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Mutualistic interactions are widespread in nature, from plant communities and microbiomes to human or-
ganizations. Along with competition for resources, cooperative interactions shape biodiversity and contribute
to the robustness of complex ecosystems. We present a stochastic neutral theory of cooperator species. Our
model shares with the classic neutral theory of biodiversity the assumption that all species are equivalent, but
crucially differs in requiring cooperation between species for replication. With low migration, our model displays
a bimodal species-abundance distribution, with a high-abundance mode associated with a core of cooperating
species. This core is responsible for maintaining a diverse pool of long-lived species, which are present even at
very small migration rates. We derive analytical expressions of the steady-state species abundance distribution,
as well as scaling laws for diversity, number of species, and residence times. With high migration, our model
recovers the results of classic neutral theory. We briefly discuss implications of our analysis for research on the
microbiome, synthetic biology, and the origin of life.

1. INTRODUCTION

Cooperation is ubiquitous across scales in complex systems.
In ecology, cooperative interactions shape ecosystem struc-
tures [1, 2]. Within biology, mutualism (a reciprocal form of
cooperation) is the engine of evolutionary transitions [3, 4]
and constitutes an essential part of the architecture of biodi-
versity [5, 6]. In microbiomes, cooperative interactions oc-
cur through extensive cross-feeding exchanges associated with
shared diffusive metabolites [7–9], a phenomenon dubbed the
social network of microorganisms [10]. Moreover, cooperative
interactions enhance community stability [11] and facilitate
metabolic functions [12]. Cooperation has also been stud-
ied in human organizations, for example, between companies
engaged in jointly manufacturing a certain product [13].

Ecological theory has traditionally studied either (i) the dy-
namics of large randomly-assembled communities, leading to
general stability-complexity principles [14, 15], or (ii) the sta-
tionary properties of stochastic interactions between neutral
species, inspired by the neutral theory of biodiversity [16, 17].
Stability patterns in mutualistic communities under approach
(i) have been addressed using network models [18–20]. The
results of these models may depend strongly on the assump-
tions made about different species (in terms of size, lifestyle,
or physiology) and their interactions, making it challenging to
derive general theoretical lessons.

In contrast, approach (ii) assumes that all species in the
system are equivalent, shifting the focus to the effects of de-
mographic noise as the main determinant of emerging ecolog-
ical patterns [21–25]. Despite its simplicity, neutral theory
successfully accounts for many relevant statistical patterns, in-
cluding abundance distributions, species-area relations, and
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diversity estimates in space and time [16, 22, 26, 27]. How-
ever, a neutral theory that explicitly involves cooperative inter-
actions is lacking, and little is known about the impact of mutu-
alistic exchanges under a neutral picture. For example, micro-
biomes exhibit marked quantitative patterns that diverge sig-
nificantly from those predicted by classic neutral theory, such
as the presence of a persistent subset of species [12, 28, 29] or
bimodal abundance distributions [30].

In this paper, we present a neutral theory for ecosystems of
cooperators. Our model preserves the neutral hypothesis —
that all species in the system follow the same replication rules,
albeit possibly with frequency-dependent replication proba-
bilities. However, it departs from the classic neutral theory
of biodiversity by requiring cooperation between species for
replication to occur. Our model contains only two indepen-
dent parameters: the total number of individuals in the system
N , typically assumed to be large, and the migration rate µ,
the probability that a new species enters the system at a given
time step. One of the remarkable features of our model is
the emergence of a bimodal species-abundance distribution,
characterized by a “core” of cooperator species that remain at
high abundances for much longer compared to species in the
low-abundance mode. This core leads to the maintenance of
species diversity even at very small migration rates, where, in
the absence of cooperation, the system would rapidly fixate. In
this sense, we show that cooperative interactions can provide
a powerful stabilizing effect.

We solve our model analytically and confirm the results via
extensive numerical simulations. Our analysis is split into
two main parts: first, we focus on the statistical patterns dis-
played by the system’s steady state; afterward, we consider the
stochastic dynamics of abundance trajectories as species enter
and leave the system.

