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CHAPTER

6

THE KINETIC THEORY OF DILUTE GASES*

E.G.D. COHEN

Intreduction

In Chapters 6 and 7 we shall allempt to give a microscopic
explanation of the macroscopic properties observed in dilute and moder-
ately dense pases,

The macroscopic properties discussed here can be classified into: (1)
general properties—which are 1o a large extent insensitive 1o the precise
nature of the intermolecular potential ficld--and (2) special propertics—
which depend sensitively on the intermolecular potential field. Included
in the first class are: the irreversible approach to thermal equilibrium of a
gas which initially is not in thermal cquilibrium and the validity of the
hydrodynamical equations (or the taws of irreversible thermodynamics).
Included in the second class are: the lemperature dependence of the
thermodynamic functions and the transport coeflicients of the gas.

A microscopic explanation here means an explanation bused on the
motion of the atoms andfor molecules which make up the gas, assuming
the interatomic or intermolecular potential tield is known, The determina-
tion of the intermolecular potential is, in principle, a gquantum mechanical
problem, We will always assume in this chapter that (he intermoleculur
potential is additive, depends only on the intermolecular distance, and is
short ranged, (i.c., it falls off rapidly to zero when the intermolecular
distance exceeds a few angstroms),

The main problem we shall be concerned with will be the statistical

* Sce references /-4 for penerat back ground.
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120 6. THE KINETIC THEORY OF DILUTE GASES

problem of making the connection between the microscopic properties
of the molecules, on the one hand, and (he macroscopic properties of the
gas in bulk, on the other hand,

The difficulty of the probiem is due to the fact that matter in bulk
consists of an enormous number of molecules. One cubic centimeter of
air, for example, consists of # = 3 x |(1® molecules at a temperature
of 0°C and a pressure of 1 atm. Therefore a microscopic explanation of the
behavior of matter in bulk seems to involve the solution of the equations
of motion of an enormous number of particles. Since the analytic solution
of the equations of motion of three particles is unknown, the solution of
the equations of motion for n particles seems completely hopeless.

Already in the beginning of the kinetic theory of gases in the middje
of the last century, Clausius, Maxwell, and Boltzmann realized that even
if one had the solution of the microscopic equations of motion for the
motion of the molecules, one still would have to connect this solution
with such macroscopic concepts as the local density, the local tempera-
ture, viscosity, etc. They realized that these macrescopic concepts were in
some way related to averages over the microscopic behavior of the gas.
Furthermore, they realized that by considering certain well-chosen
averages, it.might be possible to avoid the necessity of obtaining the full
solution of the microscopic equations of motion of all particles because
one could hope that for the determination of these averages different and
much simpler equations might be used. OFf course, these simplified
equations would still contain seme features of the microscopic equations
of motion of the molecules but would, hopefully, be much easier to
handle!

In the case of a difure gas, where only binary collisions between the
molecules occur, Maxwell and Boltzmann assumed that it was sufficient
to consider the average number of particles, /(rve),which are at time ¢
at the position r with velocity v, for a description of the macroscopic
-properties of the gas in bulk. In this chapter we will discuss how one has
been able to explain many of the observed macroscopic propertics of
dilute gases on the bases of this assumption. Also, we will discuss the
equation which f satisfies, those microscopic averages with which he
macroscopic quantities of the gas can be identified, the question of whether
or not the so-defined macroscopic quantities actually do exhibit the same
properties as the corresponding observed macroscopic quantities of the pas,

In the case of a moderately dense gas, Bogolubov conjectured that f
would still be sufficient to explain the macroscopic propertics of such a
gas. In Chapter 7 we will see how far this conjecture is correct, This
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chapter is intended as an introduction to what has been accomplished so
far. In fact, concrete results have been obtained only for the case where
the intermolecular forces are purely repuisive and where only binary and
ternary collisions between the molecules occur,

I. The Boftzmann Equation (5)

As we already pointed out in the introduction, Maxwell and Boltzmann
realized that for an adequate description of the dilute gas one should
consider f(rvr), the average number of particles at a given position r with
velocity v at time #. Boltzmann was che first to write down “an equation of
motion” for /, that is, an equation for the rate of change of £ with time.
This equation, the Boltzmann equation, reads in the absence of an outside

[ i :
field of force as 3 (evi) o %

Y »t JOf) (6.1a)

where

JU =friv,fdhb (dvg[f(rv'r)f{rv,’l) — frvthf{rv0)]  (6.1b)

The meaning of the symbols in eq. (6.1a.b) will be explained below. For
our purposes Lhis equation is sufficient!y peneral. In case there is an outside
field of foree, F, present, one has an additional term on the right-hand
side: == (F/m)+ (9ffav).

We can see how eq. (6.1) is arrived at by the following clementary
considerations, If one multiplics both sides of eq. (6.1) by dr v, the teft-
hand side (Lh.s.) of eq. (6.1a) gives the change per unit time of the number
of molecules with velocity between v and v + dv in a volume element dr
around r. In other words, the left-hand side of eq. (6.1a) then gives the
rate of change of the number of molecules, f'dr dv, in the volume element
dr dv around the pointr, vin p-space, the six-dimensional phase spuce of u
(single) molecule, *+

According Lo eq. (6.1a), this rate of chunge is equal to the sum of a
streaming term, —v+ (3/r) or v, and a collision term, JUT) dr dv,

Of these two terms, the streanting rerm gives Lhe rate of change of f due
to the fact that the molecules have-a finjte velocity and, consequently,

* s stands for “maolecule. ™

t The sohume clement drdy in #espace should be physically infinitesimal, ic., it
should be chosen farge enough so that it contains many molecules. On the other hand,
H should be smahl enouph so that the macrosopic quantities of the tas do not change
appreciably over dr.
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change their positions with time. Thus molecules with velocity v around* r
at time ¢ will be around r + v dr a little time dr later. While other mole-
cules, viz., those around r — v dt, will be around r at time 4.

Therefore one has for the change of /'dr dv by streaming per unit time:
loss: all molecules in dr dv around v, that is, f(xvt) dr dv;
gain:  all molecules in dr dv around r — vdt,
that is, f(r — vdr, v, t) dr dv;

balance r—vd,v, 6 — f(r, v, D)drdv = —y. a_f(é@ dr dv
r

The streaming term is therefore a “gain-loss” term.
This gain-loss character is even clearer for the collision term, which
gives the rate of change of f due to the fact that the molecules change their

. velocities with time because of the forces exerted on them during collisions.

Specifically, the contribution of the last term on the right-hand side

{rhs.)of eq. (6.1a), —dr dv [ dv, §fdb b dy g f(eve) fev,r), gives the foss

| per unit time of the number of molecules /' dr dv with velocity v around r
. due to collisions with molecules with any velocity v, around r. In fact,
‘any such collision between two molecules with vefocities v and v, will
result in two molecules with different velocities v and v, respectively.
‘Therefore any (v, vi)-collision results in a 10ss to £ dr dv because a molecule
with velocity ¥ is not part of fdr dv. The number of (v, v;)-collisions (or

also direct collisions) per unit time can be computed by considering the
relative motion of a molecule with velocily v with respect to a molecule
with velocity v,. N N

' The relative motion is characterized by the relative velocity g =v — v,,
the impact parameter b and the azimuth angle p of the plane in which the
relative motion takes place. The number of collisions in time 4 of mole-
cules with velocity v with a molecule with velocity v;, such that impact
parameter b is between b and b + db, and the azimuth angle v is belween
yand y + dp, is given by the number of molecules with velocity v in the
“collision cylindert of volume gb db dy di, and equals (cf. Fig. [):

o b db dy gf (vvs) dv dr

where g = [g|.

