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Abstract

Regulatory functions are essential in both socioeconomic and biological systems, from corpo-
rate managers to regulatory genes in genomes. Regulatory functions come with substantial
costs, but are often taken for granted. Here, we empirically examine regulatory costs across
diverse systems—biological organisms (bacteria and eukaryotic genomes), human organi-
zations (companies, federal agencies, universities), and decentralized entities (Wikipedia,
cities)—using scaling analysis. We guide the empirical analysis with a conceptual model,
which anticipates the scaling of regulatory costs to shift with the system’s internal interac-
tion structure—well-mixed or modular. We find diverse systems exhibit consistent scaling
patterns—well-mixed systems exhibit superlinear scaling, while modular ones show sub-
linear or linear scaling. Further, we find that the socioeconomic systems containing more
diverse occupational functions tend to have more regulatory costs than expected from their
size, confirming the type of interactions also plays a role in regulatory costs. While many
socioeconomic systems exhibit efficiencies of scale, regulatory costs in many social systems
have grown disproportionally over time. Our finding suggests that the increasing complexity
of functions may contribute to this trend. This cross-system comparison offers a framework
for understanding regulatory costs and could guide future efforts to identify and mitigate
regulatory inefficiencies.

1 Introduction

Regulatory functions and mechanisms are necessary and ubiquitous features across all bi-
ological and social complex adaptive systems, spanning scales from the cellular to societal
level. Regardless of scale, organizational structure, or composition, these systems rely on
dedicated components to regulate internal processes and mediate interactions among their
constituent parts. For instance, in cells, some genes may be beneficial when expressed in
isolation, but their expressed proteins can often interact adversely. Regulatory genes con-
trol the timing of gene expression, preventing these harmful interactions by ensuring that
conflicting genes are not expressed simultaneously. Similarly, in companies, managers coor-
dinate employee activities to prevent duplicated efforts and mitigate adverse interpersonal
interactions. In broader societal contexts, legal professionals mediate interactions among
citizens through legal processes, ensuring orderly conduct.

While necessary and ubiquitous, regulatory functions consume a significant amount of energy
and resources. For example, regulatory genes in bacteria account for about 10% of the costs.
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In the US, 15% of workforce compensation is paid to managers [1]. In US universities,
administrative spending is on par with instructional spending, reaching $122.3 billion in the
2014–15 school year, and has been cited as a key factor in the skyrocketing tuition of US
universities [2, 3]. In fact, the burden of administrative costs is a significant concern in many
aspects of society, including higher education [4], health care [5], manufacturing [6], and the
transition to renewable technologies [7], As a result, regulatory costs have emerged as one
of the major societal challenges of the 21st century. What aspects of regulatory function
are set by fundamental requirements and which are malleable through changes in structure,
culture, or procedure? The answers to these larger questions require more understanding of
the mechanisms underlying regulatory functions across a wide range of systems.

Regulatory costs have been studied separately at the levels of organizations, societies, and
biological organisms. In socioeconomic systems, the primary focus has been on best practices
for management and regulations concerning profits and efficiencies [8], while in biology, the
emphasis has been on understanding the genetic and metabolic mechanisms of regulation
such as complex feedback loops and signaling pathways that maintain cellular homeostasis
and respond to environmental changes. These functions and expenses seem to correspond
to the expenses related to governance, law enforcement, and social coordination to regulate
and coordinate activities, monitor performance, and enforce rules within the organization
[9]. As such, studies have identified several key determinants of regulatory costs, including
size, measured by the number of employees [10], internal structure, measured by the level
of hierarchies and size of the sub-units [11], and functional complexity [12], often measured
by the number of different tasks performed by individuals within the organization. Despite
these valuable insights, a comprehensive and systematic understanding of the determinants
of regulatory costs remains elusive.

In the study of biological organisms, we have a much clearer understanding of the fundamen-
tal and baseline requirements for regulatory function. A key assumption in the biological
context is that the overall evolutionary process, involving vast species and timescales, leads
to optimized regulatory costs. Thus, biological examples provide a case study for under-
standing essential or optimal regulatory functions. Furthermore, similar key determinants
of size, internal structure, and complexity emerge from the biological literature. For in-
stance, major transitions in biological architecture—–such as the evolution from bacteria,
which lack internal compartments and allow any gene to interact with any other gene, to
eukaryotes, which have compartmentalized cells, and from single-cell to multicellular organ-
isms—each introduce new and distinct forms of regulation [13]. At a more detailed level, all
cellular functions, including regulatory genes, are known to scale with organism size [14],
[15–17].