2. MODEL SETUP

Our model considers a well-mixed population of N indi-
viduals, each labeled by a species. The configuration of the
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system at a given time is represented by the abundance vector
n = (n1, n2, . . . ), where ni is the abundance of species i.
We use R(n) to indicate the number of nonzero elements of
vector n, i.e., the number of present species. The configu-
ration evolves stochastically over a sequence of discrete steps
involving either a cooperative replication or a migration event:
1) Replication with probability 1 − µ, Fig. 1 (left): two indi-
viduals are randomly chosen from the population, individual
A from species i and individual B from species j. If A and B
belong to the same species (i = j), nothing happens. Other-
wise, an individual C of species k is randomly selected from
the population and replaced by a new individual of species i.
The abundance vector n is updated as

(ni, nk) → (ni + 1, nk − 1) . (1)

(If i = k, there is no change). Given our well-mixed pop-
ulation, the probability that this event occurs in a given step
is

(1 − µ)ni

N

N − ni

N

nk

N
. (2)

In (2), the factors represent the probability that: replication
takes place, A belongs to species i, B belongs to any species
other than i, and C belongs to species k.
2) Migration with probability µ, Fig. 1 (right): an individual A
of species i is randomly chosen and replaced by an individual
of a new species. The abundance vector n is updated as

(ni, nR(n)+1) → (ni − 1, 1) . (3)

This event happens with probability µ(ni/N) per step. For
notational convenience, if any species becomes extinct (ni →
0), the species are reindexed so that the first R(n) entries of n
are strictly positive.

Total population size is conserved under the above rules
(
∑

i ni = N ), resulting in competition between species for
limited space. Also, because every migration event intro-
duces a new species, migration represents an inflow from an
infinitely-diverse external reservoir.

In the following, we consider the stationary properties of this
stochastic process. We are particularly interested in the species
abundance distribution Pn (the probability that a species has
abundance n in steady state) and the system’s overall diversity.
We measure diversity using the Simpson index [31], defined
for abundance vector n as[32]

λ(n) :=
∑
i=1

(ni

N

)2
. (4)

The Simpson index is the probability that two randomly cho-
sen individuals belong to the same species [31], and it is
commonly used in ecology as an inverse measure of diver-
sity [33]. It is bounded as 1/R(n) ≤ λ(n) ≤ 1, with
the lower bound achieved when the population is evenly dis-
tributed among R(n) species (maximum diversity) and the
upper bound achieved when the population is fixated on a sin-
gle species (minimum diversity). The inverse Simpson index

MigrationReplication

Figure 1. Neutral model of cooperators (species indicated by col-
ors). The population evolves according to two rules: (a) during
replication, individuals of different species (black and red balls) co-
operate. The red individual replicates and replaces a randomly chosen
individual (blue ball). (b) during migration with probability µ, an
individual from a new species (yellow ball) enters from an external
pool and substitutes a randomly-chosen individual (blue ball).

1/λ(n) may be interpreted as the “effective” number of species
in the system.

As shown below, our model has two different steady-state
regimes, depending on the migration rate. When migration is
high, diversity is very large (λ ≈ 0), competition for space
is strong, and the species abundance is well-described by
the Fisher’s Logseries distribution. This regime reduces to
the classic neutral model of Hubbell, which does not involve
cooperative interactions [34]. When migration is low, the
system forms a “core” of high-abundance species, and the
species-abundance distribution acquires a characteristic bi-
modal shape, shown schematically in Fig. 2. In what follows,
we will study the emergence and nature of this core.

3. STEADY-STATE DISTRIBUTION

To derive the steady-state species abundance distribution,
we exploit the neutrality of our model, which allows us to treat
all present species as statistically equivalent. Thus, without
loss of generality, we consider species i = 1 as the represen-
tative species.

The stochastic dynamics of the abundance of the represen-
tative species, written n ≡ n1, follows a birth-death process.
The birth probability (n → n + 1 for n ∈ {1, . . . , N − 1})
during a single time step is

bn = (1 − µ) n

N

(
1 − n

N

)2
, (5)

while the death probability (n → n − 1 for n ∈ {1, . . . , N})
is

dn = (1 − µ) n

N

(
1 − n

N

)[
1 −

(
1 − n

N

)
λ◦(n)

]
+ µ

n

N
.

(6)

See SM1 for a detailed derivation of Eqs. (5)-(6). The quantity
λ◦(n) refers to the Simpson index of the other species (i.e.,
excluding the representative species i = 1):

λ◦(n) :=
∑
i=2

(
ni

N − n

)2
. (7)
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Although different species interact during replication, the
stochastic dynamics of each species depends on all others
only through a single number, λ◦(n). We remark that similar
coupled birth-death processes have been considered in work
on interacting particle systems and nonlinear chemical master
equations [35].

The above birth-death process is absorbing into the extinc-
tion state n = 0, since any particular species will eventually
go extinct. To study the abundance of non-extinct species,
we may make the process ergodic by adding a positive birth
probability b0 > 0 out of the extinction state n = 0. In the
following, we focus on the steady-state distribution restricted
to positive abundances n ∈ {1, 2, . . . }, which does not depend
on the choice of b0.