“ESlrictly speaking, “wilh velocities between v and v + dv." For brevity, we will omit
thisimore elaborate description of the set fdrdv. Similarly, “in dr around " will be
replaced in the text simply by “around r.”

t Btrictly speaking, the figure is not a cylinder, but common usage often refers to it
as a rollision cylinder,

i R RS -

AR AT AT

(6.2)
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Restituting

|

dp’ bdy

Collision
cylinder

Direct
collision

Fig. 1. Dircct and restituting-collisions in relative coordinate system, [For Appendix
B, Chapter 7 ¢ -+ ryyi B ~ 8513 8" — L |

If the gas is suflliciently dilute so that 1he (collision) cylinders associated
with a/l molecules with velocity v, around r can be assumed not to overlap,
then the total number of direct collisions per unit time around r--
and consequently also the foss of molecules with velocity v around r—is
given by

{all molecules with velocity v coltiding with a molecule with velocity v,)
|
l I

loss: dr dv f dv, [ db b f dy gf ey f(rv,i) - (6.32)

LT g

I
I

{all molecules with velocity v, in dr around r),

___—
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The contribution of the second term on the r.h.s. of eq. (6.1a),

dr dv f dy, f db b f dy gf (V'1) f(rvin),

gives the gain per unit time to f'dr dv due to collisions. This gain can be
computed in the same way as the loss to fdr dv was computed before,
Two molecules with velocities v and v, will result if two molecules with
velocities v* and v, (and the same impact parameter b, but with azimuth
angle p + ) collide (compared with Fig. 1). Therefore any such (v’, v,)-
colliston will result in a gain to f dr dv. Using then that |g'| = jv' — v =
g = g.thatdvdv, = dv' dv], and assuming again that the collision cylind-
ers associated with different molecules with velocity v, around dr do not
overlap, one finds that the total number of (v', v;)—collisions (or also
restituting colfisions) per unit time around r—and consequently, also the
gain of molecules with velocity v around r—is given by

gain: dr dvfdvlfdb bfdip gl (rv'e) f(rvin) (6.3b)

The balance of the gain-loss contributions leads with eqs. (6.1b), {6.3a),
and (6.3b) to the following contribution to the change of fdr dv per unit
time;

balance: JUF) de dv (6.3¢)

Equation (6.1) results from the eqs. (6.2) and (6.3c), after division by
“dr dv.

A. REMARKS ABOUT J(f)

(@) In J(ff), b db dy is the classical differential scatlering cross seclion.

(b) The connection between ¥, v and v', v, (and vice versa)} involves
implicitly the intermolecular potential field $(r).

(c) The occurrence in J of two s indicates that only contributions from
binary collisions are considered in the calculation.of dfjanr.

(d) The numbers of direct and restituting collisions, as given by the eqs.
(6.3a) and (6.3b), respectively, are a consequence of a certain Stoszzahf -
Ansatz.* In fact, the numbers have been computed using a statistical
assumption; the assumption of molecular chaos, viz: it is assumed that at
every time ¢ there are no velocity correlations at r so that the averape

* Stoszzahl-Ansatz is an assumption about the number of collisions.

v

g
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number of molecular pairs with velocity v and v, at r, Sa(rvyye), can be
written as

Sao(rvvye) = f(evt) f(xvye) (6.4)

and simitarly for v’ and v;.

This statistical assumption is of a nonmechanical nature, and is the
origin of the lack of time-reversal invariance of the Boltzmann equation
and of the irreversible behavior shown by a gas described by the Boltzmann
equation (6.1) {cf. Section II}. For, changing f to —¢, and consequently
also ¥[= (dr{dt}] to —v, the Lh.s. of eq. (6.1a) and the first term on the
r.h.s. of eq. (6.1a) change sign, while the second term on the r.h.s. of eq.
(6.1a) [i.e., J(f)] does not. If, therefore, f(rve) is a solution of eq. (6.1)
then f{r, —v, —r)is not. This is in contrast to mechanics where the basic
equations (for example, the Lagrange equations) are time-reversal
invariant. In that case, corresponding to any solution ¢(r) of the Lagrange
equation:

d (3L L

=] -==0 6.5a

dl(aq‘) dq (6.58)
there is a solution g(—) of the time-reversed (but identical) equation:

d_ oL _ ok _ (6.5b)

d(=nod(—gy oq
Thus g{r) and g(—r) are both possible solutions of the mechanical equa-
tions of motion.

it is clear that the statistical or “average™ treatment of the mechanics
of the molecules at r is the origin of this difference with mechanics.

The approximate nature of the hypothesis of molecular chaos and therefore, of the
Stoszzaht-Ansalz is reflected in the fact that the resulting Boltzmann equation (6.1)
only describes the approach of a dilute gas rowardy equilibrium, but not the fluctuations
around equilibrium when the gas is in equilibrium,

B. SUMMARY

We conclude this section by summarizing all the assumptions inherent
in the Boltzmana equation:

(1 A dilute pas can be adequately described by the singie particle
distribution function f(rve ) slone,

(2) Only binary collisions are considered.

(3) The molecules move according to the laws of classical mechanics.

(4) The assumplion of molecular chaos is used in the Stoszzahl-Ansatz.
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(5) A spherically symmetric intermolecular potential field ¢(r) is
assumed $o that the initial velocities (v', v) of the molecules in the res.
tituting collision are equal, for all  and v, to the final velocities of the
molecules in the direct collision, as has been used in the derivation of
eq. (6.1).

(6) The number of molecules with velocities v and v, in the direct
collision—or with velocities v’ and ¥y in the restituting collision—that are
going to coflide at time ¢ has been computed as if the two colliding mole-
cules were at the same position r, in spite of the fact that they are outside
the range of the intermolecular forces.

For the existence of the Boltzmann equation it is nol necessary to assume that the
intermolecular potential field has a finite range, that is, that ¢(r) vanishes for ail
¥ > ro. One only needs to assume that $(r) decreases sufficiently fast with increasing ¢

S0 that the collision integral J(f) exists. For the existence of J(f) v and v, must
approach v* and v, sufficiently fast for increasing &.

L. Approach te Equilibrium I (H-Theorem and Principle of the
Chapman-Enskog Solution)

All' macroscopic properties of a dilute gas should follow from the
Boltzmann equation. In this section we shall study some general questions
concerning the approach to equilibrium:

(A) Can one show that a gas, which is initially (i.e., at time Zero), not
in equilibrium, will always approach equilibrium?

(B) Furthermore, how does this approach to equilibrium proceed?

A. H-THEOREM (6)

The general approach of a dilute gas to equilibrium could be proved by
Boltzmann on the basis of his equation without solving it for f by the
H-theorem. In fact, he proved that a dilute gas, whose time evolution is
governed by the Boltzmann equation (6.1), will, for any initial state
f(rv(), approach to thermal equilibrium which is characterized by the
Maxwell distribution function Sar), \

. a2 2
Sas(v) = n(2 ’:T) exp (— g::’——T) (6.6)
")

where m is the mass of a molecule, » is the number density, X is Bolizmann’s
constant, and Tis the absolute temperature.
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We shall not give a general proof of this here but we shall restrict
ourselves to a proof for the spatially homogeneous case where S(xvt)
depends only on v and not on r.

1. Proof of H-theorem for f(vi)

H-Theorem. For any f(vt) that is a solution of the spatially homogene-
ous Boltzmann equation, the function H (defined below) never increases
with time,

Proof. Define a function H by*

H = f S0y Inf(v1) dy (6.7)

Then using eq. (6.1), that 9f/dr = 0 and that o(J f dv){dr = 0, one has

Y o
- a’]nfdvhfdvfclv,fdbbfdwglnf[ffl £l (68)

Here we have written ffor f(rve), /" for f(rv's), elc. Interchanging v and v,
on the r.h.s. of eq. {6.8), and adding the equation thus obtained to eq.
(6.8), one has

du _ % J‘dvfdv,fdbb [dws i“ﬁl[f'ff-"ﬂ.l,] (6.9)

t

Interchanging (v, v;) and (v', v)) on the r.h.s. of eq. (6.9), using the fact
that dvdv, = dv' dv; and that g = g’, and adding the equation so oblained
to eq. (6.9), one has

dH =-:ifdvfdv,fdbbfdwgin (f'%)[f’f.’ =f1<0 (610

it

as the r.h.s. of eq. (6.10) is always 0.
From eq. (6.10) it follows that dH/dr < 0 for all ¢, thus H can never
increase. :

* The symbol H doces not s1and for capital & but for capital (greek) eta, thus emphasiz-
ing the connection with the entropy # = §. In fact, in equilibrium, when S, 0y = fy,
H* = — Sk + constant.
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2. Proof of Approach of f to Equilibrium

H will continue to decrease* unti finally, as r — oo, dH/dt = 0 for all
¥, vy, b, v (that is, for all possible binary collisions), and

- SOV () = f(¥)f(v) (6.11)
Taking the logarithm of both sides of eq. (6.11), we have
Inf(¥) 4+ In f (%) = In f(¥') + ln f(v}) ' (6.12)

This equation shows that In f(vt} is an additive colfisional invariant,
that is, the total of In f summed over the two colliding molecules before—-
and after—a collision is the same. Since the only independent additive
collisional invariants are the number (1), the momentum (mv), and the
(kinetic) energy (3mv®) of a molecule, In f must be a linear combination of
the five invariants mentioned, that is,

