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Models of how things spread often assume that transmission mechanisms are fixed over time. However, social
contagions–the spread of ideas, beliefs, innovations–can lose or gain in momentum as they spread: ideas can get
reinforced, beliefs strengthened, products refined. We study the impacts of such self-reinforcement mechanisms
in cascade dynamics. We use different mathematical modeling techniques to capture the recursive, yet changing
nature of the process. We find a critical regime with a range of power-law cascade size distributions with varying
scaling exponents. This regime clashes with classic models, where criticality requires fine tuning at a precise
critical point. Self-reinforced cascades produce critical-like behavior over a wide range of parameters, which
may help explain the ubiquity of power-law distributions in empirical social data.

Introduction Cascades of beliefs, ideas, or news often
show signs of criticality despite coming from various sources
and spreading through different mechanisms [1]. This signa-
ture of criticality takes the form of a power-law tail in the cas-
cade size distribution, scaling as s−τ . Cascade models predict
this behavior at a precise critical point, the phase transition be-
tween a regime where all cascades eventually go extinct and
another where they can grow infinitely. At this point, cascade
models that follow a branching process structure universally
predict a scaling exponent of τ = 3/2 [2]. We call this crit-
ical exponent universal because, for a large family of spread-
ing mechanisms, its value does not depend on the details of
the model [3]. However, social media data show that cascade
sizes can follow power-law distributions with scaling expo-
nents much different from the prediction τ = 3/2. The size
of reply trees might decay faster with a scaling exponent of
τ = 4 [4], as do reposting cascades with an exponent τ = 2.3
[5], and many other data sources on platforms with exponents
around τ = 2 [1]. The difference between the universality ob-
served in cascade models and the diversity of empirical results
is yet unexplained.

Although cascade models vary, the vast majority of them
use fixed mechanisms such that the same rules apply at ev-
ery step of the cascade. For example, a new case of a disease
produces infections through the same mechanism as the pre-
vious cases do. However, cascades of beliefs and ideas might
be different. Beliefs can be reinforced and strengthened when
instilled by a passionate teacher. Ideas or products can be re-
fined as they are transmitted from one person to the next.

Self-Reinforcing Cascade (SRC) model Imagine a cas-
cading product like a meme, conspiracy theory, rumor, or a
piece of software spreading in a population of agents. At every
transmission step in the cascade, the product has the chance to
independently improve with probability p or get worse with
probability 1 − p. This process can stop for two reasons: ei-
ther the quality of the product drops to zero, or the agents
sharing it cannot find others to pass it on to (see Fig. 1).

As an example, consider open source projects where a seed
piece of software is made available for others to fork and mod-
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FIG. 1. Schematic of a self-reinforcing cascade. We start with a
seed of positive intensity. The process gains a unit of intensity when
reaching active neighbors (orange); or, loses a unit of intensity when
reaching inactive neighbors (blue). Paths of the cascade end when
they reach a node with no new neighbors (dead-end) or when the in-
tensity falls to zero (absorbing boundary). The final cascade consists
of all (ten) nodes where the process had non-zero intensity.

ify [6]. These modifications can either enhance or degrade the
software, as well as its governance [7, 8]. For instance, better
code or governance might make the software more accessi-
ble and easier to adopt and update, while poorly written code
or bad governance practices can make the software difficult
to maintain, eventually leading to its abandonment [9]. As a
result, the quality of the software varies with each iteration,
demonstrating the flexible and evolving nature of this type of
cascade.

As a final and very different example, we note that we orig-
inally conceived the self-reinforcing mechanism as a model of
forest fires gaining intensity as they burn trees but losing in-
tensity as they traverse gaps in forest cover [10]. We explore
this idea that cascades can deviate from universal classes when
they can be amplified or attenuated as they spread.

More generally, SRCs are a cascade perspective on killed
branching random walks where certain results are known for
its critical point in a continuous limit [11] and bounds on its
critical behavior in the discrete case [12]. Here, we provide
an exact recursive solution, closed-form expressions for the
expected cascade sizes and their critical point, and offer other
new avenues of mathematical analyses. Beyond theoretical
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contributions, our results illustrate how diverse scaling expo-
nents can easily be observed in cascades.

