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4.3 (@) What fraction of the H, gas at sea level and at a temperature of 300 K can
escape from the earth’s gravitational figld?

{5) Why do we still have H, gas in the atmosphere at sea level?
4.4 Using relativistic dynamics for gas molecules find, for a dilute gas of zero total
momentum,
(a) the equilibrium distribution function;
(b) the equation of state,
Answer. PV is independent of the volume. Hence it is N7 by definition of T.
4.5 (a) Estimate the probability that a stamp (mass = (.1 g) resting on a desk top at

room temperature (300 K) will spontanecusly fly up to a height of 10~ cm above the desk
top.
Hint. Think not of one stamp but of an infinite aumber of noninteracting stamps

placed side by side. Formulate an argument showing that these stamps obey the Maxwell-
Boltzmann distribution.

Answer, Let m = mass of stamps, » = height, g = acceleration of gravity. Probabil-
ity s e—mgk/kT
4.8 A room of volume 3 X 3 X 3 i’ is under standard conditions (atmospheric pressure
and 300 K).

{@) Estimate the probability that at any instant of time a 1-em® volume anywhere within
this room becomes totally devoid of air because of spontaneous statistical fluctuations.

(8) estimate the same for a 1-A® volume.
Answer. Let N = total number of air molecules, ¥ = volume of room, v = the
volume devoid of air. Probability = ¢~ M¢/V}

4.7 Suppose the situation referred to in Problem 4.6a has occurred. Describe qualita-
tively the behavior of the distribution function thereafter, Estimate the time it takes for
such a sitnation to occur again, under the assumption that molecular collisions are such
that the time sequence of the state of the system is a random sequence of states.

4.8 (a) Explain why in (4.42) we arrived at the formula for the Maxwell-Boltzmann
distribution for a gas with no average momentum (p, = 0), although average momentum
was not specified as a macroscopic condition in (4.35) and (4.36).

{b) Derive the Maxwell-Boltzmann distribution for a gas with average velocity v, using
the method of the most probable distribution.

4.9 Let
H= [d&pf(p,0)log f(p,1)

where f(v, ¢} is arbitrary except for the conditions

fd3pf(p,'t) =p

1 pl
— 3,2 =
"fdpsz(ll- 1) =¢

Show that H is minimum when f is the Maxwell-Boltzmann distribution.
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5.1 THE MEAN FREE PATH

To begin our discussion on the approach to equilibrium of a gas initially not in
equilibrium, we introduce the qualitative concept of the mean free path and

" related quantities.

" A gas is not in equilibrium when the distribution function is different from
the Maxwell-Boltzmann distribution. The most common case of a nonequilibrium
situation is that in which the temperature, density, and average velocity are not
constant throughout the gas. To approach equilibrium, these nonuniformities
have to be ironed out through the transport of energy, mass, and momentum
from one part of the gas to another. The mechanism of transport i§ melecular
collision, and the average distance over which molecular properties can be
transported in one collision is the mean free path. It is the average distan.ce
traveled by a molecule between successive collisions. We give an estimate of its
order of magnitude. .

The number of collisions happening per second per unit volume at the point
r in a gas is given by

Z= fdslh d*p,d’p; d’p; 64(},]’_ P.-)lTﬁsz(r, P ) /(v 1)

where f(r, p, 1) is the distribution function. The integration over pj and pj can be
immediately effected to yield

Z= fdsplfdjpz it Ivl - "'z|f(l', p,l’ I)f{l‘, | LTS f) (51)\
A free path is defined as the distance traveled by a molecule between two
successive collisions. Since it takes two molecules to make a collision, every
collision terminates two free paths. The total number of free paths occurring per
second per unit volume is therefore 2Z. Since there are n molecules per unit
volume, the average number of free paths traveled by a molecule per second is
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2Z/n. The mean free path, which is the average length of a free path, is given by

H

A= si (5.2)

whcre' U = y2kT/m is the most probable speed of a molecule. The average
duration of a free path is called the colflision time and is given by

A
T= =
- (5.3)
For a gas in equilibrium, f(r,p, ) is the Maxwell-Boltzmann distribution.
Assume fo_r an order-of-magnitude estimate that o, is insensitive to the energy
of the co!hdmg molecules and may be replaced by a constant of the order of wa?
where a is the molecular diameter. Then we have

1]

Z e ffdaplfdﬁ’z“h - lef(PL)f(pz)

2
_ oy # 1+ P
= )3 fd3p1fd3p2|pl - P| exp [‘ 7 Pz}

m(2omkT 2mkT
2
Ot 1 (p? z
- [apfa = £
m(2wka)3f / p“"c"p[ kT(4m T m)]

where P = p; + p,, p = 3(p, — P)- The integrations are elementary and give

Z =2n% E = E nls
1ot v P \/ - tot (5.4)

Therefore

10
0 (5 .5)

. We see that.the mean free path is independent of the temperature and is
inversely propo_monal to the density times the total cross section.
The following are some numerical estimates. For H, gas at its critical point,

A=10""cm
T=10"1g

For H, gas in interstellar space, where the density is about 1 molecule /em?,
A= 10"%cm

The diameter of H, has been taken to be about 1 A.
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From these qualitative estimates, it is expected that in H, gas under normal
conditions, for example, any nonuniformity in density or temperature over
distances of order 10~ 7 cm will be ironed out in the order of 10!l s. Variations
in density or temperature over macroscopic distances may persist for a long time.

5.2 EFFUSION

An important quantity governing the behavior of a gas is the ratio of the mean
free path to some other characteristic length, such as

The size of the box containing the gas.

_ The diameter of a hole through which gas molecules may pass.

The wavelength of density fluctuations.

When the mean free path is large compared to any other length in the
problem, the gas is said to be in the collisionless regime. A practical example is
the process of effusion, whereby a gas leaks through a very small hole of diameter
much smaller than the mean free path—a phenomenon of great interest to all
experimentalists who maintain vacuum systems.