Inf¥)=a 4+ b-v+§cmvﬂ

or also
J(¥v) = aexp [—ie(v — bjc)?) (6.13a)
where a, b, and c are constants. By using the definitions:
"= f F(v) dv (6.14a)
= J' FV)Y dv = 0 (6.14b)
nkT =J.f(v)§m(v — u)dv (6.14¢)

one can relate the five constants @, b, and ¢ to the usual constants density
(n), average velocity (u), and temperature (7') that characterize thermal
equilibrium. One obtains

500 = fu) = nf 21?";]_)3” exp (- %) (6.136)

where we have set u = 0,

* That H cannot decrease indefinitely is due to the fact that H must have a minimum
value, For if this were not so, and H could be —0, then this would mean that
§/In fdv diverges. This could only be so if, for v — w0 and /- 0, In f would go faster
to —oo than f— 0. This can only be so if Inf goes to infinity faster than o*, as
[ f tmv dv—the total kinetic energy of the gas—must certainly exist. However, if
Inf ~p" withn > 2, then £~ exp(—v), and H will certainly exist!
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Therefore, f approaches, through binary collisions, monotonically to
the equilibrium distribution function given by eq. (6.13). Strictly speaking,
Sonly obtains fy; after an infinite time. For all practical purposes, however,
f will equal fy to a very good approximation after very many collisions
have occurred, that is, when + Fmtps the mean-free time,

The proof of the approach to equilibrium in the spatially inhomogenc-
ous case proceeds in a similar fashion. One considers, instead of the H-
function defined by eq. (6.7}, the function H' = I Hdr (f depends on
r, v, and ¢ now),

(I) First one proves an H-theorem for H'. dH’/d¢ contains now
contributions from the streaming—as well as from the collision—term
in the Boltzmann equation. Since the contribution from the streaming
term can be shown to vanish, H' changes only through collisions. One
can show, by using the preceding arguments, that H' never increases
(H-theorem).

(2) Tie proof of the approach of f to equilibrium now proceeds in two
steps. (a) First, one has from the H-theorem that £, in the course of time,
will approach monotonically a Jocal Maxwell-distribution function
Jo(v), which is given by an expression of the same form as that on the
r.hs. of eq. (6.13), except that now u, u, and T will depend on r and ¢
(the average velocity u is in general not zero), that is,

m \ mVi(rn) .
= LML, 6.15:
Jol¥) "(r”(znkr(n)) P ( sz(rt)) (6.5
Here, the peculiar velocity, V(rt), defined by
Virt) = v — u(rr) (6.15b)

is the velocity of a molecule at r relative to the average velocity u at r,

Ineq. (6.15) the functions n(r, 1}, u(r, t), and 7(r, ) are the local number
density, the local velocity, and the Jocal temperature of the gas, respec-
tively. These are defined by [compare eq. (6.14)]

n(rt) = f T(rvt) dv (6.162)
n(rdu(rt) = J}(rw)v dv (6.16b)

2
ek T(rn) = [f(rvt) ﬂz-v— dy (6.16¢)

(b} Then, to delermine the r and s dependence of the five functions



130 6. THE KINETIC THEORY OF DILUTE GASES

#n, u, and T, one substitutes f; into the Boltzmann equation. Since J(f, £,)
vanishes, the change of f, with time is given by the streaming term only,
One can then demonstrate that the only solution of this equation for £,
is the (total) equilibrium distribution function fy given by eq. (6.6)* so
that /r and T are independent of r and 7 and u = 0.

In reality, the approach to total equilibrium in a spatially inhomo-
geneous system will also go in two steps, as is suggested by the proof
just given. First, in a time of the order of the mean-free time fntpy the
system approaches monotonically a state of local equilibrium in which
the velocities are already distributed according to a Gaussian (Maxwellian)
distribution, except that the five constants which characterize this (locab)
velacity equilibrium vary still with position and time. Then, in a time of the
order of the traversal time of the container 1,,,., [see (B)), it approaches
(not necessarily monotonically) the state of total equilibrium where also
all spatial variations have disappeared. For the first step, one should
emphasize the word “approach™: The state of local equilibrium is never
reached, but only attained to a first approximation. This follows from the
fact that /, is not a solution of the full Boltzmann equation but only of the
equation J(ff) = 0. The function f;, however, is a solution of the fuil
Boltzmann equation!

B. THe CHAPMAN-ENSKOG SoLution (7,8)

Although the H-theorem establishes once and for all the fact that a gas
will approach equilibrium, it does not provide information about how this
approach to equilibrium proceeds, other than that this approuch proceeds
in two steps, In fact, it seems that in order to obtain more information,
one would have to obtain a solution of the Boltzmann equation itself; a
formidable undertaking in view of the fact that the equation is a non-
linear integrodifferential equation in six variables, in addition to the time.
However, for the case that the gas is near equilibrium, Chapman and
Enskog have been able to avoid this formidable problem. They have been
able, by obtaining a special solution of the Boltzmann equation, to pain
more information about the approach to equilibrium, while at the same

* In the (more realistic) case that an outside force field F(r) is present, an additional
term appears in the equation for fo. But for some very special (acadermic) cases, the only
solution of this equation for Jo is the Maxwell-Boltzmann distribution function:
Sup = fu exp(— V(r}{k T) where V(r) is the potential of the outside force field F(r):
F(r) = —av(r)for.
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time establishing the connection with the equations of hydrodynamics.
The details of their work will be given in the next section. In this section
we will sketch the general ideas behind the Chapman-Enskog solution
of the Boltzmann equation.

The Boltzmann equation describes mathematically the time evolution
of a dilute gas. However, physically, it will be clear that the time evolution
of the gas, or of any system for that matter, will be dominated by the
characteristic relaxation times of the system. In our case of a dilute gas
there are three characteristic relaxation times which are related to three
basic lengths in the gas: the {effective) range of the intermolecular forces
ty, the mean-free path /, and a macroscopic length for example, the
length L of the vessel, which contains the gas.* For a dilute gas that obeys
the Boltzmann equation, one has

rIKL

The characteristic times ¢, 1,,,4,,. and { . ..., corresponding to ry, /, and L,
respectively, can be obtained by dividing ry, /, and L by a characteristic
velocity. It is convenient to choose the velocity of sound for this: v, &
104 ¢cm sec '. Then one obtains the following table which is characteristic
for a dilute pas at 0°C and | atm pressure.

TABLE |
ry ! | L
cm (L1 10 * I t
., fntn I e
see JUR 1o l 10 ¢

For our cuse, therefore, the three characteristic times are lar apart, viz:
’r << rml’p << ’mm'r

The first inequality: £, & f,. expresses the fact that the gas is difute
and that cach molecule spends most of its time in & free Might which is
occasionally interrupted by a (binary) collision. For, replacing £, <€ 1,

by the original incquality #, &/ and using that f~ 1jari one sees this

* This is only true if the intermoleculae forces are short ranged. For Coudomb forees
for example, where ¢(ry ~ I{r, such a distinction is not meaningful.
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implies that ard < 1. The second inequality, #,,¢, <« f,00c permits—for a
large class of initial states—to distinguish in the time evolution of the gas
towards thermal equilibrium two steps or stages:

() For times 0 <1< t,,,, a kinetic stage, where for an adequate
descriplion in its approach to equilibrium, the 8as has to be described by

 f(rvt) which has to be obtained from a general solution of the Boltzmann
equation;

(b) For times 1 3 1,4, a hydrodynamical stage, where the gas, for an
adequate description in its approach to equilibrium, can be described by
the five hydrodynamical quantities n(rt) u(re) and T (rt), instead of by
f(ev). The five hydrodynamical quantities are defined by eq. (6.16) and
are, therefore, related to the first five moments of / with respect to v only.
Therefore, it is clear that the hydrodynamical description of the gas by
means of #, u, and T in the hydrodynamical stage is much simpler than the
description by means of the full distribution funetion Srvt} in the Kinetic
stage. The approach of the gas to equilibrium is thus accompanied by a
simplification of the description of the gas.

The existence of these two stages, in particular the hydrodynamical
stage, can be established on physical grounds by the following argument.

For almost any initial state at ¢ = 0, every molecule in the volume
element dr around r will have collided several times after a time ¢ D e
During each collision the velocities of the colliding molecules change
enormiousty due to the strong intermolecular forces. As a consequence, all
functions depending on the velocities of the molecules at r, in particular
fevt), will change very rapidly with time. However, five functions, viz,,
n(rt), u(re), and T(rt), will not change at all because of collisions,
This is so because the number, momentum, and energy of the molecules
are conserved during collisions. Therefore, as far as collisions are con-
cerned, n, u, and T at r will not change at all during the time ¢ and will
remain constant during all the collisional turmoil that is going on at r
during the time 1. As a consequence, all the rapidly changing quaatities
at r (and in particular £) will adapt themselves to the “prevailing” »,
u, and T at r during the time ¢, and will have become dependent on n, u,
and T after a time ¢ 3 1,,,..