We now find the steady-state species abundance distri-
bution Pn of the representative species. Since births and
deaths must balance in steady state, Pnbn = Pn+1dn+1 for
n ∈ {1, . . . , N − 1}, we have

Pn ∝
n−1∏
k=1

bk

dk+1
. (8)

This is not yet a closed equation because the death proba-
bility (6) depends on the fluctuating quantity λ◦(n), i.e., the
Simpson index of the non-representative species. However,
when the number of species is large, λ◦(n) ≈ λ(n). Futher-
more, due to self-averaging, λ(n) is tightly peaked around its
expected steady-state value,

λ◦(n) ≈ λ∗ := ⟨λ(n)⟩, (9)

where ⟨·⟩ indicates steady-state expectation over the entire pop-
ulation. Plugging (9) into (6) and using (8) we find that, under
reasonable assumptions, the steady-state abundance distribu-
tion is approximated as (see SM2 for details):

Pn ∝ (1 − µ)n

n
e−(n−Nλ∗)2/2N . (10)

(10) is one of our main results, showing how the abundance
distribution depends on the population size N , migration rate
µ, and the steady-state Simpson index λ∗. In reality, λ∗ itself
depends on N and µ — the only two parameters that describe
the system — although finding the explicit expression of λ∗

in terms of N and µ is not trivial (we will do so in the next
section). For now, we note that the Simpson index λ∗ and the
migration probability µ move in opposite directions. When µ
decreases to 0 (migration vanishes), λ∗ increases to 1 (fixation
is reached). Conversely, when µ increases to 1 (only migration
occurs), λ∗ decreases to its minimum value of 1/N (maximum
diversity).

Observe that (10) expresses Pn as the product of two distri-
butions, as illustrated in Fig. 2. The first is the Logseries distri-
bution, (1 − µ)n

/n, the abundance distribution of Hubbell’s
neutral model, which does not have cooperative interac-
tions [36]. This contribution represents migration-driven
competition for space, and it dominates the system at high
migration rates. The second is a Gaussian distribution,
e−(n−Nλ∗)2/2N , with mean abundance Nλ∗ and standard de-
viation

√
N . This contribution represents a high-abundance

Species abundance n

Pr
ob

ab
ilit
y

Pn ∝ [(1 − µ)n/n]e−(n−Nλ∗)2/2N

1/λ∗ Nλ∗−1/λ∗

Steady-state distribution

Logseries term

Gaussian term

1
Figure 2. Schematic illustration of the species abundance distri-
bution Pn in steady state. This distribution depends on population
size N , migration rate µ, and the steady-state Simpson index λ∗.
In Eq. (10), it is approximated as the product of Logseries distribu-
tion, arising from competition for space, and a Gaussian distribution,
arising from cooperative interactions. At low migration, the com-
bined distribution exhibits a bimodal shape, with local maxima at
n = 1, n = Nλ∗ − 1/λ∗ and a local minimum at n = 1/λ∗, see
Eq. (15). Note that the two terms combine multiplicatively, not ad-
ditively, so their areas do not add up to the area of the combined
distribution.

mode that emerges due to cooperative interactions. We term
this contribution the cooperator core.

The emergence of the cooperator core is a highly nontrivial
phenomenon, and it implies various other interesting aspects
of this model (maintenance of high diversity at low migration,
long residence times, etc.). In simple terms, the cooperator
core arises due to the frequency-dependent (i.e., abundance-
dependent) replication rates. Individuals from low-abundance
species are unlikely to be randomly paired with an individ-
ual from the same species, thus they have a high per-capita
probability of replicating. Conversely, individuals from high-
abundance species are more likely to be randomly paired with
an individual from the same species, thus they have a lower per-
capita replication probability. As a result, species feel an ef-
fective force towards an intermediate abundance at n ≈ Nλ∗,
leading to a bimodal abundance distribution as in Fig. 2.

Importantly, the cooperative core only emerges at low mi-
gration rates. At high migration, when µ is large and λ∗ is
low, most species exhibit low abundances near n ≈ 1. In this
regime, there is very little variation in species abundances, so
the frequency dependence of the replication rates is negligible,
and our system approaches Hubbell’s neutral model. We also
remark that bimodality requires that the mean of the Gaus-
sian contribution (Nλ∗) be many standard deviations (