The identification of common key determinants—size, structure, and functional complex-
ity—across both social and biological systems suggests the potential for a unifying and
comparative perspective. Previous studies have successfully achieved this goal by using
scaling analysis as a foundation for empirical analysis. By combining this with mechanistic
models that explain scaling relationships, researchers have uncovered common mechanisms
across a diverse range of systems, including those in physics, biology, ecology, as well as
firms and cities [17–21]. These studies reveal key connections between size, function, and
architecture, illustrating how fundamental principles can be applied across different types
of systems.

Here, we first conceptualize what gives rise to regulatory costs across complex systems
based on managing adverse interactions by integrating the interaction of size, structure,
and various kinds of costs. We compare and unify diverse systems across the dimensions
of well-mixed to highly modular. At one end of the spectrum, well-mixed systems tend to
be the simplest self-organized and agglomerate ones. At the other end, those with modular
structures tend to be centrally planned or have gone through several transitions in archi-
tecture. For example, bacteria are defined by a cellular environment where most expressed
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proteins in the liquid cytoplasm can diffuse and interact with any other expressed pro-
tein, posing unique regulatory challenges for governing protein co-expression. The growth
in genome size for bacteria is a result of an emergent process of evolution. In contrast,
companies are typically defined by hierarchical and modular structures that regulate inter-
actions amongst individuals and are highly planned as companies grow in size. This pattern
also applies to more complex organisms that have experienced multiple major evolution-
ary transitions in structure [13]. We then compile data on regulatory costs in biological
and social systems, including regulatory genes in bacteria and eukaryote cells, managers in
companies, governmental agencies, universities, administrators on Wikipedia, and lawyers
in cities. Using scaling analysis, we quantify shifts in regulatory costs with entity size by
the scaling exponents to reveal shared governing processes and principles across different
systems.

2 Results

We define regulatory functions as entities whose primary role is to moderate, adjust, or
coordinate the interactions among other entities. These include regulatory genes in cells,
managers in companies, legal functions in cities, and administrators onWikipedia. Examples
of functions that do not fall in this category include primarily functional components, for
example, functional genes in cells, factory workers in a manufacturing plant, and primarily
maintenance and repair functions, such as janitors of a university.

2.1 Conceptualizing the mechanisms for baseline regulatory costs
across systems

(B) Utilize regulator to 
mediate interactions 

between components

(C) Utilize compartments 
to separate components

(A) Tolerate adverse 
interactions

Figure 1: Conceptual illustration depicting three strategies complex systems could employ
to manage adverse interactions among components. Each strategy incurs a cost, and the
optimization of the total costs forms the basis of our model.

In this section, we present a simple mathematical framework to illustrate how baseline re-
quirements for regulation may be derived from the interactions of a few key mechanisms.
The central premise is that regulation arises as a response to potential adverse interactions
among system components [22]. A complex system brings together a large number of in-
dividual components—such as genes in cells or employees in companies—to achieve certain
benefits, like metabolic energy for cells or revenue for companies. We denote the amount of
these benefits as B. However, adverse interactions among these components can diminish
these benefits. In cells, such interactions may occur when expressed proteins interact in
ways that are futile or detrimental to cellular metabolism. In organizations, adverse in-
teractions can manifest as duplicated efforts or interpersonal conflicts between individuals.
When two components of a system have an adverse interaction, we identify three responses
the system can employ, as illustrated in Fig. 1. First, the system can do nothing and toler-
ate the adverse interaction. Second, it can use a regulator to manage these interactions. In
cells, it takes the form of carrying a regulatory gene, which makes sure the genes encoding
two negatively interacting proteins are not expressed at the same time. In organizations, it
can take the form of assigning a manager to coordinate tasks and prevent duplicated work
between individuals or mediate interpersonal conflict between two employees. Third, the
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system can separate the two components by creating compartments. In cells, this involves
developing internal architecture, such as mitochondria, to ensure that certain genes are only
expressed in specific sub-portions of the cell. In organizations, this approach could involve
structuring individuals into separate teams, units or departments, thereby modularizing
their efforts.

Each of these three strategies carries a cost. esebreak three categories as: the cost of adverse
interactions, I, the cost associated with regulators in the system, R, and the cost associated
with compartments C. Regulators and compartments each reduce adverse interactions, but
come with their own costs such as the pay required to employ a manager or the energy
dedicated to maintaining and expressing a regulatory gene. Compartments differ from
regulators in that they use structural separation, such as organizational divisions or sub-
cellular membranes, to isolate unnecessary interactions. It’s important to note that the cost
associated with regulators and compartments may interact. For instance, in companies, the
establishment of a new compartment, like a new division, is typically accompanied by the
appointment of a regulator, such as the division head.