The preceding argument only considered the change of n, u, and T
due to collisions at r, but neglected the change of n, u, and T due to
spatial inhomogeneities in the gas at r, that is, due to the gradients of n,
u, and T atr. Now, if the variations of u, u, and T over a mean-free path
are small—as is almost always the case—then one can in first approxima-
tion neglect the change of #, u, and T due to spatial inhomogeneities at r,
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and the preceding argument still applies. More precisely: if one calls
any of the macroscopic quantities (1, u, or T} M, then the argument
appties if the relative change of M over a mean-free path is small; in other
words, if

1AM 1

=—=]—==—lgrad M !
I M L m'E <

where AM is the difference in M over L.* Therefore, otie would indeed
expect on physical grounds that after a time ¢ 3 t,,,,, the ‘me evolution
of the gas can be adequately described by the time evolution of the five
hydrodynamical quantities alone, and that the full f(rv¢) is not needed
anymore.

Continuing this physical discussion of the time evolution of the gas, one
would expect after a time ¢ 3> ¢, when every molecule has traversed the
vessel many times, that all spatial inhomogeneities have been equalized
and that the hydrodynamical state of local equilibrium of the gas which is
characterized by the five functions a(xf), u(rr), T(rs) will have gone over
into the final state of fotaf (thermal) equilibrium of the gas, characterized
by two parameters # and T alone, We remark that the approach of the gas
to equilibrium is then again accompanied by an increasing simplification
of the description:

stage: Kinetle Hydradyunmileal Eimilibrivm

description:  f(rVi) —— (vt} ulet), TH) oo son, T
totmep o lmacr

A different way of expressing the existence of two stages irf lhe.app_roach
of a dilute gas to equilibrium is to say that one can distinguish in the
approach of such a gas to equilibrium two processes: _ o

{a) A fast process on the time scale of 1, which establishes (in first
approximation at lcast), after a time ¢ 3> /,,4,,, @ local (velocity) equilib-
rium; .

(b) A slow process on the time scale of 1, which leads, af-ter a time
{25 00 10 fotal equilibrium. The uniformity parameter u is propor-
tional to the ratio of these two characteristic times, viz:

H~ ’mlpl"mm'r

* If the system is uniform and AM = 0, then yt = 0, Thus s mcgsurcs_the deviations
from spatial homogencity, and is consequentiy called the uniformity parameter,
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III. Approach to Equilibriam I1—The Chapman-Enskog Solution:
. Connection with Hydrodynamics (9)

In this section we shall make the physical resuits of the previous section
mathematically more precise. We shall study the approach to equilibrium
of the gas in the hydrodynamical stage, thatis, for times s » timtp When the
gas is already near equilibrium. As argued in the previous section, we can
look then for special solutions of the Boltzmann equation which are such
that f, as far as its time dependence is concerned, is completely determined
by its first five moments: », w, and T alone. Thus

f(rve) o> f(tv | nuT) (6.17)
so that ’
of (rvt) N 3f(rv | nuT) _ f (v | nuT) on
at ot " on ot
@y [ nuT) du 3 (rv| nuT) oT
+ du ot oT ot 618

Here f(l’\'lﬂlln indicates that the t-dependence of [ is through n(re),
u(rs) and T(r1).

Assuming eq. (6.17) one can actually find a special solution of the
Boltzmann equation for f of this form in successive approximations by
expanding f(rv | nuT?) in powers of the uniformity parameter z (1 << 1):

(v nuT) = fiy(rv | muT) + pf ey | nuT) + p2fy(rv [nuT) + -+ (6.19)

In this expansion the parameter u is meant as a parameter indicating the
order of magnitude of the terms. It is used like the parameter 4 in the
Rayleigh-Schrodinger perturbation theory in quantum mechanics lo
classify terms according to their magnitude. Like A, u is set equal to one
at the end of the calculation, »

Substituting this expansion in the r.h.s. of the Boltzmann equation and
using that 8fo/dr ~ g, one obtains the following u-expansion for the r.h.s,
of the Boltzmann equation (6.1)*:

‘](ﬂ)fo) + ,u[—l" "aai: + {J(fofl) + J(fif(l)}:! + /12 B . {6.20)

* As it has not been assumed that the r dependence of f should be only through
M, u, and 7, it has been tacitly assumed in obtaining {6.20} that the variation of f with r
through any explicit dependence of £ on r (that is, not via ». u, or T} does not exceed
the variation of f with r through =, u, and T,
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To obtain a p-expansion of the Lh.s. of the Boltzmann equation one
needs Lo know, in view of eq. (6.18), the u-expansion of dr/dr, du/or,
and 97/01. Now equations can be obtained for these quantities by multi-
plying both sides of the Boltzmann equation with I, v, and }mu?, respec-
tively, and integrating over v. Using then that the collision term, J(f),
does not contribute due to the conservation of number, momentum and
energy in a collision, ane obtains the following five conservation equations
which express the conservation of number, momentum, and energy,
respectively, during the time-evolution of the gas:

Equation of Continuity (Conservation of Number):

dn_ % _ _up,, (6.212)
dt or,
Eq.uaﬁon of Motion (.Conscrvalioq of Momentum):
pK
nm &8 o 0 (i =x,y,2) (6.21h)
dit ar,
Equation of Energy (Conservation of Energy):
K N .
A N L LT (6.21c)
2

Here dfdt is the substantial time derivalive,

d 0 d d 0o d
—=—4u-grad=—Fur— =+t —
I T e
The summation convention is used so that if two identical greek indices
occur, itis understood that a summation over the x-, y-, and z-components
has to be carried out.
The pressure tensor 2 is given by

P = 25| f) = [fmt', Vodv (i = x5z (6.22)
while the heat flux vector JX is given by

JE = 5| f) = |'_;4m\'*|;dv (i =y 2) (6.23)

The superscript K indicates that in the computation of the pressure
tensor .#,, and the heat flux vector J,, only kinetic contributions due to
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the transitional motion of the molecules have been taken into account.
The rate of strain tensor D,; is defined by

1 /0u; odu
- D,,=-|—4 -
! 2(6r, + 3r,-) (6.24)

We obtain from egs. (6.21) dn/0t, Oufds, and 9T/9¢ in a power series in p
by expanding X and JK in powers of g, by substituting the u-expansion
eq. (6.19) for finto the expressions (6.22) and (6,23), respectively, and
collecting all terms of the same order in . One obtains then the following
u-expansion for onfdt, du/dr, and 8T/or:

.aﬁ_ ?.'1) T — an du,
dt #(a!,lr+P + "”("u“a-, - a_r‘,,') o (6‘25a)
du;  (ou, 2 du; 1 92K,
ot ""(ar)u”‘ + _p(mu'é;;_;t; or, ) (6.23b)
T aT . aT 2 UK .
ot “”(a:)ﬁ” + ""(""“a_r,_ﬁﬁ_%’-"o“”)m
6.25
Here one has used that ( °
with P = PE + uPK 4 (6.26)
K = j fonViV, dv | (6.261)
PE, = J' fimV.V, dv (6.26b)
and that
with JE=Il i+ (6.27)
JE = f SokmV2V, dv (6.27a)
JE = J‘ FAmVEV, dv (6.27b)

(We have omitled the appendage (i = x, v, z) or (i, j = x, v, z) from the
preceding equations. From now on it is always assumed that the summa-
tion of i and j runs over the axes x, y, and z.)

Using now eqs. (6.18) and (6.25)-(6.27), one obtains the following
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p-expansion for the 1.h.s. of the Boltzmann equation (6.1):
Ao (ony | o (0u\ , (0T 2
"[an(ar)o+ du (a: )u+ aT(at)o:l tat (6.28)

Equating then the coefficients of equal powers of & on the Lh.s. and the
r.h.s. of the Boltzmann equation, one obtains, with egs. (6.20) and (6.28),
the following set of equations for £y, f1... .:

o) J(fofo) =0 (6.292)
_ Ao\ . of [(ow = 3f,{0T of,

L J = YoMy 9L (U} | Doffl ]
0w Il + IS an (a: )u * % (a: )0 + ar(ar)o T
(6.29b)

The egs. (6.29) can be solved successively for fo, f1,. ...