In effusion the gas molecules do not collide as they go through the hole.
Therefore the flux I through the hole, defined as the number of molecules
crossing the hole per second per unit area of the hole, is just the fiux of molecules
impinging on the surface area of the hole. The contribution to the flux from
molecules of velocity v is given by

dl = d*pu, f(p)

where the x axis is chosen normal to the hole. The total flux is therefore
I={ d%vf(p)
v =0

Assuming the Maxwell-Boltzmann distribution, we have

k nm?®
(2mmkTY*

[ kT no
=" 2em Wn

Eliminating n through P = nkT, we obtain

0 o0
j do. v e_mu},/zkrf dv e—mu},/zk'rf‘“ dy. @MY /2T
x VX ¥ Z
0 —w -~

P
= — 5.6
V2amkT (56)
The inverse proportionality to ym makes the process useful as a means of
separating isotopes.
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The opposite of the collisionless regime is one in which the mean free path is
much smaller than the other characteristic lengths of the problem, exemplified by
the flow of a gas through a very large hole. In this case the gas molecules will
undergo many collisions as they pass through the hole, and will “thermalize”
locally. The prevailing condition is known as the hydrodynamic regime, and will
be the subject of the rest of this chapter.

5.3 THE CONSERVATION LAWS

To investigate nonequilibrium phenomena, we must solve the Boltzmann trans-
port equation, with given initial conditions, to obtain the distribution function as
a function of time. Some rigorous properties of any solution to the Boltzmann
equation may be obtained from the fact that in any molecular collision there are
dynamical quantities that are rigorously conserved.

Let x(r,p) be any quantity associated with a molecule of velocity p located
at r, such that in any collision {p,, p,} — {p{,p;} taking place at r, we have

X1+ X:=xi+x5 (5.m)

where x, = x(r), p,), etc. We call x a conserved property. The following theorem
holds.

THEOREM

fd’p x(r,p)[ﬂ:;?'—ﬂ]m" =90

where (3f/01),, is the right side of (3.36).*

(5.8)

Proof By definition of (3f/31),,, we have

af
f‘pPX(E) " = fd3P1 lez dsPidaPisd(Pf - Pi)thilz(fz’fx' -Lh)xa
(5.9)

Making use of the properties of 7;; discussed in Section 3.2, and proceeding in a
manner similar to the proof of the H theorem, we make each of the following
interchanges of integration variables.

First: p,2p,
Next: p,2p; and p,=p;
Next: p2p, and p,29p)

For each case we obtain a different form for the same integral, Adding the three

*Note that it is not required that f be a selution of the Boltzmann transport eqguation.
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new formulas so obtained to (5.9) and dividing the result by 4 we get

3 1 ,
f d3px(—f) = En & R 8 (B - RIT

at
x(fl’fl’ _fzfl)(X1 tX X X'z) =0 [ ]

The conservation theorem relevant to the Boltzmann transport eguation is
obtained by multiplying the Bolizmann transport equation_ on both sides by x
and then integrating over p. The collision term vanishes by virtue of (5.8), and we
have*

a p a d
3 — 4+ = —+ F—|f(r,p, 1) =0 (5.10)
fa Px(r,p)(al L = f(r,p, 1)

We may rewrite (5.10) in the form

é é 5. B 3 Ix p: 3 d
— Ly = 2f+ [d%p —(xF,
Efd’pr** axifdpxmf fdpax‘_mf / P 55 (XEf)

£ e
9 aF, XS
—fd3pa—;ﬁf—fd’px3;f=0 S’"”; 'ﬁ (5.11)

The fourth term vanishes if f(r,p, ¢) is assumed to vanish when |p| — co. Tl;us
conservation theorem is most useful in hydrodynamics, where t_he velocity
v = p/m rather than the momentum p is a directly measx_lrable quantity. Accord-
ingly, we shall reexpress p in terms of v, where convenient. We also define the

average value {A) by

dipA
(A = —f_—p—f = lfd:*pAf (5.12)
[dr "
where
n(e.1) = [&'pf(p. 1) (513)

We obtain finally the desired theorem:

CONSERVATION THEOREM
9 d 3)( n ﬂ — _.’3. g =0 (5 14)
5("2()4‘3—%("0,—7()-"(0.-3;)“ m(ﬂau‘; i\ 30, (
where x is any conserved property. Note that {nd) = n{4) because n is

*The summation convention, whereby a repeated vector index is understood 1o be summed
from 1 to 3, is used.
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independent of v. From now on we restrict our attention to velocity-independent
external forces so that the last term of (5.14) may be dropped.

For simple molecules the independent conserved properties are mass,
momentum, and energy. For charged molecules we also include the charge, but
this extension is trivial. Accordingly we set successively

x=m ° (mass)
x=mv, (i=1,2,3) {momentum)
x = 4ml|v - u(r, 1) (thermal energy)
where
u(r, 1) = {v)

We should then have three independent conservation thecrems.
For x = m we have immediately

() + — =0
7 \mn Bxi<m'w"> =

or, introducing the mass density

e(r,e) = mn(r, 1)
we obtain
a
2, TV () =0 (5.15)

Next we put x = mp;, obtaining
d J 1
E(PUJ + E;(Pvu‘uﬁ - ;PE' =0 (5.16)
To reduce this further let us write
{vp;) = ((u_,-— u ) (v, ~ uj)) + (v pu + ui{v) - uu;
= ((v,- - u )y, — uj)) + U,
Substituting this into (5.16) we obtain
du; du, 1 a
P(W + uja_xj) = ;PE - B—xJ-(p(vf - ”a‘)(uj - uj)) (5.17)
Introducing the abbreviation

P.ij = P((U; - "i)(f{f - “j))

which is called the pressure tensor, we finally have

?, @ L L 18
T P A PRl (5.18)
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Finally we set x = im|v — u|* Then

M|~
q.:l:u

1 d
~(plv —ul®) + ; aa (pulv — w2y - > (v,-7|v—u|2> =0 (5.19)

We define the temperature by
kT =68=im(lv—u?)
and the heat flux by . "
q= tmp((v—wiv—u?) # AE R

We then have

Il

mp((0, — w)iv — u|?) + Impu(|v - ul*)

g+ 1p0u,

dmp(ulv —ui®)

and
P(Ui(”j - ”j)) = P<(Us - “;‘)(Uj - u,-)) + P“i(”j - “j) = st
Thus (5.19) can be written

39 dg. 3 du
+— 4+ = (b +mP——0
23‘(.00) >3 (p u;)

dx; Yax;
Since P;; = F;

du, mi du; du;
—d =p — + P A
"hiax, T2 ( ax, )

The final form is then obtained after a few straightforward steps:

8 ] 2 4 2
_ — — .= ——A..P. 5.20
"(a: +u‘3x,»)g+ 3 Bx,q’ 3ouny (520

The three conservation theorems are summarized in (5.21), (5.22), and (5.23).

dp

FTA (pu) = (conservation of mass)  (5.21)
t

(conservation of momentum)

d o

p(—-+u-v)u=£F—v-P
m

(5.22)

&t

(-;-— +ur v)ﬁ = —%y+q-2F+X  (conservation of energy) (5.23)
t

where P is a dyadic whose components are P;;, V - P is a vector whose ith
component is dP;;/dx,, and P+ A is a scalar P,;A;. The auxiliary quantities are
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defined as follows.