√
N )

away from the origin or, in other words, that λ∗ ≫ 1/
√

N .
Clearly, this cannot occur at very high migration probability,
since λ∗ decreases to its minimum value of 1/N as µ increases
to 1. In the next section, we will derive the explicit migration
probability µ that allows for bimodality.
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Figure 3. Scaling of Simpson index and species abundance distributions. (a) Scaling of Simpson index versus migration probability µ in a
system with N = 105 individuals. We compare mean and standard deviations from simulations of the full system (100 runs; black), numerical
inversion of Eq. (12) (red), approximations in low migration (13) (blue) and high migration (18) (orange) regimes. Solid vertical line indicates
µB (16) where bimodality is lost; dotted vertical line indicates µL (17) where system transitions to Logseries regime. (b)-(d) Empirical
histograms from simulations (across 1000 runs) versus predicted steady-state distributions (10) for three migration probabilities. As in Fig. 2,
shaded areas represent Logseries (orange) and Gaussian (blue) contributions. (b) Low-migration regime exhibits a bimodal distribution with
a cooperator core. (c) Bimodality disappears once migration probability increases beyond µB (16). (d) At higher migration probabilities,
including the Logseries transition point where µL = λ∗ (17), the distribution approaches the Logseries, as predicted by Hubbell’s neutral
theory.

In this section, we derive several important properties of the
steady-state species abundance distribution and the cooperator
core. In particular, we derive expressions of the steady-state
Simpson index, the characteristic migration probability µB

below which the formation of the cooperator core takes place,
and the expected number of species in steady state. Most of
our analyses will consider separately the case of low migration
(when the core is present) and high migration. Fig. 3 illustrates
our results, including the scaling of λ∗ with the migration
probability µ and a plot of three steady-state distributions.

A. Steady-state Simpson index

In this section, we find the Simpson index as a function of
µ and N . We begin by writing λ∗ in terms of the species
abundance distribution Pn as

λ∗ ≈ 1
N

∑N
n=1 Pnn2∑N
n=1 Pnn

. (11)

This expression, derived in SM3, implies that the expected
Simpson index is proportional to the ratio of the second and
first moments of Pn. Since Pn itself depends on λ∗, we must
solve (11) using self-consistency. We do this separately in
the low-migration and the high-migration regimes. We also
consider several important transition points.

1. Low migration

As shown in the SM3, in the low-migration regime, we may
approximate the two sums in (11) by integrals. This leads to

the equation

1
µ

=
√

πN

2 erfcx
(√

N

2 (µ − λ∗)
)

, (12)

where erfcx(z) := ez2erfc(z) = ez2√4/π
∫∞

z
e−t2dt is the

scaled complementary error function [37]. Although the func-
tion erfcx(z) does not have a closed-form inverse, it has an effi-
cient numerical implementation [38] that allows us to quickly
compute λ∗ using numerical root-finding algorithms. The
scaling predicted by solving this equation for fixed N and
varying µ is shown as a red curve in Fig. 3(a).

A closed-form approximation is possible for sufficiently
small µ. For µ − λ∗ ≪ 0, we may use erfcx(z) ≈ 2ez2

for z → −∞. Plugging into (12) and solving gives

λ∗ ≈ µ +
√

− ln (2πNµ2)
N

≈
√

− ln (2πNµ2)
N

. (13)

Note that this approximation is only defined for µ ≤ 1/
√

2πN ,
so that the argument of the logarithm is nonnegative.

(13) implies that, in the low-migration regime, the Simpson
index scales as ∼ 1/

√
N in population size and as ∼

√
− ln µ

in the migration probability. The scaling predicted by (13) is
shown as a blue curve in Fig. 3(a). The predicted abundance
distribution is compared against simulations in Fig. 3(b).

Interestingly, an expression similar to Eq. (12) has previ-
ously appeared in a different ecological model, which con-
siders a population embedded in a fluctuating spatiotemporal
fitness landscape [39, Appendix C].

2. Bimodality point

We now find the migration probability below which the
species abundance distribution becomes bimodal. To do so,
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we consider Pn (10) as a differentiable function of n and find
the critical abundances n̂ where its derivative vanishes. With
some algebra, these are found to be

n̂ = N

2

[
λ∗ + ln(1 − µ) ±

√
(λ∗ + ln(1 − µ))2 − 4/N

]
.

(14)

We simplify by expanding around large N and small µ to
express the two critical abundances as

n̂min ≈ 1
λ∗ and n̂max ≈ Nλ∗ − 1

λ∗ , (15)

shown as the local minimum and local maximum in Fig. 2.
These two points become distinct when

λ∗ ≥ 2√
N

and µ ≤ µB := e−2
√

2πN
, (16)

where µB is found by plugging λ∗ = 2/
√

N into (13) and
solving. Thus, µB is the migration probability below which
we see the formation of a bimodal abundance distribution.

3. Logseries onset

Another interesting value for the migration probability sepa-
rates the cooperation- from the migration-dominated regimes.
As we increase µ towards 1, the abundance distribution be-
comes dominated by the Logseries term, recovering the distri-
bution predicted by Hubbell’s neutral theory of biodiversity.