A. SOLUTION OF THE f; EQUATION

The equation for f, is identical with that obtained from the equation
dH/dr = 0 in the spatially inhomogencous case. Consequently, the
equation has the local Maxwell distribution function f,, given by the
eq. (6.152) as a-solution,

Equation (ﬁ'.29a) is satisfied by any function of the form {6.152), with 1, u, and T
arbiteary functions of r and £, and not necessarily the local density, velocity, and temper-
ature, respectively. We choose however—in accordance with the considerations of the
previous section—n, 4, and 7 as the local hydrodynamical quantities, and this will
enable us to obtain a well-defined solution scheme for the eqs. (6.29).

Because the n, u, and 7 for the gas also follow from the eqs. (6.16),
these same equations must be satisfied if / instead of fis used. Thus, one
can require from alt higher approximations, /, with 7 > 1, that

J’f. dv =0 (6.30a)
ff,l’, dv = {6.30b)
[f,&m\’" dv =0 (6.30c)

Therefore, since J(ff') is the collision term, one sees that (as was antic-
ipated in the previous section on physical grounds) / does approach
through collisions the local equilibrium distribution functicn f,.
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With /= f;, one can now evaluate the r.h.s. of the conservation
equations; in particular, one can compute 25 and JX. In doing so one
obtains the Euler equations of hydredynamics for an ideal pas:

) dn_ g% _up (6.31a)
dt or, o '
nmil—"—"=—£{ (6.31b)
ot or, '
K
n%:%nk%= —-pK%:?:= —-p%D,,  (6.310)
Here one has used that, with f = £, the pressure tensor is of the form:
PE = pXd,, (6.32a)
Here p* is the hydrostatic pressure given by the ideal gas law:
pX = nkT {6.32b)
while the heat flux vector JX is given by
JE =0 (6.33)

and nek, the local (kinetic) energy density, is given by the ideal gas
expression:

neK = 3nkT (6.34)

One might wonder why the ideal gas laws are obtained for the pressure and the energy
density, in spite of the fact that the Boltzmann equation contains contributions from
binary collisions through the collision term J(f"). The reason is thal the collision 1erm
in the form of eq. (6.1b) does not contribule to the conservation equations. In order
to obtain contributions to the pressure and the energy density from binary collisions,
the difference in position of the two colliding molecules must be taken into account in
the collision term, that is, in J(#) the two f’s should sor be taken both at the same
position.

We see that in local equilibrium (f = £;), the thermodynamic functions
such as the pressure and the energy are the same functions of n(rt) and
T(rt), as they are in (total) equilibrium of # and T.*

B. SoLuTioN OF THE f, EQUATION (LINEARIZED BOLTZMANN EQUATION
THEORY)

Using eqs. (6.25) and (6.31)-(6.33), the r.h.s. of eq. (6.29b) can be
determined. This leads to the following linear inhomogeneous integral

* Combining eqs. (6.31a) and (6.31c), one obtains the adiabatic equation of state:
d(nT-Y%dy = 0,
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equation for fi:

mb* 5\ dInT
JUD =5l (2 =2}y,
150 + 18 = ] (5 = ) e
mV,Vy, mV? )
Wiy MY s \D,| (6.35)
( KT KT 7, "} (
Introducing the function @, through the equation:
Silev | nuT) = forv | nuT )b, (rv | nuT) (6.36)

eq. (6.35) can be transformed into a linear inhomogeneous integral equa-
tion for @,

o) = (

my* 5 dlnT (mVaV,_mV'z
2kT 2) * o, kT KT

Here the (symmetric) tinear binary collision operator / is defined by

aa,) D,y (637

1 = [ v f.,(u.)fdb b f dp [0,) + D3 = B = D)) (638)

where, on the r.h.s. we have only indicated the velocity dependence of ®,.

According to the theory of integral equations, the inhomopeneous
integral equation {cq. (6.37)] for ¥, is soluble ifits r.h.s. is.orthogonal to
the solutions of the associated homogencous integral equation:

() =0 (6.39)

Since this integral equation has as independent solutions only the five

collisional invariants 1, mV, and }mV** one easily convinces onesell

that the solubility conditions for the integral equation (6.37) are fulfilled.t
The general solution Lo eq. (6.37) can now be written as:

general solution = particutur  solution plus 5 constants times 3
solutions of homogeneous cquation.

To make the general solution of eq. (6.37) definite, one fixes the live
constants by the five conditions for I = i{eq. (6.30)):

l.fn dv = |-f|v dv = I‘_I"V"’ dv =1Q (6.40)

* The live collisionat invarsnts 1, mV, p¥? are lincar combinations al the five
collisional invariants |, my, bt mentioned before.

t As the rhus. of eg. (6.37)is an evaluation of 8f,/9r 4 v+ dfef0r W0 O, the orthog-
onality conditions are nothing ¢he than | uler's equations of hydrodynamics!
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We have now established the existence of a unique solution of the
integral equation (6.37) for @,. :

One can find the form of ®, by using that the integral operator 7
is a linear operator, that the r.h.s. of eq. (6.37) is linear in the gradients,
and that the gradients of 7" and u have a different tensorial character,
It can then be shown that ®, is of the following general form:

gdin T
or,
and, by substituting (6.41) for @, into the integral equation (6.37), that

A[(Y) and B,,(V) satisfy the integral equations:

Dy | nuT) = — 44V) —B4V)Dy (641

2
(A) = — (‘% - g) v, (6.420)
2
I(B,) = — (ﬂg;_—yf ~ 3”1% a,.,) (6.42b)

Furthermore, it follows from the eqgs. (6.42) that AV} is a vector, while
B, (V) is a traceless tensor because the tensor on the r.h.s, of eq. (6.42) is
traceless. As V is the only vector available, the functions A(Y) and
B;,(V) must be of the form*:

AV) = AV, | (6.43a)
mv.V,  mbp*

B, (V) = By)| MLy _ml X

AV) = B )[ e ,,} (6.43b)

Because of eq. (6.40}, the (scalar) function A is subject to the condition:

ffo(V)A(V)Va dv=20 (6.44)

while the function B(V'} is sublject to no restrictions.t

The functions A(V)and B(V) can be found from the integral equations
(6.42a) and (6.42b), respectively. Before we do so, we first derive the
form of the conservation equations with /= f; + f,. We remark that as
Ji = £, we have from €gs. (6.41), (6.37), and (6.30):

(1} fy ~ 0T/dr, and Bu,{dr,, that is, f, ~ grad T and grad u,

* For a more elaborated discussion of this point, see reference /0.

t The first two conditions in eq. (6.40) are auromatically fulfilled for A4,(V), while all
three conditions in eq. (6.40) are automatically fulfilled for B,,(V). This follows from the
general form of 4,(V) and B,,(V), respeclively [see eq. (6.43)],
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(2) /1 is independent of n.
The last result follows from the fact that the Lh.s. of the integral equation
(6.37) must be independent of n as is the r.h.s.

With f = fy + f1, one can evaluate the r.h.s. of the conservation equa-
tions. In particular, one can compute 2% and JX. In so doing one obtains
the Navier-Stokes equation of hydrodynamics;

dn % _p (6.44)
dt or,
K P
pon 24— %" _ 0% (6.44b)
dt or, or,
K i . .
n de” = 3T = — W _ (P¥6, + PHID,  (6.44c)
dt 2 dt or,

Here we have used that, with f = f; + /], the pressure tensor &, is of the
form: - _ _
P = PEo+ P = proy + PF, (6.45a)

3.

Here the off-diagonal part :#X | of #X obeys Newron's law of viscous flow:

(FA

"Jarl:'-.l = _2')’\'( Dll - iDnau’) (645b)
while the heat flux vector S obeys Fourier's law of heat conduction:

th' = th;. = —iF QZ:
' or;

The coefficients #* in eq. (6.45a) and A% in eq. (6.46) are the transport
coeflicients: the shear viscosity and the heat conductivity, respectively,
of the dilute gas.* They depend on the temperature T but not on the
density » because f; is independent of ».

