then back again. a, Topograph of the
p–n–p lattice. The conductance spectra were measured across the centre line
marked by the grey arrows. b, Intensity colour plot of the conductance spectra
~g(V ,x), where x denotes the distance along the centre line. The white line is the
locus ofminima (theDirac points (ED)) in the conductance spectra. The dashed
line marks the Fermi energy (EF). Illustrative Dirac cones are superimposed to
show the effective doping of each region. c, Spatially averaged, normalized
conductance spectra measured along the centre line (marked by arrows in
a). The first spectrum (blue, left) was measured in the left-hand, p-type, region
(d5 17.8 Å), the second (orange, centre) was measured in the central, n-type,
region (d5 20.4 Å) and the third (blue, right) was measured in the right-hand,
p-type, region (d5 17.8 Å).
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A “picture” of a fractional charge