Recursive solution Mathematically, we consider a gen-
eral branching structure for contacts within the population. At
any node, we define G(x) =

∑
k πbx

b as the probability gen-
erating function for the number of “children” neighbors (occu-
pied or not) of that node, πb being the probability of branch-
ing into exactly b children [13]. The probability π0 is equal
to the probability that any node in the cascade is a dead-end
without children, one of two ways for a chain of transmission
to end. Importantly, and in line with recent empirical find-
ings [14], the branching number b is drawn independently and
identically at each node. However, considering generation-
or intensity-dependent distributions for the branching number
would be a straightforward extension of the model.

We pick the first node on this structure to start a cascade
of intensity 1 (more generally, I0). Any potential children
will be either receptive to the process with probability p, and
continue the process with intensity 2; or non-receptive, such
that they end their branch of the cascade by reaching inten-
sity 0. In the next step, children with non-zero intensity in
the last step (if any) can recruit their own receptive children
(if any) to continue the process with intensity 3; or convince
their non-receptive children (if any) to continue the process
with intensity 1. In general, intensity increases when the cas-
cade spreads to receptive nodes and decreases when it spreads
to non-receptive ones. Any branch of the cascade dies either
when it reaches a dead-end of the branching process or when
its intensity goes to zero.

We can solve this process using a self-consistent recursive
solution. Let H1(x) be the probability generating function
for the cascade size distribution of a node of intensity 1 [15].
Since the root node is part of the cascade, H1(x) has to be
proportional to x to count that node. After that, every possible
neighbor generated by G(x) is either receptive with probabil-
ity p, which increments the intensity by 1, or non-receptive
with probability 1 − p, in which case the neighbor does not
continue the process as it reaches intensity 0. Neighbors of
intensity 2 will lead to cascades whose size will be generated
by H2(x) and neighbors of intensity 0 will lead to trivial cas-
cades of size 0, as generated by H0(x) = x0 = 1. We can
therefore write H1(x) = xG [pH2(x) + (1− p)] to define a
recursive self-consistent equation. In this equation, we use
the fact that a cascade produced by a node of intensity k is
the sum of the cascades produced by its children, and that the
probability generating function for the sum of a variable num-
ber of independent random variables is the composition of the
probability generating functions.

More generally, we can write

Hk(x) = xG [pHk+1(x) + (1− p)Hk−1(x)] (1)

to account for the fact that non-receptive nodes decrease the
intensity but do not necessarily end the process if k > 1.

To solve Eq. (1), we follow the approach described in Sec.
IIC of Ref. [15] to iterate the recursive equations for a sample
of values on the unit circle in the complex x-plane , up to a
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FIG. 2. Phase transitions of SRC and directed percolation on Poisson
trees of average branching number ℓ = 3. For the SRC, we compare
our recursive exact solution based on Eq. (1) to simulations. The
critical point marking the emergence of a supercritical cascade is at
p = 1/ℓ = 1/3 for percolation and at p = (1 − 2

√
2/3)/2 ≈

0.0286, as computed from Eq. (4), for the SRC.

FIG. 3. Critical threshold pc of SRCs on Poisson trees of different av-
erage branching number ℓ. Results are obtained by solving the exact
recursion in Eq. (1), the explicit solution in Eq. (4), and the critical
condition of the traveling wave in Eq. (8). The results match up to
the numerical precision at which we solve the recursion. The inset
validates the explicit solution in Eq. (3) for the expected cascade size
mk, comparing it with 104 simulations per value of initial intensity,
performed at p = 0.01 and ℓ = 3.

certain maximal intensity (we use 100), until all values con-
verge to within a certain precision threshold (we use 10−12).
Once a fixed point has been reached, we can extract H1(x)
which generates the cascade size distribution from the seed
(assuming I0 = 1). We can also obtain the probability that
a cascade is supercritical and never ends as 1 − H1(1) since
supercritical cascades are of infinite size not accounted for in
Eq. (1).

