Fate of the Kinetic Ising Model

Sid Redner, Physics Department, Boston University, physics.bu.edu/~redner collaborators: P. L. Krapivsky, V. Spirin, K. Barros, J. Olejarz + NSF support

Basic question:

How does magnetic order emerge in a kinetic Ising model when an initially disordered state is cooled to very low temperature?

Ising Hamiltonian

$$\mathcal{H} = -\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1$$

Initial state: disordered, zero magnetization Final state: ???

Dynamics of the System

Pick a random spin and compare the outcome after reversing the spin

if $\Delta E < 0$ flip spin

if $\Delta E > 0$ don't flip

if $\Delta E = 0$ flip with prob. 1/2

Domain Wall Picture in Id

Domain Wall Picture in Id

coarsening of 256x256 system

t=4

coarsening of 256x256 system

coarsening of 256x256 system

coarsening of 256x256 system

Evolution to the Ground State

Evolution to Stripe State

Evolution to Diagonal Stripe State

Question: what *is* the final state?

Answer from simulations:

ground state with probability $\approx 2/3$ stripe state with probability $\approx 1/3$

Three Dimensions

Basic result: ground state is never reached! typical 20x20x20 system

Features:

- I. Swiss cheesy
- 2. Zero average curvature

Three Dimensions

Basic result: ground state is never reached! typical 20x20x20 system

I. Swiss cheesy

2. Zero average curvature

Three Dimensions (Olejarz, Krapvisky, & SR)

Basic result: ground state is *never* reached! typical 20x20x20 system

Features:

- I. Swiss cheesy
- 2. Zero average curvature
- 3. Non-static

Blinker Evolution in Three Dimensions energy/spin = 0.5335, time = 942.0

Genus Distribution

Slow Relaxation of Blinkers

synthetic blinker configuration

Slow Relaxation in 3d

 $S(t) \sim (\ln t)^{-3}$?

Summary & Open Problems

d=I: *almost*, but not quite, completely soluble

final state: the ground state completion time: L² domain length distribution still unsolved

d=2: ground state/metastable stripe states

final state: *usually* the ground state connection to percolation crossing probabilities completion time: usually L², sometimes L^{3.5} finite temperature corner geometry: *exactly soluble*

$d \ge 3$: rich state space structure

topologically complex final state topological connection between energy & genus perpetually blinking spins ultra-slow relaxation whose functional form is unknown finite temperature corner geometry: partial result