To identify this transition point, we consider the migration
rate at which µ becomes larger than λ∗. Plugging µ − λ∗ = 0
into (12) and using erfcx(0) = 1 specifies this point as

µL :=
√

2
Nπ

. (17)

4. High migration

As mentioned above, when µ is large, the abundance dis-
tribution approaches that of Hubbell’s neutral model. To
estimate the steady-state Simpson index λ∗ in this regime,
observe that the term (1 − µ)n in (10) imposes an expo-
nential cutoff on abundances n > 1/µ. Considering the
regime µ > µL from (17), we may restrict our attention
to n < 1/µ <

√
Nπ/2 and λ∗ < µ. For these values,

the Gaussian term can be approximated as a constant factor,
e−(n−Nλ∗)2/2N ≈ e−Nλ∗2/2. We re-evaluate λ∗ (11) using
the Logseries distribution Pn ∝ (1 − µ)n/n and large N ,
giving

λ∗ ≈ 1
Nµ

. (18)

Thus, with high migration, the Simpson index scales as
λ∗ ∼ N−1 in population size and λ∗ ∼ µ−1 in migration

10−6 10−5 10−4 10−3 10−2 10−1

Migration probability µ

100

101

102

103

104

N
um

be
ro

fs
pe

ci
es

µB µL

R∗core + R∗out

R∗core

R∗out

R∗Logseries

Simulation

Figure 4. Scaling of number of species R∗ versus migration proba-
bility µ (N = 105). We compare mean and standard deviations from
simulations of the full system (100 runs; black); approximations in
the low-migration regime of the number of total species (red), core
species (24) (blue), and non-core species (25) (orange); approxima-
tions in the high-migration regime of the total number of species
(purple). Solid vertical line indicates µB (16) where bimodality is
lost; dotted vertical line indicates µL (17) where system transitions
to Logseries regime.

probability. This scaling is shown with the orange curve in
Fig. 3(a).

In fact, as shown in SM3 B, the high-migration expres-
sion (18) can be derived from (12). This is surprising because
(12) was derived under the assumption of µ ≪ λ. Empiri-
cally, we found that the value of λ∗ given by the numerical
solution to (12) provides an excellent match to λ∗ calculated
from simulations, even for large migration probabilities (see
Fig. 3(a), red curve).

B. Steady-state number of species

As another important measure of diversity, we consider the
expected number of different species in steady state:

R∗ := ⟨R(n)⟩ . (19)

The expected steady-state abundance of the representative
species obeys

∑
n Pnn = N/R∗, therefore the number of

species can be found as

R∗ = N∑
n Pnn

. (20)

With high migration, R∗ can be estimated by evaluating
the denominator of (20). We may ignore the Gaussian con-
tribution in (10), since the most relevant contribution to (10)
is the Logseries distribution. For large N , the normalization
constant of the Logseries term is − ln µ, thus we compute∑

n

Pnn ≈ 1
− ln µ

∑
n

(1 − µ)n ≈ 1 − µ

−µ ln µ
. (21)
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Substituting back into (20) gives

R∗ ≈ R∗
Logseries := − µN

1 − µ
ln µ, (22)

shown in purple in Fig. 4. As expected, in the limit of µ → 1,
R∗

Logseries → N . This indicates that if only migration occurs
(with no replication taking place), then the system acquires the
maximum number of species with each of the N individuals
belonging to a different species.

In the low-migration regime, below the point of bimodal-
ity (16), there are two relevant species counts. The first is
R∗

core, the number of high-abundance species that belong to
the cooperator core. We define these species as those with
abundances larger than the local minimum, n > 1/λ∗, see
Fig. 2. The second is R∗

out, the number of low-abundance
species that remain outside of the cooperator core and have
abundance n ≤ 1/λ∗. The total number of species is given by

R∗ ≈ R∗
core + R∗

out . (23)

Let us introduce Ncore and Nout as the total number of
individuals inside and outside the core, respectively, where
Ncore + Nout = N . We also denote by ⟨n⟩core and ⟨n⟩out
the expected abundances of a species conditioned to be inside
and outside the core, respectively. To estimate R∗

core, we use
the relation R∗

core = Ncore/⟨n⟩core. As shown in SM4, to a
first approximation we may take Ncore ≈ N (i.e., in the low-
migration regime, most individuals belong to the core). Then,
using ⟨n⟩core ≈ n̂max from (15), we obtain

R∗
core ≈ 1

λ∗ − (Nλ∗)−1 , (24)

shown in blue in Fig. 4. Similarly, we estimate R∗
out by using

R∗
out = Nout/⟨n⟩out. We may estimate this ratio as (see SM4):

R∗
out ≈ −Nµ ln λ∗, (25)

shown in orange in Fig. 4. The red curve shows the total
number of species R∗ ≈ R∗

core + R∗
out. Observe that at low

migration µ, almost all species belong to the core.