Using eqs. (6.26b), (6.36), (6.41), and (6.43b)——a_nd ‘thc fact .1|12?l
averages of odd functions of ¥ vanish when evaluatc_d with fo(¥) (which is
symmetric in V)—one obtains the expression for VR

(6.46)

2
wK(T) = R f LBV dy (6.47)
™ (T) (ST i

Similarly, using eqs. (6.27h}, (6.36), (6.41}, (6.43b), and (6.44) one obtains

* For the bulk viscosily see Chapter 7.
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the expression for A%
k ? m¥t 5
K, e — — SV VEA(f, d 6.
. A =3 2ka(2kT 2) o dv (648)

To obtain the explicil temperature dependence of %% and A% one must
know A(¥) and B(V), and therefore solve the integral equations, (6.42),
for A(¥)and B(F). A solution of these integral equations can be obtained
by expanding the functions A(V) and B(V) in terms of a complete set of
orthogonal functions of V. A convenient set is formed by the Sonine
polynomia, which are eigenfunctions of the linear integral operator [
for the case of Maxwell molecules, that is, for the case of the inter-
molecular potential $(r) ~ 1/r4, The convenience of the Sonine polynomia
expansion, even for realistic (nonMaxwell) molecules, is due to the fact
that the r.h.s. of each of the eqgs. (6.42) can be directly related 10 a Sonine
polynomial in V. For Maxwell molecules this implies that only one Sonine
polynomial is needed for the computation of A(¥) and B(V), that is, for
the computation of #¥ and AX. In principle, for a general intermolecular
potential, all polynomia of a complete (infinite) set of Sonine polynomia
are needed to compute A(V) and B(V). To determine 4(¥) or B(V) then,
one has to solve an infinite set of linear equations for the coefficients of
the Sonine polynomia. This set of equations can be solved successively by
taking into account more and more coefficients. In practice, the expansion
seems to converge rapidly, and when one restricts oneself to one coeffi-
cient—that is, to one Sonine polynomial—in the expansion of A(V) or
B(V), we already get results for n® and A%, which are correct to a few
per cent! In fact, in so doing, the following expressions are obtained for
#% and A%, valid for a general (short-ranged) intermolecular potential (/1):

5 kT
(1) =2 i 6.49
7(T) & QEI(TY (6.49)
: 5 : 25 kT
AMTy=caf(T) == —— ¢, 6.50
(T) 5 ol (T 6 &.!‘2'2'(?‘)(‘ (6.50)

Here

o

b om\"® mgh 1o
Qea(T =—_(—) [ex (— ——-—) Mgy g (6.51)
(T) o\ar) | L lrved EAUREIEE

is a weighted (with g7) temperature average—with a Maxwell distribution
function—over the transport cross section Q'®(g), characleristic for

[11. Approach to Equilibrium I ' 143
viscosily and hcat conductivity. The cross section Q*!(g) is defined by

27
dy(l — cos® y) (6.52)

(]

Q™ (g) = f db b
1]

and is a weighted average [with (1 — cos® x}] of the diﬂ'e‘renlial cross
section b db dy. The angle x = x(b, g) is the scattering angle in the bma_ry
collision, characterized by the impact parameter b and the relative velocity
. This angle depends, apart from on b and g, also on the intermole.cu]ar
otential field $(r), and it is in this manner that the transport coefficients,
¥ and 2% depend on the intermolecular potential field. The term ¢, =
3k/m, is the specific heat of a monatomic gas per unit roass. ‘

If evaluated numerically for a realistic intermolecular potential ¢(r)
as, for example, for the 12-6 Lennard-Jones pote.nlial, the values of
¥ and ¥ given by eq. (6.49) and ¢q. (6.50), respectively, agree very well
with experiment over a wide range of temperatures (compare Section 1V,
Subsection 3¢, and Chapter 9).

As a lunction of b, g, and ¢(r).  foliows from the mechanics of two particles in
infinite space, and is given by the expression:

%

* oz
== ZJ 4 17
[! — 2t — — $lb[2)
o my

where =, is the smallest root of the cquation obtained when the cxprcsston.undcr the
square rool in the denominalor is set equal lo zero, Il the molccules are point centers
of force and if the (repulsive) intermolecular potential ¢(ry = «r°", then x reduces to

b

For this case one easily sees thal the transport cross section
QI'I(A’) ,..._,gl an

(Pen(Ty ~ Th tn

s0 that
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and
ﬂK(T) —~ T”au,’n

The temperature dependence of 7* reflects therefore direcely the st i
rengt -
molecularrepulsion n! (£2). g Engthof the inter

1V. Discussion

In this section we shall discuss a number of points connected with the
results obtained in the previous section.

(1) We first want to verify that the expansion parameter u—used to
indicat? the order of magnitude of the terms in the Chapman-Enskog
expansion—is indeed the parameter defined in Section II (/3). Using eq.
(6.19) [see remark about x following eq. (6.19)] and (6.36), we have

# = & ='f.-;‘l)-! = (Dl
. fO fO
Now in case there is, say, a temperature gradient:
D, = ._Al(v).aln'f'

&

where A;(V) satisfies [compare eq. (6.42a)] the integral equation:

mb? 5)
2% 2}

HA(VYV,] = —(— -3,

Because the operator / ~ nQ, where @ is the total scattering cross section,
one must have that 4 ~ 1/nQ ~ [. Therefore, indeed:

10T _ I AT

if the temperature gradient is in the x-direction. A similar discussion
can be given in case there is a velocity gradient.

(2) In the preceding section, we have derived for times ¢ 3 1,4, that the
apprq_ach of a dilute gas to equilibrium is governed by the hydrodlynamical
equations. We remark that the hydrodynamical equations were obtained
from a molecular point of view and not on the basis of continuum
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mechanics, as was the case in Chapter 2, For that reason, we were able to
obtain the explicit # and T dependence of the thermodynamic (p*, €*},
as well as of the transport properties (y¥, AK}) of the gas in terms of the
intermolecular forces.

(3) As far as experimental verification of the results obtained in the
previous section is concerned: (a) the density independence of 5 and A
over a wide range of densities—corresponding roughly to pressures of
0.01 atm to about 5 atm (this depends also on the temperature}—has been
very well confirmed for a larger number of gases; (b) the Eucken relation:
Ane, = 5[2 agrees very well with experiment for monatomic gases (that
is, the noble pases); and (c) the temperature dependence of the transport
coeflicients 4 and AK for a realistic intermolecular potential presents a
sensitive test of the theory of the (linearized) Boltzmann equation.

All these points are further discussed in Chapter 9. Here we would like
to say a few words about point (c). A comparison between theory and
experiment can be made by using the law of corresponding states. This law
holds for all substances that can be described by an intermolecular
potential which can be characterized by two parameters (for example, by
the 12-6 Lennard-Jones potential characterized by € and a).* All physical
quantities can then be reduced, that is, be made dimensionless, with the
help of the three molecular parameters, n, a, and €.

The taw of corresponding states says that if the molecuies of these
substances move according to the laws of classical mechanics, any func-
tional refationship between physical quantities that hoids for any one of
these substances can be transformed into 2 relationship valid for afl
these substances, provided that the physical quantities occurring in that
relationship are replaced by the corresponding reduced quantities.

All the noble gases can be very well described by a 12-6 Lennard-Jones
potential. It follows then, for dilute gases, that the properly reduced
viscosity coefficient should be the same function of the reduced tempera-
ture T* for all noble gases.t

Indecd, using the expression (6.49) with eq. (6.51) for n®, one obtains

the relation:
*

5
T R OEONTH (6.33)

?’)H*(T')

* The form of the potential must be the same for all substances, as for example,
a 12-6 Lennard-Jones potcntial: the « and o values will be different, of course, for
substances which are not isotopes.

1 For the light noble gases, however, sce point (4) in this section.



146 6. THE KINETIC THEORY OF DILUTE GASES
where
K
Kx no
= 6.54
i (me) {6.54)
T* = kTJe (6.55)
and
(2.2) : L (m\"*
QEr TRy Q”'z’(kT/e)—;(—-) (6.56)
g \e

Using for each noble gas values of ¢ and o determined from the tempera-
ture dependence of the second virial coefficient,t the experimental values
of n, when properly reduced according to eqs. (6.54) and (6.55), indeed
yield a universal curve for #* as a function T* (see Fig. 2) (/4). At high
temperatures, where the repulsive part ~1/r* of the intermolecular
potential dominates the scattering of the noble gas atoms, 5* should
behave ~T*¥2, Or, the slope of the plotted curve for large values of
T* should be

d In p*[(T*)'2
dlnT*

which is to a good approximation, so.

The good agreement over a wide range of temperatures for a variety of
substances (including even some with only approximately spherically
symmetric intermolecular potentials like Oy, N,, H,) is not only a check
on the validity of the Boltzmann equation and the Chapman-Enskog
solution, but also, of course, on the 12-6 Lennard-Jones potential as an
effective intermolecular potential.