We are interested in how these benefits and costs change with the system size, N , such
as the number of employees in an organization or the number of genes in a genome. In
particular, we specify the number of functional individuals, f , regulators, r, and the number
of compartments, c, to arrive at the generic utility function

L = B(f, r, c)− I(f, r, c)−R(f, r, c)− C(f, r, c). (1)

The explicit expression of each term will depend on the system of interest. For example,
in cells, the cost of compartments is related to the physical maintenance of these struc-
tures and, thus, is influenced by their surface area. In organizations, these costs may be
linked to the implementation of codified processes and the coordination required between
departments.

Equation 1 enables the optimization of the utility function, given functional forms for the
four terms over the number of regulators, r, and number of compartments, c. While the
precise quantitative forms of these four terms still remain uncertain for specific systems, it
is useful to define the simplest version of each term to understand the baseline optimization
of L and how r and c scale with system size.

In a well-mixed environment, the addition of a new functional individual—whether an em-
ployee or gene—comes with a probability µ of having a negative interaction with all existing
functional members of the system. Denoting the number of functional individuals as f ,
edge counting gives the total number of negative interactions as ρf (f − 1), with ρ ≡ µ/2.
Each of these negative interactions comes with a cost γ1, and we can remove negative in-
teractions either by adding regulators or placing individuals in compartments. We assume
that individuals contained within compartments are removed from pairwise negative inter-
actions with the rest of the system. If we place η individuals into a compartment, and
the system contains c compartments, then the total number of negative interactions be-
comes ρ (f − ηc) (f − ηc− 1). For a fixed compartment size, negative interactions within a
compartment simply become a fixed cost, which we will combine with compartment costs
later. Additionally, if each regulator can reduce θ negative interactions, then the total num-
ber of negative interactions becomes ρ (f − ηc) (f − ηc− 1)− θr leading to the final utility
function,

L = bf − γ1

[
ρ (f − ηc) (f − ηc− 1)− θr

]
− γ2r − γ3c. (2)

where γ2 is the unit cost of a regulator and γ3 is the unit cost of a compartment (including
the cost of negative interactions and regulators within a compartment). Here we assume
that there is a proportional cost of r and c and a linear increase in benefit associated with
f such that R = γ2r, C = γ3c, and B = bf . All terms are measured in dollars or energy
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depending on the system of interest. It is also useful to note that the total size of the system,
N , which is often what is measured, is the sum of functional and regulatory components,
N = f + r.

Managing Costs with Only Regulators We now optimize L as a function of r and
c. Later we will show that compartments are not beneficial below a certain size, and so
we begin by considering L with c = 0. From Equation 2, we see that regulators are only
beneficial if γ1 > γ2/θ. That is, the cost of regulating a negative interaction is less than the
cost of the negative interaction itself.

The utility function is optimized when regulators mediate all adverse interactions, meaning
I (f, r) = 0. This gives the optimal number of regulators,

ropt =
f(f − 1)ρ

θ
∼ f2ρ

θ
(3)

illustrating that r grows like f2 adjusted by the ratio of the probability of negative interac-
tions, ρ to the number of interactions that one regulator can mitigate θ. Given that r ∼ f2

we can also write the total size in terms of r alone where N = f + r =
√
θ/ρ r1/2 + r. It is

useful to note that we have two regimes here: N ∝ r1/2 for small f (which is also small r
given the relationships above) and N ∝ r in the large f limit.

The first case compares well to bacteria where every expressed gene can interact with every
other gene. Here the observed scaling is r ∼ N1.86 [17], in rough agreement with this simple
optimization where r ∝ N2.

For the second case, where N ∝ r, there is a critical size at which regulators overwhelm
the system causing L = 0. For the optimal number of regulators, where I = 0, the utility
function is

L = bf − γ2ρf (f − 1)

θ
. (4)

which equals zero at

fr = 1 +
bθ

γ2ρ
. (5)

Here fr is the maximum number of functional elements for a system with only regulators.
This upper bound depends on the ratio of the benefit per functional element to an effective
cost, the unit cost of a regulator times the likelihood of a negative interaction. The ratio
of bθ to γ2ρ could be quite large given that the probability of negative interactions could
be small and the cost of an average individual, including regulators, γ2, should be small
relative to the productive output, b, of an average individual. In addition, a regulator may
be able to handle many interactions and θ should be much larger than 1. For example, if
ρ = 0.10, γ2 = b/2, and θ = 10, then f ≈ 200, implying that an organization that handles
negative interactions with only regulators could reach significant size.