! p(r, 1) = mfd:’vf(r,v, t) (mass density) (5.24)
ulr, £) = (v» (average velocity) (5.25)
O(r, £} = tm{|v - u|® {(temperature) (5.25)
q(r, t) = %mp( (v —u)|v - u]z) (heat flux vector) (5.27)
P;= p((u,— - u )y, ~ uj)> {pressure tensor) (5.28)
A-Elm(&-i- %) (5.29)

Vo ax, o ax,

Although the conservation theorems are exact, they have no practical value
unless we can actually solve the Boltzmann transport equation and uvse the
distribution function so obtained to evaluate the quantities (5.24)—(5.29). Despite
the fact that these quantities have been given rather suggestive names, their
physical meaning, if any, can only be ascertained after the distribution function is
known. We shall see that when it is known these conservation theorems become
the physically meaningful equations of hydrodynamics.

5.4 THE ZERO-ORDER APPROXIMATION

From now on we shall work in the hydrodynamic regime, where the mean free
path is small compared to other characteristic lengths. This means that gas
molecules make a large number of collisions within a small space. Consequently
they come to local equilibrium rapidly. In the lowest-order approximation it is
natural to assume that the gas has a local Maxwell-Boltzmann distribution, with
slowly varying temperature, density, and average velocity:

flep, 1) = O p, 1) (5.30)
where

fOep, 1) = [~ 250~ ] (5.31)

n
———e
(2amo)”?

where n, 8, u are all slowly varying functions of r and ¢. 1 is obvious that (5.30)
cannot be an exact solution of the Boltzmann transport eguation. On the one

hand we have
aro
( dt )co!} =0 (5:32)

because », #,u do not depend on v. On the other hand it is clear that in general

d F .
— . — 0
{a: vy, + v,)f (r,p,t) #0 (5.33)
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We postpone the discussion of the accuracy of the approximation (5.30). For the
moment let us assume that it is a good approximation and discuss the physical
consequences.

If (5.30) is a good approximation, the left side of (5.33) must be approxi-
mately equal to zero. This in turn would mean that », 8, u are such that the
conservation theorems {5.21)-(5.23) are approximately satisfied. The conserva-
tion theorems then become the equations restricting the behavioyr of n, &, u. To
see what they are, we must calculate q and P, ; 1o the lowest order. The results are
denoted respectively by 4 and PO, Let C(r, r) = n(m/28)*/? and A(r, 1) =
m/28. We easily obtain

1 mp -
q® = 57]:130 (v — u)lv — u|’C(r, 1) e~ At OIr—ul e ‘/r

= im’C(r, 1) [ U LUk A0V = g ' (5.34)
P 2 o
P}JP) = ;C(r, t)fd’u (v, - ;) (v, — ;) e~ AN o
= mC(r, 1) f AU YUe 4000 = 5 P (5.35)
where
m \3/2 .
P = %p(m) fd3U U2e—.4(r,r)U = nf (536)

which is the local hydrostatic pressure.
Substituting these into (5.21) and (5.23), and noting that

v . ﬁ(ﬁ) = VP
3
FOR=PY A,=mPV +u
, il
We obtain the equations
ap
7 + v (pu) =0 (continuity equation) (5.37)
s, )+1PF (Buler’ i 5.38
(8: uviu pv =~ | uler’s equation) (5.38)
d 1 C )
P +u°V)B+ C—(v ‘u}f =0 Dlokes e (5.39)
v .

where ¢,, = 2. These are the hydrodynamic equations for the nonviscous flow of
a gas. They possess solutions describing flow patterns that persist indefinitely.
Thus, in this approximation, the local Maxwell-Boltzmann distribution never
decays to the true Maxwell-Boltzmann distribution, This is in rough accord with
experience, for we know that a hydrodynamic flow, left to itself, takes a long time
to die out.
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Although derived for dilute gases, (5.37)—(5.39) are also used for liguids
because these equations can also be derived through heuristic arguments which
indicate that they are of a more general validity.

We shall now briefly point out some of the consequences of (5.37)-(5.39)
that are of practical interest.

The quantity (3/8¢ + w+ ¥ ) X is known as the “material derivative of X,”
because it is the time rate of change of X to an observer moving with the local
average velocity w. Such an observer is said to be moving along a streamline. We
now show that in the zerc-crder approximation a dilute gas undergoes only
adiabatic transformations to an observer moving along a streamline. Equations
(5.37) and (5.39) may be rewritten as

J
— 4y = e .
(at u V)p PV ru

3p0+ =
“2elar TV V] =V

Adding these two equations we obtain
8 T P
PP LAY PP L
or

(% +u-v)(pa-3/2)=o (5.40)

Using the equation of state P = pfl/m we can convert (5.40) to the condition
Pp~3/% = constant  {along a streamline) (5.41)

This is the condition for adiabatic transformation for an ideal gas, since
ep/ey=1%

Next we derive the linear equation for a sound wave, Let us restrict ourselves
to the case in which u and all the space and time derivatives of u, p, and # are
small quantities of the first order. For F = 0, (5.37) and (5.38) may be replaced
by

o 0 (5.42
o o7 ru= 42)
du
p— + VP =0 ' (5.43)
at .
8 3
.1 — . — =
3o - (5.44)

where quantities smaller than first-order ones are neglected. Note that (5.44) is
none other than (5.40) or (5.41). Taking the divergence of (5.43) and the time
derivative of (5.42), and subtracting one resulting equation from the other, we
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obtain
%
PP -—5=0
v e (5.45)

in which higher-order quantities are again neglected. Now P is a function of p
and 6, but the latter are not independent quantities, being related to each other
through the condition of adiabatic transformation (5.44). Hence we may regard P
as a function of p alone, and write

R apP 1
VP=v-li—| vo|l={—]| v
op s dp | ¢

where (dF/dp) is the adiabatic derivative, related to the adiabatic compressibil-

ity kg by
1/ 3p ) Iim
ns—p 3P). " 508 (5.46)
Thus (5.45) can be written in the form
a%
v~ PRs ST = 0 (547)

which is a wave equation for p, describing a sound wave with a velocity of

propagation ¢ given by
1 /58 5 _ 5 48
°T oxg V3m Ve g (5.48)

It is hardly surprising that the adiabatic compressibility enters here, because in
the present approximation there can be no heat conduction in the gas, as (5.34)
indicates.