4. DYNAMICAL PROPERTIES

We now study the stochastic dynamics of our model by
considering trajectories of species as they enter and leave the
population. We focus mainly on the low-migration regime,
where cooperation plays an important role.

The dynamics of any given species is described by a tra-
jectory of nonnegative abundance values n(t), starting from
n(t0) = 1 when that species enters the population at time
t = t0 and ending on n(tf ) = 0 when that species goes extinct
at time t = tf . We characterize each trajectory by two statis-
tics: the maximum abundance reached, maxt:t0≤t≤tf

n(t),
and the residence time before extinction, tf − t0.

For concreteness, we illustrate two typical abundance tra-
jectories in Fig. 5. We see that the blue trajectory resides in
the system for a very long time and reaches a high maximum

Figure 5. Abundance trajectories from entry to extinction, illus-
trating that species that enter the dynamical core reside for much
longer times. We sample two abundance trajectories from the sta-
tionary process (N = 105, µ = 10−5), one for a species that enters
the dynamical core and one for a species that does not. Dashed gray
line indicates the abundance position of the local minimum discussed
in Sec. 4 4 A, stars indicate maximum abundances reached.

abundance value, while the orange trajectory does not reach a
high abundance and quickly goes extinct.

In fact, simulations show that all trajectories cluster into two
well-defined classes: one with long residence times and high
abundances, which we term the dynamical core, and one with
short residence times and low abundances. To illustrate this,
Fig. 6, shows a scatter plot of the maximum abundances and
residence times of 106 randomly sampled species. Species
that fall into the dynamical core (top right cluster) tend to have
residence times orders of magnitude larger than those that
do not enter the dynamical core. Moreover, the distribution
of maximum abundances has a clear bimodal shape (inset),
allowing us to define a quantitative threshold for classifying
species as belonging to the dynamical core.

In the following, we derive the distribution of maximum
abundances, shown in red in Fig. 6. We then use this distribu-
tion to define the abundance threshold for the dynamical core.
We also derive the mean residence times of species that belong
and do not belong to the dynamical core.

A. Maximum abundances

Let Qm indicate the probability that a typical species tra-
jectory reaches a maximum abundance m. To find the form of
Qn, it will be helpful to introduce the quantity un(ℓ) to rep-
resent the probability that a species with abundance n reaches
abundance ℓ or higher before going extinct. Qm and un(ℓ) are
related by

Qm = u1(m) − u1(m + 1) . (26)
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Figure 6. Species residence times and maximum abundances
for 106 species sampled from stationary dynamics (N = 105,
µ = 10−5). The species fall into two clusters: one with long res-
idence times and high maximum abundances, the dynamical core,
and one with short residence times and low maximum abundances.
The residence times and maximum abundances of the two trajectories
from Fig. 5 are indicated with star symbols. Horizontal lines indi-
cate predicted (solid) and empirical (dashed) mean residence times
of species in the dynamical core (blue) and outside of the dynamical
core (orange). Inset: the empirical histogram (black) and prediction
(red, from Eqs. (26) and (28)) of maximum abundances distribution
Qm. The distribution has a bimodal shape, with the dividing point
located near abundance Nλ∗ (dashed vertical line in main plot and
inset).

In other words, Qm is equal to the probability that a species
that enters the system at abundance n = 1 eventually reaches
abundance m but not abundance m + 1.

Importantly, the birth-death process defined by (5)-(6),
un(ℓ) obeys the following recurrence:

un(ℓ) = bnun+1(ℓ) + dnun−1(ℓ) + (1 − bn − dn)un(ℓ).
(27)

The boundary conditions are u0(ℓ) = 0 (extinct species never
come back into the system) and uℓ(ℓ) = 1. A general solution
to the recurrence (27) is derived in SM5. For u1(ℓ), the
quantity that enters into (26), this solution is approximated as

u1(ℓ) ≈
[
eℓ2/2N−(ℓ−1)λ∗

(√
2ND(xℓ) + 1

2

)
−

√
2ND(x1) + 1

2

]−1
,

(28)
where we introduce the rescaled abundances xℓ := (ℓ −
Nλ∗)/

√
2N and the Dawson function D(z) := e−z2 ∫ z

0 et2
dt.

Plugging this result into (26) gives the probability Qm that
a species reaches maximum abundance m. The predicted and
empirical distribution of maximum abundances is shown in
Fig. 6 (inset). In addition, the distribution Qm is bimodal, with
a local minimum located at approximately Nλ∗ (see SM5).
This bimodality allows us to classify species into two sets:
those whose abundances reach Nλ∗ (or higher) and those
that do not. We refer to the former as the dynamical core. For

example, Fig. 5 shows a blue trajectory that reaches abundance
values larger than Nλ∗ (dashed line) and thus belongs to the
dynamical core, while the orange trajectory does not reach this
threshold and thus remains outside the dynamical core.