Including Compartments As we mentioned earlier, fr defines the size at which regu-
lators become the entire system and this implies the need for compartments. Optimizing
the complete cost function of Equation 2 with respect to c by setting ∂L/∂c = 0 yields the
optimal number of compartments,

copt =
1

2η

(
2f − 1− γ3

γ1ρη

)
(6)

This result shows that compartments are only advantageous for cells with a large enough
number of functional genes since copt > 0 requires

fc >
1

2

(
1 +

γ3
γ1ρη

)
. (7)
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The critical value is set by the ratio of the unit cost of a compartment to the probability
of negative interactions multiplied by the unit cost of a negative interaction and how many
elements are put in a compartment. In this case, the unit cost of a compartment, denoted as
γ3, should exceed the unit cost of negative interaction. This is because each compartment
may entail the cost of physical space, regulators who maintain it, and coordination costs
among compartments. The scale at which regulators become the entire system, fr, will
agree with the minimum size that compartments are feasible, fc. The criterion for a smooth
transition to compartments is thus given by fr = fc, which sets the following condition for
the unit costs

γ3 = γ1η

(
ρ+

2bθ

γ2

)
. (8)

To give a sense of the size of the unit compartment costs, γ3 = 40γ1η leads to the same
transition point of fc ≈ 200 for the values of b and ρ used above.

Above the critical value fc, the number of compartments scales like c ∼ f , which also affects
the scaling of the number of regulators. Given the optimal number of compartments, we
can maximize the utility function by considering the point at which L = bf , which occurs
at

ropt =
cγ3 + γ1ρ(f − ηc)(f − ηc− 1)

γ1θ − γ2
(9)

which given the solution for copt becomes

ropt =
4γ3f − γ1ηρ− 2γ3 − γ2

3/ (γ1ηρ)

4η (γ1θ − γ2)
(10)

which for large f is approximated by

ropt ≈
γ3

η (γ1θ − γ2)
f. (11)

With compartments, these results show that r ∼ f and c ∼ f . Because of this linear
scaling, the total N = f + r is also linear r ∝ N and c ∝ N . In this regime, quadratic
requirements of negative pairwise interactions are proportionally handled by compartments
and regulatory genes. However, this only occurs after the transition where compartments
become inexpensive enough to be viable.

This result is supported by the observation that in unicellular eukaryotes, the number of
regulatory genes grows as G1.26 [17], which is much closer to one than the scaling observed
in bacteria. Unlike bacteria, unicellular eukaryotes have various internal spatial partitions,
including the partitioning of genes between the nucleus and mitochondria. The transition
from prokaryotes to eukaryotes illustrates how the internal structure of organisms, hierarchy,
and partitioning can alter the requirements for regulation.

Also, it should be noted that the scaling of ropt in Equation 10 can not continue indefinitely
because eventually I = 0. This limit is given by

rmax =
1

4θ

(
γ2
3

γ2
1η

2ρ
− ρ

)
. (12)

The number of regulators, r, saturates to a constant and thus should have effectively sub-
linear scaling over much of the range of size. Similarly, in the transition between only
regulators and compartments, we expect r to scale slower than quadratically with f , espe-
cially if fr ̸= fc, which occurs for a wide variety of parameter combinations. In addition, it
is important to note that the unit costs, γi, could vary with attributes of the system. For
example, the unit costs of compartments in cells depend on the surface area of these com-
partments. Similarly, the rate and cost of the negative interaction, ρ and γ1 respectively,
may change with system size. In Equation 10 such cost scaling would cause ropt to scale
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faster or slower than f . Taking all of these considerations into account, we should expect
real-world systems in the most general sense to follow

r ∼ r0N
β , (13)

where r0 is the minimum cost for the smallest size (N = 1), and β is the scaling exponent.
The above framework gives us the common expectation of β = 2 for a compartment-free
system, and β = 1 for a system with both regulators and compartments. We can interpret
observed exponents that are closer to 2 as being well-mixed and compartment-free. Close
to 1 indicates a system optimized on compartments with a mixed strategy. An exponent
significantly larger than 1 and significantly smaller than 2 indicates the transition from
regulators only to some compartmentalization. Exponents significantly less than 1 indicate
the regime where compartments are expanding and regulators are becoming cumbersome
and saturating, or where there are certain economies of scaling in the unit costs.