Finally consider the case of steady flow under the influence of a conservative
external force field, i.e., under the conditions

F=-vo
du (5.49)

Fri

Using the vector identity
(u*v)u=1v(u?) —ux (y X u) (5.50)
we can rewrite (5.38) as follows

1 1 ? vo
L'y P+ —p) =ux - —= )
V(zu pP mcp) ux{v Xu) e {5.51}

Two further specializations are of interest. First, in the case of uniform density
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and irrotational flow, namely, Vp = 0 and v X u= 0, we have
1 1
Vit + —P+ —¢|=0 (5.52)
p m

which is Bernoulli’s equation. Second, in the case of uniform temperature and
irrotational flow, namely, vf = 0 and v X u = 0, we have

1 )
W+ —¢| = -—v(l
o[+ —o) = - g
which may be immediately integrated to yield
1
p = pyexp [— E(%mtﬁ + ¢,)} (5.53)

where p,, is an arbitrary constant.

5.5 THE FIRST-ORDER APPROXIMATION

We now give an estimate of the error incurred in the zero-order approximation
(3.30). Let f(r,p, 1) be the exact distribution function, and let

glr,p. 1) = f(r,p, 1) — fO(r,p, 1) (5.54)
We are interested in the magnitude of g as compared to /@, First let us estimate
the order of magnitude of (df/dt),,. We have, by definition,
af
(E?) | = fd31’2 d’pid’p; 8°( P, - PNTI*(fif — A1)

= [ A, d7p %y 8%(P ~ P T

X (£ = 0%, + g/ ~ 5,10) (5.55)

where we have used (5.54), the fact that (3 ®/3t) .y = 0, and the assumption
that g is a small quantity whose square can be neglected. An order-of-magnitude
estimate of (5.55) may be obtained by calculating the second term of the right
side of (5.55), which is

(5.56)

g{r.py. 1)
~g(r.p, t)fd3p2 Oael¥o = V¥ = — —

where t is a number of the order of magnitude of the collision time. Thus if we
put

(5.57)

ai

T

(21
coll -

L ———
)
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we obtain results that are qualitatively correct.* With (5.57) the Boltzmann
transport equation becomes

(ai: N v-v,*k% . vv)(f“" +g)= -5 (5.58)

Assuming g < f®, we can neglect g on the left side of (5.58). Assume further
that /@ varies by a significant amount (i.e., of the order of itself) only when |r|
varies by a distance L. Then (5.58) furnishes the estimate

Ef(U) 5 _E
L T (59)
or 5.
g A
L

where A is a length of the order of the mean free path. From these considerations
we conclude that £ is a good approximation if the local density, temperature,
and velocity have characteristic wavelengths L much larger than the mean free
path A. The corrections to £ would be of the order of A/L.

A syslemalic expansion of f in powers of A/L is furnished by the
Chapman-Enskog expansion, which is somewhat complicated. In order not to
lose sight of the physical aspects of the problem, we give a qualitative discussion
of the first-order approximation based on the approximate equation (5.58). The
precise value of 7 cannot be ascertained. For the present we have to be content
with the knowledge that 7 is of the order of the collision time, Thus we put

f=1O+g (5.60)
where, with (5.58), we take
=—7(i+V'V+£'V)fw) (5.61)
g a f r m v ‘

To calculate g, note that f© depends on r and only through the functions
p, 8, and u. Thus we need the derivatives

A AC
dp T
3ch)
a9
o
du,
3f(0)
v,

)

(5.62)

*Techniques useful for solving the Bolizmann transport equation, together with results for a few
simple intermolecular potentials, may be found in S. Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases, 2nd ed. (Cambridge University Press, Cambridge, 1952).
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where
Usv-u(r,r) (5.63)
Hence
] 8 F 3
= —gf — — g Ly
& "\ ar * U'E)x,. m c?v,-)f
1 1{m 3 1
= —gfO| < —| =2 - = — —F»
of [pp(p)+ 8(28.’] ) (0) + S UD(y) - 5E U] (5.0
where
d a
D(X) =5 +v5— )X (5.65)

Using the zero-order hydrodynamic equations (5.37)—(5.39), we can show that
D(p)=~p(v-u)+U-vp
D(8)=-30v +u+U-vl

D(u) 149pP N F, N Ur?uj (5.66)
(u) = padx;, m " ax,

where P = p8/m. Substituting these into (5.64) we obtain

Ve lfm 3 2
= —of@) __ N . — —2 . = . .
g tf [ (vem)+U , +8(20U 2)( 30v n+U vﬂ)

m vP F du 1 <
~Ur— 4 U +U,U— -—F-U| ™)
9 P 1(9 # . m&‘

. . Stragah Fsroon
which, after some rearrangement and cancetlation of terms, becomes > - '

1 76 m 5
- —4l-—y 2 1 © _
P T[M (MU 2)ﬂnﬁ'A( SU)]f (5.67)

where A, is defined by (5.29).
It is now necessary to calculate q and P;; with the help of (5.60) to obtain
the equations of hydrodynamics to the first order, We have , u\»lv RS

=ﬂl£ 3 _ — |2 ‘\.\nsy‘f
q 2nfdp(v u)ly —ul’s

Noting that the second term of (5.67) does not contribute to this integral, we
obtain
5v1 90
= _ d3 2 :_ (0)
a f UUU(zaU 2)aqaxf

or

q= —Kvé (5.68)
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where

K=----fd UU“( Ut - )f(°)=%1‘9n (5.69)

28

It is clear from (5.68) that X is to be identified as the coefficient of thermal
conductivity. It is also clear that |q| is a small quantity of the first order, being of
the order of A/L.

For the pressure tensor P;; »

only the second term of (5.67) contributes:
o
By= ;fdﬂv (o, —u)o;—u)(fP+g) = 8,P+ P,  (570)

where P = pf/m and

3
Tom
Py= =5 —Auf dVUY(UY, - 18,0°)7© (5.71)

3
To evaluate this, note that P/, is a symmetric tensor of zero trace (i.e., E =0,

and it depends lincarly on the symmetric tensor A, . Therefore P must have the
form

, 2p m
where mv * u is none other than the trace of A;;:
3 3 du,
YA, =mY — =mv -u (5.713)
i=1 i-1 9x;

and p is a constant. It remains to calculate p. For this purpose it suffices to

calculate any component of P/, e.g.,, P{,. From (5.71) we have

m?
sz = - TAklfd3U UIUZ(UkUI - %8kle)f(0)

4
™
= —2TAufd3U URURF®

Therefore
. .
TH
B= g [PV U = 1 (5.74)
With this we have :
2p m
By=8,P - (8, Z87 ) (5.75)

The second term is of the order of A/L. The coefficient g tums out to be the
coefficient of viscosity, as we show shortly.
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Flg. 5.1 Ratio of thermal conductivity to the product of viscosity and
specific heat for different dilute gases.