Finally, we use the term infiltration probability β to refer
to the probability that a new species will enter the dynamical
core. Interestingly, as we show in SM5, this probability is
approximately equal to the Simpson index,

β ≈ λ∗, (29)

suggesting that new species are less likely to enter the dynam-
ical core in more diverse populations.

B. Residence times

We now derive the mean residence times by separately con-
sidering species that enter the dynamical core (τcore), that
do not enter the dynamical core (τout), and all species (τ ).
For simplicity, we will also use our calculations of the ex-
pected number of all present species R∗ (22)-(23), core species
R∗

core (24), and non-core species R∗
out (25).

Here, there is a subtle point to be raised. Our calculations of
R∗

core and R∗
out were based on a “static” definition of the core,

as the set of species that have abundance greater or smaller
than 1/λ∗ at a single point in time. This is different from the
“dynamic” definition of the core considered in this section,
as the set of species whose trajectory reaches an abundance
greater than Nλ∗ at any point in time. In SM6, we show that
mean residence times can be alternatively derived using a mean
first-passage time (MFPT) calculation that does not explicitly
invoke Eqs. (22)-(25). This alternative MFPT-based analysis,
which we do not include here for simplicity, leads to the same
quantitative results. This suggests that the two definitions of
the core are essentially equivalent when restricted to the set of
species present in steady state.

We now consider the low-migration regime, and derive the
mean residence times of species that enter the core, τcore,
and those that do not enter the core, τout. The rate at which
new species migrate into the system and eventually enter the
dynamical core is given by µβ. On the other hand, the rate
at which core species go extinct is R∗

core/τcore, where R∗
core is

the expected number of species in the core at any one time.
Since these rates must balance in steady state, we have µβ =
R∗

core/τcore. Using Eqs. (24) and (29), we arrive at

τcore ≈ 1
µλ∗ [λ∗ − (Nλ∗)−1] . (30)

Similarly, for species that never reach the core, entry rates must
be balanced against extinction rates as µ(1 − β) = R∗

out/τout.
Using Eqs. (25) and (29), this gives

τout ≈ − N

1 − λ∗ ln λ∗ (31)

We estimate the overall mean residence time by combining
these results with the infiltration probability as

τ ≈ βτcore + (1 − β)τout. (32)
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Figure 7. Scaling of mean residence times with migration proba-
bility µ (N = 105). Simulations (dots) are compared to predictions
(solid curves) for: core species, τcore (30); non-core species, τout (31);
and all species, τ (32)-(33) for low and high values of µ. Solid ver-
tical line indicates µB (16) where bimodality is lost; dotted vertical
line indicates µL (17) where system transitions to Logseries regime.

These predictions are compared against data in Fig. 6 (solid
and dotted horizontal lines).

The scaling of mean residence times against migration prob-
ability µ is shown in Fig. 7. For low migration probabilities,
core species live orders of magnitude longer than species that
do not enter the core.

Our analysis above has mostly focused on the low-migration
regime, in which the distinction between core and non-core
species is meaningful. In the high-migration regime, we con-
sider the mean residence time of all species τ . In steady state,
entry and exit rates of all species into the system must be
balanced, µ = R∗/τ . Using our estimate of R∗(22) gives

τ ≈ −N

1 − µ
ln µ. (33)

5. DISCUSSION

In this paper, we proposed a neutral model for coopera-
tive ecosystems. As in the classic neutral theory of biodiver-
sity [34], the strength of our approach lies in its minimalist
design. Our analysis was divided into two parts, focusing on
steady-state and dynamical properties, respectively.

In the first part, we derived an expression for the steady-
state Simpson diversity index, which allowed us to classify
the system into different regimes depending on the migra-
tion probability. At high migration rates, species abundances
are very low and frequency-dependent effects become negli-
gible. In this regime, we recover the predictions of Hubbell’s
neutral theory of biodiversity, including a Logseries species
abundance distribution in steady state. In contrast, at low
migration rates, our model exhibits frequency-dependent re-
production rates that result from cooperative interactions. In

this regime, our model predicts the emergence of a bimodal
abundance distribution (see Fig. 2), which cannot be derived
from the classic neutral theory.

Bimodality allows us to define a core of cooperators, defined
as the set of species that belong to the high-abundance com-
ponent. We derive scaling laws for the core, showing that the
effective number of species scales roughly as N1/2 with pop-
ulation size and (− ln µ)−1/2 with migration rate. Due to the
presence of the core, the system preserves diversity (maintains
low λ∗) even at exponentially small migration rates. Hence,
cooperative interactions can dramatically increase ecosystem
stability.