2.2 Empirical results

(A) (B) (C)

Figure 2: Examples of scaling of regulatory functions in bacteria, cities, and Norwegian
companies (a) The number of transcription regulatory genes vs. the number of genes in
the genome of bacteria [17]. (b) The number of lawyers vs. working population in US
Metropolitan Statistical Areas. (c) The number of managers in companies in Norway.

We collect data on regulatory components and system size in both biological and socioeco-
nomic systems to examine how regulatory costs scale with size. In biological systems, we
focus on bacterial and unicellular eukaryote cells, specifically collecting data on the number
of regulatory genes in their genomes. Regulatory genes are those that determine the tim-
ing and environmental conditions for gene expression by producing proteins that bind to
other genes. We use data reported by [17] for these biological systems. For socioeconomic
systems, we gathered data on the number of lawyers in cities and the number of managers
in Norwegian and Korean companies, US federal government agencies, and various types of
US universities. We also synthesize results from another study measuring the number of
administrators for Wikipedia pages [9]. For human systems, system size is measured by the
population of the entity, such as the number of employees for companies and universities,
and the number of editors for Wikipedia pages. The scaling exponents of these systems are
estimated using Eq. 13, with β representing the scaling exponent. For detailed information
on data sources and statistical methods used for estimation, see Data and Methods.

Based on the mathematical model, we expect the scaling of regulatory functions to vary
according to the system’s structure. Bacteria, representing the most well-mixed end of the
spectrum, operate like a “soup,” where any gene can interact with any other gene. Cities,
while still relatively well-mixed, exhibit a lesser degree of mixing due to the bottom-up
emergence of social network clustering. We anticipate that these systems will have higher,
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superlinear exponents. On the modular end of the spectrum are human organizations such
as companies and universities, which predominantly feature strong departmental structures.
We expect these entities to have scaling exponents close to linear.

In the data we gathered, regulatory costs scale with system size across diverse systems.
Three examples are shown in Fig. 2: regulatory genes in bacteria, lawyers in cities, and
managers in Norwegian companies. As predicted, the scaling exponents vary across system
types, with regulatory genes in bacteria having the highest exponent at 1.84. The number of
lawyers scales superlinearly with the urban population, with an exponent of 1.28 (Fig. 2B).
This is similar to prokaryotic regulatory genes but does not reach quadratic scaling due to
constraints on individuals’ social interaction capacity and the overall network structure of
cities. Theories of urban scaling based on these constraints have successfully predicted sim-
ilar exponents for many socioeconomic outputs driven by interactions [23, 24]. Contrary to
cities, human organizations—-such as government agencies, companies, and universities—-
typically exhibit a high degree of hierarchical structure, leading us to expect different scaling
behaviors. In these organizations, managers play a crucial role in coordinating efforts and
mitigating conflicts among subordinates. The scaling exponent for managers in Norwegian
companies is 0.91 (Fig. 2C).

The scaling exponents for all data we have gathered, including the number of managers in
all sectors of US universities, Norwegian and Korean companies, and US federal government
agencies, as well as those in biological systems, are summarized in Fig 2.2. In all the modular
systems, the number of managers scales sublinearly with small variations—from 0.94 for
Federal agencies (highest exponent) to 0.72 for Korean companies (lowest exponent). The
sublinear scaling shown in the data suggests the span of control, the number of subordinates
per manager, increases with organization size. This finding aligns with previous studies
of companies and public agencies in management science [10], while is contrary to the
popular belief that larger organizations are less efficient in coordination costs [25]. Even in
Wikipedia, a supposedly decentralized system, the interaction network among editors has
been shown to be highly modularized [9]. Interactions tend to cluster around specific topics
of interest, allowing a smaller number of administrators to effectively manage issues that
arise. As such, despite the decentralized nature of the system, administrators naturally
oversee specific modules and thus sublinearly scale with the total contributors.

2.3 Function diversity associated with scaling deviations

We have formulated a conceptual framework to understand how size and structure influence
the regulatory costs of systems and collected data to compare with this theory. The dif-
ferences across the spectrum from well-mixed to modular systems indicate regulation may
arise from the number and type of interactions across individuals. We further investigate
this idea by looking at how the number of regulators is related to the function diversity of
a system.