Critical point We first look at the phase transition of
SRCs in Fig. 2. We assume that the number of children nodes
is drawn from a Poisson distribution πb = ℓbe−ℓ/b! of mean
ℓ. The self-intensifying mechanism greatly reduces the crit-
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FIG. 4. Extended critical behavior around the critical point pc for a Poisson tree of ℓ = 3 (pc ≈ 0.0286). (a) Cascade size distributions for p
above and below pc. Above pc, we find a scaling relationship with exponential cutoff s−τ(p) × e−s/s̄(nc(p)) based on the critical generation
nc(p) given in Eq. (10) if p is close to pc. Specifically, we show results for p = 0.038, for which nc ≈ 10.66 and τ ≈ 1.78. Below pc, we can
find arbitrarily steep power-law decays as a function of p; for instance, τ ≈ 3.8 for p = 0.01. Results from 108 simulations are reported for
some p values. The recursion is exact. (b) Scaling exponents versus p as obtained by fitting the distribution obtained from the exact recursion.

ical point of the process. For an average branching number
ℓ = 3, we find pc at (1 − 2

√
2/3)/2 ≈ 0.0286 instead of

1/ℓ = 1/3 for the emergence of a giant connected component
(infinite-size) cascade in a random network[16].

We now derive a closed-form solution for the critical point.
To gain some insights into the expected behavior of Eq. (1),
we rewrite the system as a recursion over the expected cascade
size mk(p) when starting at a node of intensity k for a given p.
To calculate mk we take the derivative of Hk(x) and evaluate
at x = 1 (using the facts that this extracts the first moment
from a probability generating function, and that Hk(0) = 0
and Hk(1) = 1 in the subcritical regime), to get

mk(p) = 1 + ℓpmk+1(p) + ℓ(1− p)mk−1(p) . (2)

This non-homogeneous linear difference equation can be
solved with initial conditions m0(p) = 0 and m1(0) = 1.
We obtain

mk(p) =
1

ℓ− 1


[
1−

√
1− 4p(1− p)ℓ2

2pℓ

]k
− 1

 . (3)

We calculate the critical point pc of the process as the value
of p where the susceptibility of the system diverges, such that
dmk/dp → ∞. We find

pc =
1

2

(
1−

√
1− 1

ℓ2

)
. (4)

Figure 3 validates this explicit closed-form expression against
our other solutions and compares our explicit solution for ex-
pected cascade size against simulations in the inset.

Extended critical behavior To get a better intuition on the
behavior of the system around the critical point, we rely on
known results for extremal paths on trees [17]. Accordingly,
we focus on the expected maximal number of positive steps in

intensity Pmax(n, p) (i.e., the number of receptive nodes met)
along any paths after n generations of the process with param-
eter p. To solve for the dynamics of Pmax(n, p) we define the
cumulative probability Rn(x) = Prob(Pmax(n, p) ≤ x), with
initial condition R0(x) = 1x≥0. We can write a recursion
similar to Eq. (1),

Rn+1(x) = G [pRn(x− 1) + (1− p)Rn(x)] . (5)

Based on previous work [17], we use a traveling-wave Ansatz
Rn(x) = R(y = x−vmaxn). We linearize Eq. (5) in the region
far ahead of the front (y ≫ 0; 1 − R(y) ≪ 1) and look for
an exponential solution, 1− R(y) ∼ e−µy , to eventually find
that the speed of the front vmax relates to the decay exponent
µ via the following transcendental equation

vmax(p) =
1

µ∗ ln
[
ℓ(1− p) + ℓpeµ

∗
]
=

peµ
∗

1− p+ peµ∗ . (6)

The first equality comes from the linearization of Eq. (5); the
second one by solving for the minimum value of the corre-
sponding speed, in accordance to the principle of velocity se-
lection [17].

The traveling-wave front means that, to first order, we have
Pmax(n, p) = vmax(p)n + O(log n). Assuming we start at an
intensity of I0, the expected maximal intensity Imax(n, p) after
n generations reads

Imax(n, p) = Pmax(n, p)− (n− Pmax(n, p)) + I0

= 2Pmax(n, p)− n+ I0 , (7)

since the process is expected to have reached Pmax(n, p) re-
ceptive nodes that increased intensity by 1 and therefore
n−Pmax(n, p) non-receptive nodes that decreased intensity by
1. The expected maximal intensity should diverge for p > pc
and go to zero for p < pc. The critical point is therefore de-
fined by

dImax

dn
= 2vmax(pc)− 1 = 0 ⇒ vmax(pc) = 1/2 . (8)
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One then finds pc by imposing the critical velocity,
vmax(pc) = 1/2, in Eq. (6). This derivation yields the same
solution as Eq. (4), as shown in Fig. 3.

Figure 4 shows that below pc, the cascade size distributions
of the SRC feature steep power-law tails with tunable scaling
exponents τ > 2. The exponent decreases when p increases
until reaching τ = 2 at p = pc, as required for the expected
cascade size to diverge. For larger values of p, we find that
a robust power-law behavior with exponential cut-off exists
well above pc.