A comparison of (5.74) with (5.69) shows that
K
—=43i=4%c, (5.76)
M
Since the unknown collision time r drops out in this relation, we might expect
(5.76) to be of quantitative significance. A plot of some experimental data for
different dilute gases in Fig. 5.1 shows that it is indeed so.
Let us put, with (5.6},

1
T = ﬁ F (5.77)
where a is the molecular diameter, Then we find that
ymkT
p=K= e (5.78)

5.6 VISCOSITY

To show that (5.74) is the coefficient of viscosity, we independently calculate the
coefficient of viscosity using its experimental definition. Consider a gas of
uniform and constant density and temperature, with an average velocity given by

u,=A+ By

u,=u,=0

where 4 and B are constants. The gas may be thought of as being composed of
different layers sliding over each other, as shown in Fig. 5.2. Draw any plane
perpendicular to the y axis, as shown by the dotted line in Fig. 5.2. Let F’ be
the frictional force experienced by the gas above this plane, per unit area of the
plane. Then the coefficient of viscosity p is experimentally defined by the relation

du,
dy
The gas above the plane experiences a frictional force by virtue of the fact that it

(5.79)

F'=—p (5.80)
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% Flg. 8.2 Horizontal flow of a gas with average
velocity increasing linearly with height.

suffers a net loss of “x component of momentum” to the gas below. Thus

F' = ner amount of “x component of mementum™
transported per sec across unit area in the (5.81)
y direction :

The quantity being transported is m(v, ~ u, ), whereas the flux effective in the
transport is n(v, — u,). Hence we have

F'= mn((u;r ~u v, - uy)) = m"fd% (v, —u )0, —u )OO+ g)
(5.82)

We easily see that the term £ does not contribute to the integral in (5.82). The
first correction g may be obtained directly from the approximate Boltzmann
transport eguation

L) Vf(o) = -ng
! (5.83)
™ m du *
= - — — - g (]
g e vy(vx ux)Bf 8 (jyljx ay f
where U = v — w. Thus
POy PR 5.84
A comparison between this and (5.80) yields
5
TH
== (@Y (5.85)

which is identical with (5.74),

From the nature of this derivation it is possible to understand physically
why p has the order of magnitude given by (5.78). Across the imaginary plane
mentioned previously, a net transport of momentum exists, because molecules
constantly cross this plane in both directions. The flux is the same in both
directions, being of the order of n/kT/m. On the average, however, those that
cross from above to below carry more “x component of momentum” than the
opposite ones, because the average velocity u, is greater above than below. Since
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most molecules that cross the plane from above originated within a mean free
path A above the plane, their u, is in excess of the local u, below the plane by
the amount A(3u,/3y). Hence the net amount of “x component of momentum”
transported per second from above to below, per unit area of the plane, is

KT du,  ymkT du,
Anm ; E = T'—a; (586)
Therefore
ymkT
"= ) (5.87)

It is interesting to note that according to (5.87) p is independent of the
density for a given temperature, When Maxwell first derived this fact, he was so
surprised that he put it to experimental test by observing the rate of damping of a
pendulum suspended in gases of different densities, To his satisfaction, it was
verified,

According to (5.87) the coeflicient of viscosity increases as the molecular
diameter decreases, everything else being constant, This is physically easy to
understand because the mean free path A increases with decreasing molecular
diameter. For a given gradient du, /8y, the momentum transported across any
plane normal to the y axis obviously increases as A increases. When A becomes
so large that it is comparable to the size of the container of the gas, the whole
method adopted here breaks down, and the coefficient of viscosity ceases to be a
meaningful concept.

As a topic related to the concept of viscosity we consider the boundary
condition for a gas flowing past a wall. A gas, unlike a liquid, does not stick to
the wall of its container. Rather, it slips by with an average velocity ty. To
determine u,, it is necessary to know how the gas molecules interact with the
wall, We make the simplifying assumption that a fraction 1 - & of the molecules
striking the wall is reflected elastically while the remaining fraction « is absorbed
by the wall, only to return 1o the gas later with thermal velocity. The number « is
called the coefficient of accommodation. Suppose the wall is the xy plane, as
shown in Fig. 5.3. Then the downward flux of particles is given by

3 * * ©_ 1/_9_
m f_wduxf_mdvyfo dv, no, "V S (5.88)

The particles that reach the wall came from a mean free path A above the wall.

Fig. 8.3 A gas slipping past a wall.
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Thus the gas loses to a unit area of the wall an amount of momentum per second

equal to
[ 8 du
'= - -— -— 5.89
F anm)f —— [uo + ?\( 5 )o] (5.89)

where (Ju/dz), is the normal gradient of u at the wall. This is the force of
friction per unit area that the wall exerts on the gas, and must equal —u(du,/3z),.
Hence the boundary condition at the wall is

[ 8 \ duy ] Hu)
arm 2am Ho + {E)g h “( a2z |y
27 u du
= 1/_ - . —_ 5.90
“o ( mt na 2\)( dz )0 (5.90)

Using = 78 and A = fry/2#8/m, where 8 is a constant of the order of unity,
we obtain the boundary condition -

or

du
= —_ 591
tgy sA(az)o (5.91)
where
1-—af
5= o8

is an empirical constant which may be called the “slipping co_eﬁ‘icient." When
& = 0 there is no slipping at the wall. In general the velocity of stip is equal to th_e
velocity in the gas at a distance of s mean free paths from the wall, Usually s\ is
a few mean free paths,

5.7 VISCOUS HYDRODYNAMICS

The equations of hydrodynamics in the first-order approximation can_be ob-
tained by substituting q and P, , given respectively in (5.68) and (5.75), into }he
conservation theorems (5.21)-(5.23). We first evaluate a few relevant quantities.