Functional diversity reflects the range of tasks performed by the components of a system. As
society advances, its technology becomes more complex, and individual roles and functions
become more specialized and diversified. A classic and prominent example is car assembly,
which now requires specialized metal compounds for catalytic converters, computer chips,
and software to manage many aspects of automobile operation. None of these components
existed a half-century ago. Such an increasingly complex manufacturing operation necessi-
tates the coordination of a broader range of components, leading to a higher potential for
adverse interactions that the system needs to manage.

Motivated by our theory, we predict that greater functional diversity is associated with
higher regulatory costs. To test this prediction, we will quantify functional diversity across a
range of systems and demonstrate that it is positively associated with the scaling residuals.
In other words, systems with higher functional diversity exceed the expected number of
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Systems Regulatory 
function

Size 𝜷 95%CI Obs

Bacteria genomes Regulatory genes Genome length 1.84 [1.75, 1.95] 64

Cities (US) Lawyers Working population 1.28 [1.24, 1.31] 422
Unicellular eukaryotes genomes Regulatory genes Genome length 1.28 [1.18, 1.38] 9

Federal agencies (US) Managers Employees 0.94 [0.90, 0.96] 121

Companies (Norway) Managers Employees 0.91 [0.88, 0.93] 802

All universities baccalaureate level 
& above (US)

Managers Employees 0.85 [0.83, 0.88] 1,344

Doctoral/research universities (US) Managers Employees 0.82 [0.74, 0.86] 256

Associate colleges (US) Managers Employees 0.81 [0.77, 0.86] 1,058

Liberal arts colleges (US) Managers Employees 0.79 [0.70, 0.87] 215

Wikipedia articles Administrators Contributors 0.78 [0.77, 0.79] 6.4M

Companies (S. Korea) Managers Employees 0.72 [0.70, 0.78] 2,759

Well-mixed

Modular

Interaction 
network

Figure 3: The scaling exponents (β) and 95% confidence intervals for regulatory functions
in various systems. With more well-mixed internal structures, such as bacteria cells and
cities, regulatory functions tend to be superlinear. With more modular internal structures,
such as companies and universities, the scaling exponents are linear to sublinear.

regulators according to the scaling curve, while those with lower functional diversity fall
short.

We quantify functional diversity in an organization by analyzing the distribution of occu-
pations within it. For this analysis, we utilize individual-level occupation information for
US federal government agencies. To ensure robustness, we also test our predictions on com-
panies. Although occupation information is not available at the company level, we study
companies aggregated into industries, for which we have detailed accounts of the distribu-
tion of occupations. We measure functions using the finest occupational categories available
in these datasets. For more details on data sources and occupation definitions, see Data
and Methods.

We measure functional diversity using normalized Shannon entropy (H), an information-
theoretic measure that quantifies the predictability of a function given all functions in the
system. This measure has been successfully utilized to quantify diversity in socioeconomic
systems [26]. Mathematically, it is defined as:

H = −
D∑
i=1

pi
log pi
logD

(14)

where pi is the relative frequency of function (occupation) i, pi = fi/
∑

fi, and fi is the
frequency of function i. The variable D is the number of distinct functions in the system.
H is maximized when the abundance of functions follows a uniform distribution. The
normalization by logD allows comparison across systems with different total numbers of
functions.

We also compute the scaling residual [27] for each system, which quantifies the extent to
which a system over- or under-performs relative to the scaling curve. The scaling residual
for system i, ξi, is defined as, ξi = log ri − log r(Ni), where ri is the number of regulators
for system i in the data, and r(Ni) is the regulators expected of its size according to
Eq. 13.
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(A) (B)
𝛽 = 0.96 [0.91, 1.01] 𝛽 = 0.94 [0.90, 0.96] 

Figure 4: Industry and Federal agencies colored by occupations’ normalized entropy, a metric
for the diversity of functions in the system. Higher values denote more diversity. The inset
shows the correlation between the normalized entropy and scaling deviation. Systems that
are more diverse have more managers than would be expected of their size. The Pearson
correlation is 0.59 for industries and 0.20 for federal agencies.

Figure 4 illustrates the relationship between managers and employees, with each entity
colored according to its normalized entropy, where higher values indicate greater function
diversity [28]. For both federal agencies and industries, entities with higher function diversity
tend to have more managers than expected for their size. The insets of Fig. 4 display the
correlation between scaling residuals and normalized entropy. The correlation is 0.59 for
industries (p < 0.001), and .20 for federal agencies (p = 0.030). These results support our
initial hypothesis that greater function diversity is associated with greater regulatory costs
due to greater coordination requirements.

