PY 482 COURSE INFORMATION Spring 2013

Instructor: Sidney Redner, redner@bu.edu, SCI 321, 353-2618 **Office Hours:** Tues. 10:30–11:30 & Fri. 10:30–11:30.

Course Website: physics.bu.edu/~redner/482.html.

General: This is a seminar course on condensed-matter and biological physics. At each course meeting, a departmental faculty member will give a 45-minute generally-accessible presentation about an aspect of their current research at the Scientific American level. After each presentation, I will provide more general context for each talk and also answer detailed questions. The goal is to expose you to current research in an enjoyable way.

Class Schedule: There will be 14 weekly class meetings on Thursdays from 3:30–5pm in SCI 352 starting January 17, according to the schedule given below.

Speaker	Title
S. Redner	Kinetics of the Ising Model
H. E. Stanley	Physics of Complex Systems with Applications to Liquid State Physics, Econophysics, and Failure Cascades in Interdependent Networks
K. Ludwig	Making Functional Surfaces & Thin Films - Where are the Atoms?
P. Mehta	Thermodynamics of Cellular Computation
D. Campbell	Bose Einstein Condensates in Optical Lattices
B. Goldberg	Graphene Pulled Across a Surface Violates Amonton's Force Law (Increased Load Increases Friction)
K. Smith	Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies
M. El-Batanouny	Massless Electrons, Massive Ions and Topological Insulators
W. Klein	Statistical Physics, Earthquakes and Economics: Simple Models and the Real World
A. Sandvik	Quantum Magnetism
C. Chamon	Designing Electronic Properties of Materials by Driving them Out- Of-Equilibrium: The Case Study of Gaps in Graphene
R. Bansil	Gels, Bacteria and Ulcers
R. Averitt	Ultrafast Spectroscopy of Condensed Matter
S. Erramilli	Why are Proteins so Fast?
	Speaker S. Redner H. E. Stanley K. Ludwig P. Mehta D. Campbell B. Goldberg K. Smith M. El-Batanouny W. Klein A. Sandvik C. Chamon R. Bansil R. Averitt S. Erramilli

Homework: There may be suggestions for further reading accompanying some of the presentations. You will be expected to write two short (no more than 3-page) essays during the semester to discuss what you've learned from talks of your preference.

Grading: The course grade will be primarily based on class attendance and on essay scores according to the rough scheme given below.

- C: miss 3 or more meetings; no class participation; poor essays
- B: miss no more than 2 meetings; some class participation; OK essays
- A: miss no more than 1 meeting; significant class participation; good essays