Veq=-v(Kv8) = -Kv¥-vK-vl (5.92)
ap, apP , 14 2 B,u( m )
TR (V)= (A, - 8w -u) (5.93)
dx; dx; [V it ] Ebc,.(v v) max \" Y 3

2u 2
P A, =mP(v +u) - ;AUAU’ + Zum(v + u) (5.94)
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The quantity A, ,A;; can be further reduced:

du;  du\fdu,  Ju, m* du;{ du,  du,
A A, =~ + — = —
ey (r?x )( +3x) 23x( +3x)
Now we reduce the two terms above separately:
du, du, d Fu; ?*u, 2y 2 s
dx; dIx; B dx; u"c'a‘xj ui&'xjaxj =3vi(«’) —u- v
du; du, du,  du\(du, Ju L 9w du; du;  du; Ju; au du,
=— - —~— + —
3x 3x dx; 8x dx; dx; Bx ax; ax c'J'x Bx
- v x )2+23u,-3u,. du; du,
W T e, ox, T ax, 0%,
Hence
du; du; u;, du;
—f = (v X
ot P Al el Pt vy
and finally
m?
Ajh, = T[Vz(uz)—h-vzu— v X u|?] (5.95)
Substituting (5.92)-(5.94) into (5.21)~(5.23) we obtain
ap
27tV (ow) =0 (5.96)
a N F ® )
PP V)H—E—V(P—Ev'u)+yv utR (5.97)

9 K 1 1
ol— +u- v)a——v20+—-—vK v - —
dt cy ¢y ey

x[mp(v cu) + Zpm(w - u)? —pm{vH )~ 2uvu-|v Xu|2}]

(5.98)
where ¢, = 3 and R is a vector whose components are given by
R 2 de A i 8
i= m axj i ? U—V '“) (5.99)

In these equations the quantities of first-order smallness are p, X, u, and the
derivatives of p, #, and u. Keeping only quantities of first-order smallness, we can
neglect all terms involving derivatives of p and X and the last four terms on the
right side of (5.98). We then have the equations of hydrodynamics to the first
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order:
dp . .
ET + v +(pu) =0 (continuity equation) (5.100)

a F 1
(-—+u V)u————V(P—'-u—v u)«l—ﬂvzu
a3t m p 3 P

{(Navier-Stokes equation) (5.101)

a 1 K
(— +u+v ) §=——(v u)f+ —w?¢ (heat conduction equation)
a [ pcy

gt T (5.102)

where ¢, = 4. The boundary condition to be used when a wall is present is the
slip boundary condition (5.91).
If u = 0, (5.102) reduces to

a8
PCy o Kvif= (5.103)
which is the familiar diffusion equation governing heat conduction. This equation
can be derived intuitively from the fact that q = — K v#8. Although we have
proved this fact only for a dilute gas, it is experimentally correct for liquids and
solids as well. For this reason (5.103) is often applied to systems other than a
dilute gas.
The Navier-Stokes equation can also be derived on an intuitive basis
provided we take the meaning of viscosity from experiments. We discuss this
derivation in the next section.

5.8 THE NAVIER-STOKES EQUATION

We give a phenomenological derivation of the Navier-Stokes equation to show
why it is expected to be valid even for liquids. Some examples of its use are then
discussed.

Consider a small element of fluid whose volume is dx; dx,; dx; and whose
velocity is u(r, #). According to Newton's second law the equation of motion of
this element of fluid is

— =g

"
where m is the mass of the fluid element and £ is the total force acting on the
fluid element. Let the mass density of the fluid be p and let there be two forces
acting on any element of fluid: A force due to agents external to the fluid, and a
force due to neighboring fluid elements. These forces per unit volume will be
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Fig. 5.4 Forces acting on an element of fluid.

respectivety denoted by F; and G. Thus we can write
m = p dx, dx, dx,
Z=(F, + G) dx, dx, dx,

Therefore Newton's second law for a fluid element takes the form

a
p(5+u'v)u=lﬁ+c (5.104)
Thus the derivation of the Navier-Stokes equation reduces to the derivation of a
definite expression for G.

Let us choose a coordinate system such that the fluid element under
consideration is a cube with edges along the three coordinate axes, as shown in
Fig. 5.4, The six faces of this cube are subjected to forces exerted by neighboring
fluid elemenis. The force on each face is such that its direction is determined by
the direction of the normal vector to the face. That is, its direction depends on
which side of the face is considered the “outside.” This is physically obvious if we
remind ourselves that this force arises from hydrostatic pressure and viscous
drag. Let T; be the force per unit area acting on the face whose normal lies along
the x; axis. Then the forces per unit area acting on the two faces normal to the x,
axis are, respectively (see Fig, 5.4),

T, -

L

aT, -
'r,.+§dx,.) (i=1,2,3) (5.105)

The total force acting on the cube by neighboring fluid elements is then given by

aT, 9T, 9T,
- + == | dx, dx, dx, (5.106)

G = -l —
dx, dx, dx, (ax1 ox, o
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We denote the components of the vectors T;, T,, T, as follows:
Ty = (Py, Py, Pr3)
T, = (Py, Py, Pyy) (5.107)
Ty = (Py, Py, Py)

Then
3P,
G, =—-—= 5.108
SR (5.108)
or
G=-v-F (5.109)
With this, (5.104) becomes
a "
p(a+u-v)u=F,—V°P (5.110)

which is of the same form as (5.22) if we set F, = pF/m, where F is the external
force per molecule and m is the mass of a molecule. To derive the Navier-Stokes
equation, we only have to deduce a more explicit form for P,;. We postulate that
(5.110} is valid, whatever the coordinate system we choose. It follows that P;; is a
tensor.

We assume the fluid under consideration to be isotropic, so that there can be
no intrinsic distinction among the axes x;, x,, x,. Accordingly we must have

P y=P,=P,=P (5.111)

where P is by definition the hydrostatic pressure. Thus P;; can be written in the
form

P;=8,P+P, (5.112)
where P is a traceless tensor, namely,
3
LP= (5.113)
i=1

This follows from the fact that (5.113) is true in one coordinate system and that
the trace of a tensor is independent of the coordinate system.

Next we make the physically reasonable assumption that the fluid element
under consideration, which is really a point in the fluid, has no intrinsic angular
momentur. This assumption tmplies that F,, andl hence P/, is a symmetric
tensor:

P, =P (5.114)

To see this we need only remind ourselves of the medning of, for example, Py{;. A
glance at Fig. 5.5a makes (5.114) cbvious.