3 Discussion

We have proposed a conceptual framework for unifying the prediction of regulatory costs
across biological and socioeconomic systems by examining the interactions of fundamental
features, size and internal structure. We also conducted an empirical analysis of regulatory
costs across these systems. Our findings indicate that the variation of regulatory functions
with system size depends significantly on the system’s structure. The exponents range
from nearly 2 for regulatory genes in bacteria, which have a well-mixed internal structure,
to sublinear scaling for managers in hierarchically organized human organizations, such as
federal agencies and universities. By characterizing regulatory functions based on their
underlying mechanisms rather than the system type, our work represents a first step toward
a unified understanding of maintenance functions across diverse systems.

Our conceptual model is based on the simplest assumptions about cost factors, intended to
lay the groundwork for more advanced theories in the future, These future models should
incorporate more accurate cost estimates tailored to different system types through empirical
measurements. For example, in hierarchical human organizations, the cost of regulators
within compartments should also be factored into future models. In biological systems,
more precise cost calculations should consider the frequency of gene expression, which plays
a critical role in determining the energetic cost in the cell.

The greater scaling exponents of biological systems do not necessarily imply biological sys-
tems are less efficient than socioeconomic ones. Creating compartmentalization and struc-
ture in biology is expensive—intricate physical structures need to be developed to separate
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the cell nuclei from the rest. Extending this idea, complex physical infrastructure also needs
to be developed to enable organs in animals, where genes only get expressed in a certain
tissue. While bacteria need to carry a rapidly increasing number of regulatory genes with
increasing size, they save on the energetic cost of creating compartmentalization within the
cell. In comparison, developing structure in social systems does not necessarily incur a phys-
ical cost. For example, a company’s CEO can decide to create a new division in the company
without employing new physical separations between divisions, and the re-organization can
be accomplished in a matter of weeks. Humans are also naturally creatures of groups with
limited social capacity, making modularity a common characteristic in many social systems,
even decentralized ones such as cities. Indeed, the social interactions scale with N1.2 accord-
ing to phone network data [29], which is far from the N2 null prediction for a completely
well-mixed group.

Furthermore, superlinear exponents, such as the nearly 2 scaling exponent observed in bac-
teria, impose a fundamental constraint on system size. With superlinear exponents, there
is a maximum size beyond which all components would be regulatory. For bacteria to grow
larger, they must fundamentally transform their organizational structure to one that leads
to a lower scaling exponent. While the ≈ 2 exponent is inefficient for scaling up, it also has
significant benefits. New genes can be easily added to the bacterial genome along with new
regulation in a plug-and-play manner that provides remarkable flexibility to adapt to novel
and changing environments. This insight may be transferred to small human organizations,
such as start-up companies and local communities. These small organizations are similar to
bacteria in the sense that new functions can be easily added with the caveat that everyone
interacts directly with everyone else, leading both to a high degree of flexibility and unex-
pected conflicts. Our theory predicts this form of organization is limited by a predictable
critical size. While this study did not collect data on start-up companies, it would be valu-
able for future research to analyze the regulatory costs and structure of start-up companies
on a large scale and examine their transition to a more modular configuration.

Social systems, aided by the lower cost of compartmentalization, appear to gain an economy
of scale with regulatory costs. However, many have the experience that larger organizations
are more bureaucratic. These two observations do not necessarily contradict each other. The
personal experience of regulation may reflect the experience of a non-regulatory employee
complying with the structure and processes put in place by an organization. Future research
should consider the cost of regulatory compliance in organizations and ask how this is traded
off against regulators and compartments. It has also been noted that many regulatory costs
have increased over time in many forms of organizations, such as universities [4]. Temporal
and cross-sectional scaling behavior differ in many socioeconomic systems, the difference can
be due to changes in the output in the whole system regardless of size [30]. Future research
should extend our cross-sectional data gathering and theoretical analysis to a temporal one,
to address why regulatory costs have grown in many sectors over time.

While our study makes predictions based on structure and focuses on measuring regulatory
costs across system types, we have not formally quantified the degree of modularity in the
systems’ architecture. Our work uses qualitative accounts of these systems. It is an area of
important future work to perform a careful quantitative assessment of modularity across a
wide range of system types. This would also involve gathering detailed interaction network
data and quantifying the modularity of these networks.