(4) Curves for some light gases (D,, H,, ‘He, 3He) are also drawn in
Fig. 2, These show deviations from the law of corresponding stales,
especially at low temperatures {/5). This is due to the fact that, for light
molecules, quantum mechanical deviations from the classical motion
become important at low temperatures. The reason for this is that, at low
temperatures, the de Broglie wavelength associated with a light molecule,
Amol» becomes appreciable compared to the size of the molecule (that is,
to o) so that quantum-mechanical diffraction effects become important,
and deviations from the classical behavior occur. The larger 2,,,/o is the
larger the deviations wili be. Now:

1
= E (6.57)

h h

R‘mol ~

ﬁmull \/m

(6.58)

1 For our purposes this procedure is sufficient. See, however, Chapter 9, Section L.
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where 3, 1S an average momentum of a molecule. Therefore, the quan-
tum mechanical deviations from the classical behavior due to diffraction
effects are determined by

lmul h A*

ol . = (6.59)
o o/mkT JT*
where the quantum mechanical parameter A* is given by
A* = A (6.60)

" ame

Thus, at a given reduced temperature 7%, the quantum deviations from
the classical (corresponding states) behavior will be larger as the value of

TABLE 2

He He H, D,
At

o9 2.68 1.73 0.865

A*is larger, that is, the lighter and smaller the molecule ts and the weaker
the intermolecular potential, Table 2 fists the value of A* for various Iight
gases, and it is seen in Fig. 2 that the deviations from the classical behavior
do indeed increase with the value of A* at a given T*.

In addition to diffraction cfiects, quantum-mechanical statistics eflects
will also oceur if A, is of the order of the average distance between the
molecules. At the densities and temperatures in which we are interested,
these statistics effects are of importance only during the collision of
molecules.*

Both kinds of quantum mechanical effects require a modification of the
Stoszzaht -Ansatz. In our case, the only change one has to apply is that the
classical dilferential cross section is replaced by the quantum-mechanical
differential cross section:

bl dp +~ Hg, y)sin y dy (6.61)
Here #(g. ) can be found by computing the quantum-mechanical phase

shifts 5, {&) characteristic of the relative motion of two molecules with

*lor satliicatly Jow 7. howeser, Ay, will become of the order of the average
intermulecular distance, so that statistics effects oecur due W0 a quantum degeneracy
of the gas ax a whole (see reference £5),
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Fig. 2. Reduced viscosity coefficients from egs. (6.49), (6.53), and (6.56) plotted against

rcquced temperature: In ,]"/'V"_F—"_ versus In T*. Clis the classical curve, Experimental
peints: & *He; @ *He; O Hy; ) Dy; X Ne; + A,

relative energy #%%/2m = }mg?® and angular momentum [/{/ + AV =
imgb. As the (k) depend implicitly on A*, the transport coefficients
#* and A* will also depend on A*. :

The statistics effects during the collision make necessary the use of wavefunctions,
which are properly symmetrized with respect to the coordinates of the two colliding
particles. Thus for ‘He and H,, which consist of an even number of clementary particles
(neut.rons, protons, and electrons) and follow Bose-Einstein statistics,t only wave-
functions symmetrical in the coordihates of the two coiliding particles should be used.
This implies that only n(k) with even / can be used in the computalion of I(g, x).
For *He which consists of an odd number of elementary particles, has a spin of }, and
follows Fgrmi—Dirac statistics, wavefunctions both symmetric and antisymmetric in
the coordinates of the coiliding particles can occur, This implies that (4}, with bath
even and odd /, are used in the computation of /{g, ). This leads to targe differences
in n* f‘or *He and ‘He, at the same 7"*. These differences due 10 quantum statistics comue
in addition to those due to the difference in A* which are a ronsequence of the difference
in mass (¢ and o are the same for *He and ‘He since they are isotopes.)

t This is based on a theorem of Ehrenfest and Oppenheimer (/6). This theoreim
states that composite particles like atoms or molecules consisting of a number of
elementary particles can be treated as point particles following a definite quantum
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(5 As we pointed out before, the Chapman-Enskog solution of the
Boltzmann equation is a special solution to which, presumably, the general
solution of the Boltzmann equation approaches for a large class of
initial conditions, One can ask: What is the nature of this approach?
It seems certain that the approach is exponential with a characteristic
time of the order of r,,,, that is, ~ exp (—#/ty,,). This is made plausible
by Grad’s thirteen moment expansion of f (/7). Grad considered special
solutions of the Boltzmann equation where it is assumed that f depends
on thirteen—instead of five--moments of f; that is, f depends, in addition
to its five moments with I, v, and v?, also on those with v, v}, v.0,, v,0,,
t,0.. and v?v. The special solution of the Boltzmann equation, fg, which
Grad obtained on the basis of this assumption seems to be more accurate
than the Chapman-Enskog solution f.,_g = f(xv|nuT), discussed in
Section 111. However, Grad was able to show that the additional eight
moments, when computed with the (more accurate) f decay exponentially
in a time of the order of ,,(, to the values they would have had if they
had been computed directly on the basis of the Chapman-Enskog /oy, i
using five moments only! This illustrates again the possible simplification
of the description of the pas after a time 13> ¢, because the “‘extra
information™ which these eight additional moments contain, in addition
to n, u, and T, has disappeared after 1 5 1.

(6) The Euler and the Navier-Stokes equations are the hydrodynamical
equations which correspond to taking /' = f; or f = f, + f,, respectively,
in the peneral conservation equations. They can be trusted to describe
adequately the approach of the gas to equilibrium, only as long as ¢ I,
that is, as long as the (relative) variation of the macroscopic variables
over ! is small. If ong has, however, a rarefied gas where / is not. KL,
or if a sound wave propagates through the gas with a wavelength 2,
such that the (relative) variations of the macroscopic variables over 2,
are not small, then corrections to the Navier-Stokes equations involving
fa, ete., will become important. The hydrodynamical equations obtained
using fy, in addition 1o f; and fi-—that is, using /= fo + f; + f; in the

statistics in all processes where the internal structure of the composite particles does not
play a role. In the case of the noble gases this means that the theorem applies as long as
the temperature of (he gas does nol approuch the ionization temperature of the gas
atoms. The theorem further states that the point particles obey Bose-Einstein statistics
if they consist ol an even number of clementary particles (for example, *He) and Fermi-
Dirac statistics il they consist of an odd number of elementary particles (for example,
He),
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conservation equations—are called the Burnert equations. The hydro-
dynamical equations obtained using f, as well could be called the super-
Burnett equations, and so on. Clearly to the u-expansion [eq. (6.19)) of f
there corresponds a whole hierarchy of hydrodynamical equations, which
involve increasingly higher gradients of n, u, and 7. The Euler- and
Navier-Stokes equations are only the first two sets of equations.

A check on the validity of the Burnett equations can be made by
studying the dispersion and the absorption of sound in a dilute gas. For
long wavelengths: A, 3 /, the dispersion and the absorption of sound as a
function of A,, obtained from the (linearized) Navier-Stokes equations,
agree well with experiment. With decreasing 4,, however, deviations are
observed which can be accounted for by using the (linearized) Burnett
equations instead of the (linearized) Navier-Stokes equations (/8). Thus
in this case the Burnett equations are able to describe the behavior of the
gas under conditions in which x is not very much less than one.

V. The Connection with Irreéversible Thermodynamics

One of the basic assumptions of irreversible thermodynamics is that the
same thermodynamic laws and relations hold for the local thermodynamic
quantities in a system which is (in first approximation) in local equilib-
rium, as hold for the ordinary thermodynamic quantities in a system

which is in total equilibrium. In particular, it is assumed that the so-called
Gibbs relation (/9) '

T ds = de + pd(l/p}, (6.62a)
valid in (total) equilibrium, is still valid in the form:
pds _de  d(lp) (6.62b)

dt dt dt
in local equilibrium.