Finally we incorporate into P;; the empirical connection between the shear
force applied 1o a fluid element and the rate of deformation of the same fluid
element. A shear force F per unit area acting parallel to a face of a cube of fluid
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— Py’ > Fly. 5.58 Nonrotation of fluid element implies P{; = ;).
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/ ! Flg. 5.8b Deformation of fluid element due to shear
x force,

tends to stretch the cube into a parallelopiped at a rate given by R’ = p(d¢/dt),

where p is the coefficient of viscosity and ¢ is the angle shown in Fig. 5.5b.
Consider now the effect of Py, on one fluid element. It can be seen from Fig.
5.5¢, where P{, is indicated in its positive sense in accordance with (5.105), that

de¢, do, duy, duy
Pi=—-pl— + ——|=—-pl— + — 5.115
2 ”(dz dt) M ax, "~ ax, (5.115)
In general we have
du;,  du;
Pl=—p|-— + [ #J 5.116
) ”(3xj 3x,.) (i #)) (5.116)
To make P/, traceless we must take
P; AT CATA B (5.117)
0T "M G, x| T30V '
*
Py’ o
T
vl
_17/ /l
dxg / W Py
////Y¢'1
x
| —
dxy . Fig. 3.5¢ P{, as shear force.
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Therefore
P, =8P ou; + o4, 25 5.118
ij = % ® axj 9x, 3 Vo u (5.118)

which is identical in form to (5.75). This completes the phenomenological
derivation, which makes it plausible that the Navier-Stokes equation is valid for
dilute gas and dense liguid alike.

5.9 EXAMPLES IN HYDRODYNAMICS

To illustrate the mathematical techniques of dealing with the equations of
hydrodynamics (5.110)-(5.102), we consider two examples of the application of
the Navier-Stokes equation to a liquid.

incompressible Flow

We consider the following problem: A sphere of radius r is moving with
instantaneous velocity u, in an infinite, nonviscous, incompressible fluid of
constant density in the absence of external force. The Navier-Stokes equation

- reduces to Euler’s equation:

at

where u is the velocity field of the liquid and P the pressure as given by the
equation of state of the fluid. Let us choose the center of the sphere to be the
origin of the coordinate system and label any point in space by either
the rectangular coordinates (x, y, z) or the spherical coordinates (#, €, ¢). The
boundary conditions shall be such that the normal component of u vanishes on
the surface of the sphere and that the liquid is at rest at infinity:

[l‘ * ll(l')] r=a (l' * uO)r=a =0
u(r)r:wO

)
p(—-—-+u'V)u= -vP (5.119)

(5.120)

Note that incompressibility means d¥% /3P = 0, or that the density is indepen-
dent of P. Therefore WP is arbitrary, and adjusts itself to whatever the boundary
condition demands. Since there is no source for the fluid, we must have
everywhere :
veu=10 (5.121)
Taking the curl of both sides of (5.119), remembering that p is a constant, and
neglecting terms of the form (Ju/dx, Y du/dx)), weé find that

(%+u-v)(v X u) =0 (5.122)

i.e., that ¥ X u is constant along a streamline. Note that P drops out because
v X (¥ X P) = (. Since very far from the sphere we have ¥ X u = 0, it follows
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that everywhere

VXu=0 (5.123)
This means that u is the gradient of some function:
u=vyo (5.124)

where @ is called the velocity potential. By (5.120) and (5.121) the equation and
boundary conditions for @ are

v3e(r) =0
ae P
(_37),.”1 = g 008 (5.125)
d(r) - 0

r—co
where 0 is the angle between #, and r, as shown in Fig. 5.6.
The most general solution to v 20 = 0isa superposition of solid harmonics.*
Since the boundary condition involves cos 8, we try the solution

cos @
o(r) =4 pE; (r=a) (5.126)
which is a solid harmonic of order 1 and is the potential that would be set up if a
dipole source were placed at the center of the sphere. Choosing 4 = — 1u,q?
satisfies the boundary conditions. Therefore
cos @
O(r) = —Luga’ p (r=a) {(5.127)

This is the only solution of (5-125), by the well-known uniqueness theorem of the
Laplace equation. The velocity field of the fluid is then given by

cos

ur) = - luya’y (r=a) (5.128)

2
»
The streamlines can be sketched immediately, and they look like the electric field
due to a dipole, as shown in Fig. 5.6.

Let us calculate the kinetic energy of the fluid. It is given by the integral

312
pfuga cos 8 cos
3plgiu? = b 3 v —
[aripiu) 2( ; )fmd rY— v

_ pfuga\? , cosé  cosd
'2( 2 )f,zadrv PR )

34,2
o[ uga cos®  cosf
- —5( 2 )fr=ads [ r? v r? ]
342 ¥
pfuza 2 {27 +1 cosd 3 cos#
—_ d 8 ——— = Llo.r..2
2( )a[) q‘:f_ld(cos )( el a1 tm’ul

2
(5.129)

IF

K.E.

*A solid harmonic is r'Y,,, or #~1-1Y, | where ¥, is a spherical harmonic.
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Flg. 5.6 Streamlines in a nonviscous liquid in the presence of a
moving sphere.

where m’ is half the mass of the displaced fluid:
m’ = +(3dma’p) (5.130)

If the sphere has a mechanical mass m, the total kinetic energy of the system of
liquid plus sphere is

E=Ymy+m)u} (5.131)
The mass m  + m’ may be interpreted 1o be the effective mass of the sphere,
since (5.131} is the total energy that has to be supplied for the sphere to move
with velocity u,.

Stokes’ Law

We proceed to solve the same problem when the ﬂ}lid has a nonvanishing
coefficient of viscosity p. The Navier-Stokes equation will be taken to be

0= —V(P— %V-u)+yv2u (5.132)
on the assumption that the material derivative of u, which gives rise to the
effective mass, is small compared to the viscous terms. We return to examine tE}e
validity of this approximation later. Since there is no source for.the fluid, we still
require v - u = 0, and (5.132) becomes the simultaneous equations

1
Via= P (5.133)

vVeou=70
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with the boundary condition that the fluid sticks to the sphere. Let us translate
the coordinate system so that the sphere is at rest at the origin while the fvid at

infinity flows with uniform constant velocity w,. The equations (5.133) remain
invariant under the translation, whereas the boundary conditions become

[u(r)] r=g = 0
wr) - u, (5.134)
r—>o0
Taking the divergence of both sides of the first equation of (5.133), we
obtain

viP=90 (5.135)