Our work makes several contributions to the literature. While most management stud-
ies treat regulation as an independent variable, examining its effects on other factors, our
research offers a distinct perspective by exploring what determines the level of regulation it-
self. We conduct a comprehensive empirical comparison across socioeconomic and biological
systems, analyzing these systems based on their underlying mechanisms. For the first time,
we compare regulatory costs across both biological and socioeconomic systems, identifying
their commonalities and differences. Additionally, we introduce a conceptual framework
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that, despite lacking system-specific details, provides a foundation for understanding base-
line regulatory requirements through an optimization process. We hope our work paves the
way for a unified science of regulatory costs.
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Data and methods

Data

Bacteria and Unicellular eukaryotes. Data on genome length and the number of reg-
ulatory genes are from van Nimwegen, E. Scaling laws in the functional content of genomes.
In Power Laws, Scale-Free Networks and Genome Biology, 236–253 (Springer, 2006)

Cities. Data for occupations in cities were obtained from the Bureau of Labor Statistics in
2017. Data were downloaded from https://www.bls.gov/oes/tables.htm in May 2019.
Lawyers are defined according to the 2010 Standard Occupational Classification (SOC)
system. The boundaries of urban areas in this dataset use the Metropolitan Statistical Area
established by the US Office of Management and Budget (OMB).

Federal agencies. Data on US Federal agencies were obtained from FedScope in 2018.
Downloaded from https://www.fedscope.opm.gov/employment_access.asp in Oct 2019.
The data provides individual-level information on all US federal government employees, in-
cluding the federal agency employed under, and the occupation classification. The dataset
contains 125 cabinet-level departments and independent agencies. The smallest agencies in
this dataset contain two employees, which are Commission for the Preservation of Amer-
ica’s Heritage Abroad and the Northern Border Regional Commission. The largest agen-
cies contain hundreds of thousands of employees—the largest two being the Department of
Veterans Affairs, with 391,187 employees, and the Department of the Army, with 249,074
employees. The FedScope data is compiled through human resource software used by the
US federal government. Note that not all federal agencies are reported in this data set;
however, all agencies available through FedScope are used in our analysis. Supervisors
are defined as individuals coded to have supervisor status in the FedScope dataset. The
occupation classification in this dataset is according to the OPM’s Handbook of Occupa-
tional Groups and Families, available at https://www.opm.gov/policy-data-oversight/
classification-qualifications/classifying-general-schedule-positions/occupationalhandbook.

pdf. The occupation categories used in our analysis is on the 4-digit level, the finest level
in the dataset.

Norwegian Companies The data on Norwegian companies were purchased from Statis-
tics Norway in May 2022. The data are from the year 2019. For confidentiality, the
company-level data was aggregated by Statistics Norway according to the following pro-
cedure. The companies are first sorted by the number of employees from large to small.
For every five companies, both the number of employees and the number of distinct func-
tions are aggregated by taking the mean of the log-transformed variables, i.e., E[log yi]
where yi is a variable for company i in that size bin. This data only includes compa-
nies with five or more employees for confidentiality reasons. Managers are classified ac-
cording to the International Standard Classification of Occupations (ISCO-08), which is
detailed at https://www.ssb.no/en/klass/klassifikasjoner/7/versjon/33. Note that
this dataset only includes resident employees in Norway, and it does not include subsidiary
companies in countries other than Norway. We filter for a minimum of 50 employees in
company size.

Universities. The data on US universities are obtained from the Integrated Postsecondary
Education Data System (IPEDS). The data was accessed from https://nces.ed.gov/

ipeds/use-the-data. The data used in our analysis are from the year 2016. The type of
universities are classified based on the Carnegie 15 classification system, also available in this
dataset. Bachelor-level and above institutions include universities classified as ”Baccalaure-
ate,” ”Master,” or ”Doctoral” universities in the Carnegie 15 classification system. Liberal
Arts universities are coded as ”Baccalaureate Colleges–Liberal Arts,” Associate Colleges
are coded as ”Associates Colleges,” Doctoral universities are coded as ” Doctoral/Research
Universities–Extensive” and ”Doctoral/Research Universities–Intensive” in Carnegie 15. In
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our analysis, we filter for universities with a minimum of 50 employees.

Industries The data on US industries are obtained from the Bureau of Labor Statistics
in 2018, downloaded from https://www.bls.gov/oes/tables.htm. Managers and other
occupations are defined according to the 2010 Standard Occupational Classification (SOC)
system.

Estimation of scaling exponents

The scaling exponents are derived from doing a linear fit after taking the log of both axes.
For two variables x and y, the exponent β and its confidence interval are obtained by
regression: log y = β log x+ log c.
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