Why do we find a critical-like scaling off the critical point?
The presence of power-law tails in the subcritical regime has
recently been proven in the context of killed branching ran-
dom walks in Ref. [12]. In SRC, this likely occurs because
we are looking at cascade size, which is exponentially related
to cascade intensity as per Eq. (3), and intensity is related to
cascade depth which is known to decay exponentially in the
subcritical regimes [18]. This combination of exponentials is
a known mechanism to produce power-law tails [19].

To characterize the power-law behavior in the supercriti-
cal regime, we add the universal logarithmic correction to
Pmax(n, p) under the traveling-wave solution [20–22], which
becomes Pmax(n, p) ≈ vmax(p)n − 3/(2µ∗) lnn. With this
correction, the critical condition is

dImax

dn
= 2vmax(p)− 1− 3/(µ∗n) = 0 . (9)

We thus find a critical generation number such that, in the
supercritical regime p > pc, the expected maximal intensity
only starts growing after some transient number of genera-
tions nc(p) given by

nc(p) =
3

µ∗(2vmax(p)− 1)
. (10)

We expect a power-law behavior for cascades of size not
larger than s̄(nc) = (ℓnc − 1)/(ℓ − 1), the expected cas-
cade size reachable by generation nc. If n reaches nc, then
dImax/dn > 0, and the typical exponential behavior above
the percolation threshold should be recovered. The criti-
cal generation nc thus imposes a critical cutoff at s̄(nc) on
the cascade size distribution. We estimate the cascade size
s to be distributed as a power-law with exponential cutoff
s−τ(p) × e−s/s̄(nc(p)). As Fig. 4(a) shows for p = 0.038, for
which nc ≈ 10.66 and τ ≈ 1.78, our estimation is in excellent
agreement with the exact results from recursion. As the value
of p increases, nc decreases, and additional correction terms
(first a non-universal term of order 1/

√
n) would eventually

come into play to push the cut-off to higher values [22]. We
illustrate this using p = 0.06 in Fig. 4(a), where Eq. (10) pre-
dicts nc ≈ 3.91, yet we obtain a much better fit with the value
nc = 6 used in the figure. Our estimated cutoff thus offers
a lower bound, such that the scaling behavior is observed for
supercritical values of p higher than expected from s̄(nc(p)).

In Fig. 5, we plot the expected maximal intensity Imax(n, p)
versus n for some p > pc, to illustrate the rationale behind
Eq. (10). In a nutshell, the long-time behavior of the expected
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FIG. 5. Dynamics of the expected maximal intensity Imax(n, p) over
generations n produced by the logarithmically-corrected solution, for
different values p > pc. We compare this traveling-wave solution
with the average maximal intensity as a function of n, given the pro-
cess is not extinct at generation n − 1, obtained from at least 106

simulations. By definition, surviving cascades from simulations are
always at intensity greater than zero. Nonetheless, the traveling-wave
solution captures the delay until Imax takes off.

maximal intensity is what determines the critical point, but its
transient behavior characterizes the bulk of that distribution.

Discussion The self-reinforcing cascade process presents
key features that makes it particularly appealing for model-
ing contagions observed in socio-technical systems. It is a
parsimonious model to capture the fact that the strength of
individual beliefs or the quality of products may vary and in-
fluence the ability of an individual to further transmit the cas-
cade. This variability is aligned with real-world phenomena,
where not all individuals or contents are equally influential
in the transmission of ideas or behaviors. With this simple
mechanism, the SRC model can produce a wide range of scal-
ing behaviors for cascade size distributions, whereas classic
percolation is constrained by a unique and universal scaling
exponent obtained only at a precise critical point.

While self-similar or isotropic spreading rules are mathe-
matically convenient, providing straightforward solutions and
modeling frameworks, self-reinforcing cascades can offer ad-
vantages that warrant further study. The flexibility and rich-
ness of their outcome suggest that they are better suited to
capture the complexities of real-world social contagions.

We outlined several important properties of self-reinforcing
cascades and proposed three analytical approaches—exact
probability generating functions, explicit solution of expected
cascades, and the traveling-wave technique—to better under-
stand these processes. This model may provide a useful
framework for researchers and practitioners seeking to under-
stand cascading behavior in complex real-world systems.
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