Thus the pressure, whatever it is, must be a linear superposition of solid
harmonics. A systematic way to proceed would be to write 2 as the most general
superposition of solid harmonics and to determine the coefficient by requiring
that (5.133) be satisficd. We take a short cut, however, and guess that P is, apart
from an additive constant, a pure solid harmonic of order 1:

cos @
P=P+ FPI",.T (5.136)

where P, and P, are constants to be determined later. With this, the problem
reduces to solving the inhomogeneous Laplace equation

cos ¢
viu=Py . (5.137)
subject to the conditions
vVeu=190
[u®)],-, =0 (5.138)
u(r) = u,
A particular solution of (5.137) is
P, cos @ P 2 z
u = ——6"er e = —?(-r- - l‘r—j') (5.139)

where 7 denotes the unit vector along the z axis, which lies along u,. It is casily
verified that (5.139) solves (5.137), if we note that 1 /r and z/r> are both solid
harmonics, Thus,

y P, o[ T2 z cos
viu = -5 -3y (r_3) =P,v(ﬁ) =Pw pt (5.140)
The complete solution is obtained by adding an appropriate homogeneous
solution 1o (5.139) to satisfy (5.138). By inspection we see that the complete
solution is

d 1 cos ¢

u= llo(l - :) + ~4—u0a(r2 - a?)v 2 (5.141)
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where we have set
Py = —1uga (5.142)

tohave v *n = 0. _ .

We now calculate the force acting on the sphere by the fluid. By definition
the force per unit area acting on a surface whose normal point along the x - axis is
~T; of (5.107). It follows that the force per unit area acting on a surface element
of the sphere is

Z o
f= _(i’[‘l + £T2 + _Ts) = —f+p (5.143)
¥ ¥ I

where £ is the unit vector in the radial direction and P is given by (5.118). The
total force experienced by the sphere is

F’ = fds[ (5144)

where 4S is a surface element of the sphere and the integral extends over the
entire surface of the sphere. Thus it is sufficient to calculate f for » = 4.
The vector 7 « P has the components
du; du,
— + —
dx;  ax,

. 3 f
= —pP - = Ex—j(xjuj) -~ u; + xjale«r,»

Hence

= —FP + -’;[v(r'u)—u+(r-v)u] (5.145)

where P is given by (5.136) and (5.142), and w is given by (5.141). Since u = 0
when r = a, we only need to consider the first and the last terms in the bracket.
The first term is zero at r = a by a straightforward calculation, At r = g the
second term is found to be

1 du Ju, 3  cosé

—|{r- Ll B = — o — —fy,—— 5.146)

I‘[(r V’)“]r-aI (31‘),--“ 0 a (

When this is substituted into (5.145), the second term exactly cancels the dipole
part of FP, and we obtain

. 3p
(')rwa = _rPO + 5;“0

The constant P is unknown, but it does not contribute to the force on the
sphere. From (5.144) we obtain

F = émpaun, (5.147)
which is Stokes’ law.
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The validity of (5.141) depends on the smallness of the material derivative of

u as compared to ¢ %u, Both these quantities can be computed from (5.141). It
is then clear that we must require

puga

#

«1 ~(5.148)

Thus Stokes’ law holds only for small velocities and small radii of the sphere. A
more elaborate treatment shows that a more accurate formula for F’ is

3 puya + \

F'=6 1+ = :
mpau, o / (5.149)

The pure number pugja/p is called the Reynolds number. When the Reynolds
number becomes large, turbulence sets in and streamline motion completely
breaks down.

PROBLEMS

8.1 Make order-of-magnitude estimates for the mean free path and the collision time for
() H, molecules in a hydrogen gas in standard condition (diameter of H, = 2.9 A);
(b) protons in a plasma (gas of totally ionized H;) at T=3x10° K, n= 101
protons/ci?®, o = mr?, 'where r = e2/kT:

(¢) protons in a plasma at the same density as (b) but at T =107 K, where thermo-
nuclear reactions occur;

(d) protons in the sun’s corona, which is a plasma at T =10° K, n = 10° protons/cc;
() slow neutrons of energy 0.5 MeV in 28U (¢ = mr2, = 10~ 13 em).

5.2 A box made of perfectly reflecting walls is divided by a perfectly reflecting partition
into compartments 1 and 2, Initially a gas at temperature 7, was confined in compartment
1, and compartment 2 was empty. A small hole of dimension much less than the mean free
path of the gas is opened in the partition for a short time to allow a smail fraction of the

_ Bas o escape into compartment 2. The hole is then sealed off and the new gas in
compartment 2 comes to equilibrium,

{a) During the time when the hole was open, what was the flux 4f of molecules crossing
into compartment 2 with speed between p and v + d?

(#) During the same time, what was the average energy per particle € of the molecules
crossing into compartment 27

(¢) After final equilibrium has been established, what is the temperature 75 in compart-
ment 27

Answer, T, = 47,

8.3 (a) Explain why it is meaningless to speak of a sound wave in a gas of strictly
noninteracting molecules.

(&) In view of (a), explain the meaning of a sound wave in an ideal gas.

———
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5.4 Show that the velocity of sound in a real substance is to a good approxi.n'l_a.lion given
by ¢ = 1/ /pkg, where p is the mass density and x¢ the adiabatic compressibility, by the
following steps.

{a) Show that in a sound wave the density oscillates adiabatically if

K« cdpe,

where K = coefficient of thermal conductivity
A = wavelength of sound wave
p = mass density
¢, = specific heat
¢ = velocity of sound

(&) Show by numerical examples, that the criterion stated in (a) is well satisfied in most
practical situations.

6.8 A flat disk of unit area is placed in a dilute gas at rest with initial temperature T
Face A of the disk is at temperature T, and face B is at temperature T; > T (see sketch).
Molecules striking face A reflect elastically. Molecules striking face B are absorbed by the
disk, only to re-emerge from the same face with a Maxwellian distribution of temperature
T

(a) Assume that the mean free path in the gas is much sma]_lcr than the dimension Of. the
disk. Present an argument to show that after a few collision times the gas can Il); described
by the hydrodynamic equations, with face B replaced by a boundary condition for the
temperature.

(b) Write down the first-order hydrodynamic equati_ons for (&), neglecting the fiow of the
gas. Show that there is no net force acting on the disk. ‘ . .
(c) Assume that the mean free path is much larger than the dimensions of the disk, Find
the net force acting on the disk.

5.6 A square vane, of area 1 cm’, painted white on one side, black on the other, is
attached to a vertical axis and can rotate freely about it (see the sketch). Suppo_se the
arrangement is placed in He gas al room temperature and sunlight is allowed to shine on
the vane, Explain qualitatively why

(a) at high density of the gas the vane does not move;

(#) at extremely small densities the vane rotates; _

(¢) at some intermediate density the vane rotates in a sense opposite to that in (b).
Estimate this intermediate density and the corresponding pressure.

Gas at temp. T' Flg. P5.5