Most of the results of irreversible thermodynamics are obtained from
this equation by using it to define appropriate fluses J, (i = 1,2,..., #)
and associated forces X, (i=1,2,...,n), which are such that linear
relationships exist between them, viz,,

]
Ji=LyX;, {(i=1,2...,n (6.63)
i

—
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for which the matrix of the coefficients L, is symmetric, that is,

Ly=L; (Gj=1L2....,m (6.64)
In (6.62a), s, e, and |fp are the specific entropy, energy, and volume,
respectively, while in (6.62b), s, e, and 1[p are the specific local entropy,
energy, and volume, respectively, which depend on r as weil as on f.
The term d/dt is the substantial time derivative defined before, The‘tols_tl
energy has been defined by eq. (2.30), qnly here we have set the kme%nc
energy from the center-of-gravity motion and the external potential
energy equal to zero, therefore ¢ = ¢*/m. ‘

Onsager was the first to prove that fluxes and forces could be defined for
which the Onsager reciprocal relations hold [see eq. (6.64) and C‘hapler 5].
The proof was based on the hypothesis that the decay of microscopic
fluctuations of a system in equilibrium follows .the mac.roscopac_h_n.ear
laws {cq. (6.63)] and, in addition, only used microscopic reversibility,
that is, the time-reversal invariance of the microscopic equations of
motion [cf. eqs. (6.5a,b)]. For a single pas of the lfmd clonsndelred here, nﬁ
Onsager refations [eq. (6.64)} exist. Thcrcl'on.:. in this ‘sechon ‘we sh?1
only prove that egs. (6.62) und (6.63) arc valid for a dilute ga's._on 1 :
basis of the Chapman-Enskog solutivn of the Bc?ltzm;mn equations.
proof of this was given for the first time by Prigogine (20). For a um‘xlure
of two (dilute) pases there is a relation of the I‘or!n.cq. (6.64) whuhrcx-
presses the equality of the thermal dillusion coefficient and the Du l;l;l‘
coeflicient, A proofl of this relation, as well as lhc eqs. (6.6_2b) and (6.' )
for the case of a binary mixture, is presented in Appendix A of Ch:;p-
ter 7. (A proof of the Onsager reciprocal relation .bclwccn the dnll‘us:mz
coellicients in a nulticomponent mixture has been given by de Groot an
Mazur (21).)

A, Prooy oF T Ginss RILATION

(@) To prove the Gibbs refation on the basis o_f the C‘Iu-lpmnn—En‘slrng
solution of the Boltzmann equation, and o define fluxes and forces J,
and X,. respectively, it is convenient 1o lrnnsfurm.ll-lc Lq (6.62P)| m}uz
another, but equivalkent, equation leq. (6.69a.h)]. This is L‘IOIIL‘d\‘H!.I the
help of (the always valid) general conservation laws Tor mass density p,



152 6. THE KINETIC THEORY OF DILUTE GASES

(p = nm) momentum, and energy*:

de _
. 1 = PP (6.65a)
Piu_" - ag’ia
P or. (6.65b)
de _ _9J,
P = "o~ ZaDu (6.65¢)

P =~ ST T o g«ﬂ.loaﬂ (666)

where 2, | is defined by
Pyr= Py — pby, (6.67)

Introducing the entropy flux vector f,(s) by the relation

j{s) = =
) = (6.68)
eq. (6.66) can be written in the form of a balance equation:
ds _ _ 3%
| y o + a(s) (6.69a)
where the entropy production a(s) is given by
1,17 1
o(s) = T Ju _é—,::_ -7 PgaDes (6.69b)

L]

In the following we shall prove eqs. (6.68) and (6.69a,b
o (66200 q ) and (6.69a,b), rather than
(b) In order to prove a relation concerning the rate of change of the
local entropy _ofa dilute gas we must first have a definition of the entropy
of such a gas in terms of the distribution function f just as, say, the (local)
energy density X was defined by eq. (6.16c).

N * The Euler- and Navier.-Stokes equations of hydrodynamics obtained before follow
om the general conservation laws {Eqgs. (6.65)] under the special conditions that the

pressure tensor #,; and the heat flux vector J; satisf
B (640, ey y eqs. (6.32) and (6.33), or (6.45)
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One defincs the entropy density ST by

SK = —kHK (6.70)
where

HE = HE(r|f) = -Jdvf(m)[l — In f(rv1)} (6.71)

This definition of S¥ is such that in local equilibrium, when f=/fo the
Jocal Maxwell distribution function, S5, is the same function of » and T
as it is in equilibrium, and reduces to the known expression for an ideal
gas
Sk = —kHX(r|f) = —3alnd—§n—nlnn

where A = (2rmkTY 1, As before, the superscript K reminds us of the fact
that for the dilute gas only kinetic contributions to S and H are considered.

We now calculate dH¥/di from eq. (6.71). Using the Boltzmann
equation (6.1), one obtains

A
afy _ —J.d\rlnfl/a—?i +Jdv n FICA) (6.72)
dt or,

The two terms in the r.h.s. are treated as follows:
(1) The first term on the r.h.s. of eq. (6.72) can be rewritten with eq.

(6.15b) in the form:
—f:!v npv, &= ;—[J‘dvflnfl/,]

*or, r,
—Jdvjlnﬂ),, +J'dv >y (6.73)
or,

Using cq. (6.19), expanding the logarithm, and keeping only terms in this
expansion up to O(g), one has, with cq. (6.27),

2 9 (I
—_— Infv,| = —|=*% 6.74
or U fng ] a»-,(w) 79

Using egs. (6.71) and (6.16a) one also has that
_fdvfmfo,, = —(HX + m)D,, (6.75)
while with egs. (6.15b) and {6.16a,b):

J'arv % V. = nD,, (6.76)

Fy
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Adding egs. (6.74), (6.75), and (6.76) yields for eq. (6.73):
of _ o (JE .
~— |dvin Va_— =—|2] — HE

(2) The secor‘ld term on the r.h.s. of eq. (6.72) can be reduced with eq.
(6.19); expanding the logarithm, keeping only terms of O(x) in this
expansion, one obtains

f dvIn fIfT) = f d"l:lnfn + ﬂwﬂf,) +IGS (6.78)

One easily verifies, using, for example, eq. (6.15a), that the terms on the
r.h.s. of eq. (6.78) containing In f, vanish. Then, by using eqgs. (6.36) and
(6.41), the integral equations (6.42), and egs. (6.26) and (6.27), one finds
for the r.h.s. of eq. (6.78), the following result:

fd”‘“fJ(ﬂ) _de ol Ty

af,1
e el (6.79)

kr ¥

Using eqs. (6.77)_ and (6.79) and the fact that for any thermodynamic
quantity its specific value A4, (that is, its value per unit mass) and its
density A, (that is, its value per unit volume) are related by

ddy _ddy o
Poar i e
Equation (6.72) can be written in the form;
dHE i (H ) K
= T + o(H,) (6.80)
where
. K J"\'
Jl‘(u‘, )=7% (6.80b)
and Ky K
JEoIlnT &
a(H,) === ==t p :
T o, T (6.8k)
or*: K5 &
e JEQinT  PE
o(HY) = = L' D, (6.80d)

kT ar, KT

:}n the transition from eq. {(6.80c) to eq. {6.80d), one has used the facl that, as
:‘9‘,, is a traceless tensor, the inner product of the tensor £, and the traceless lensor 2
is equal to the inner product of the traceless tensor (D,; — :
tensor &#,,,, (22).

Ml
3D, 8,) and the traceless

v S ———
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Using eq. (6.70), one sees that eq. (6.80) is identical with (6.69). There-
fore, with (6.80), (6.69), and ultimately (6.62), have been proven for a
dilute gas.

According to the principles of irreversible thermodynamics, the expres-
sion (6.69b) is of the form: :

a=_#z.i,.xf

This defines the fluxes J, and forces X; for which the linear relations (6.63)
should hold. '

By comparing with the eqs. (6.69b), (6.70), and (6.80d), and by using
eqs. {6.45b) and (6.46) for the fluxes JX and 2k |, respectively, one sees that
the linear relations (6.63) are indeed satisfied and, in fact, are nothing
else but Newton’s faw of viscous flow and Fourier’s law of heat conduction.
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CHAPTER

v

THE KINETIC THEORY OF MODERATELY DENSE
GASES,*

E G.D.COHEN

I. Introduction and Approach toe Equilibrium I (6)

In order to explain the experimental facts observed in moderately
dense gases on the basis of the dynamics of the molecules in p-space, one
necds a generalization of the Boltzmann equation to higher densities.

To this day no one has been able to generalize Boltzmann’s procedure,
that is, to look at the motion of the molecules in y-spuce and compute the
change of f with time by generalizing the Stoszzahi-Ansatz to include the
effect of triple and higher order collisions.

Therefore, one has had to derive the generalized Boltzmann equation
in a systematic way, that is, one has had 1o start from the basic equation
of statistical mechanics, the Liouville equation, expand in some way in the
density, obtain in first approsimation the Boltzmann equation, and then,
in the next approximation, a correction term incorporating the effect of
triple collisions, and so on.

Bogolubov was the first onc to carry out this program. His work has
greatly influenced the development of kinetic theory in the last ten years,
Very recently it has been found that his ideas cannot be entircly correct
and only lead to a correct derivation of the Boltzmann equation and to the
first correction {due to triple cotlisions) to this equation. Since we shall
restrict ourseives here 1o this case and since, moreover, we believe that the

* For general background, see references (/-5).
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