Several studies have reported bimodal abundance distribu-
tions in gut microbiomes, see for example Refs. [30, Fig. 1],
[40, Fig. 1], and [41, Fig. 2]. Previous research has attributed
bimodality to emergent niche partitioning [42], intrinsic bista-
bility [43], or a combination of multiple processes [41]. How-
ever, our theory suggests a neutral mechanism that generates
bimodality under very minimal assumptions, offering a novel
explanation of this phenomenon.

In the second part of our paper, we studied the stochastic
dynamics of species as they enter and leave the system. In
the low-migration regime, the distribution of maximum abun-
dances reached again exhibits a bimodal shape, allowing us
to classify species into two types. This classification captures
the dynamical signature of the cooperator core, as discussed
in the steady-state analysis in the first part of this paper. We
showed that species that enter the core achieve much higher
abundances and longer residence times than species that do
not enter the core.

Experimental validation of our predictions may be plausible
using engineered microbial strains. For instance, by creating
a synthetic consortium in which each species lacks the ability
to synthesize one essential molecule, but is able to acquire it
through cross-feeding with any other species. Such syntrophic
communities have been successfully engineered, ranging from
two-species [44, 45] to many [46].

Further extensions of the theory should consider the het-
erogeneity of interactions, complex network topologies, and
spatial effects. Another interesting direction would be to build
a connection to the theory of autocatalytic chemical reaction
networks, as studied in research on the origin of life. In par-
ticular, our model can be interpreted as a stochastic “hyper-
cycle” [47, 48], i.e., a network of cross-catalytic polymers
(or other chemical species) that replicate cooperatively. In
this context, our results suggest a possible mechanism for the
spontaneous emergence of stable and long-lived autocatalytic
cores in chemical systems.

ACKNOWLEDGMENTS

JP and RS thank the hospitality of the Santa Fe Institute,
where this work started. JP also thanks the hospitality of the
Simon Levin Lab and its members, where some of this work
was developed. RS acknowledges support from the AGAUR
2021 SGR 0075 grant and the Santa Fe Institute. This project



9

was partly supported by Grant No. 62417 from the John Tem-
pleton Foundation. The opinions expressed in this publication
are those of the authors and do not necessarily reflect the views
of the John Templeton Foundation. AK was partly supported

by the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie Grant
Agreement No. 101068029. Finally, SR thanks NSF grant
DMR-1910736 for financial support.

[1] J. L. Bronstein, Mutualism. Oxford University Press, 2015.
[2] E. G. Leigh Jr, “The evolution of mutualism,” Journal of evolu-

tionary biology, vol. 23, no. 12, pp. 2507–2528, 2010.
[3] F. Lutzoni and M. Pagel, “Accelerated evolution as a conse-

quence of transitions to mutualism,” Proceedings of the National
Academy of Sciences, vol. 94, no. 21, pp. 11422–11427, 1997.

[4] P. Schuster, “How does complexity arise in evolution?,” Evolu-
tion of Complex Systems, vol. 22, 2001.

[5] J. Bascompte and P. Jordano, “Plant-animal mutualistic net-
works: the architecture of biodiversity,” Annu. Rev. Ecol. Evol.
Syst., vol. 38, no. 1, pp. 567–593, 2007.

[6] S. Suweis, F. Simini, J. R. Banavar, and A. Maritan, “Emergence
of structural and dynamical properties of ecological mutualistic
networks,” Nature, vol. 500, no. 7463, pp. 449–452, 2013.

[7] M. J. Müller, B. I. Neugeboren, D. R. Nelson, and A. W. Mur-
ray, “Genetic drift opposes mutualism during spatial population
expansion,” Proceedings of the National Academy of Sciences,
vol. 111, no. 3, pp. 1037–1042, 2014.

[8] S. Germerodt, K. Bohl, A. Lück, S. Pande, A. Schröter,
C. Kaleta, S. Schuster, and C. Kost, “Pervasive selection for
cooperative cross-feeding in bacterial communities,” PLoS com-
putational biology, vol. 12, no. 6, p. e1004986, 2016.

[9] E. J. Culp and A. L. Goodman, “Cross-feeding in the gut micro-
biome: ecology and mechanisms,” Cell host & microbe, vol. 31,
no. 4, pp. 485–499, 2023.

[10] K. Zengler and L. S. Zaramela, “The social network of microor-
ganisms—how auxotrophies shape complex communities,” Na-
ture Reviews Microbiology, vol. 16, no. 6, pp. 383–390, 2018.

[11] K. Z. Coyte, J. Schluter, and K. R. Foster, “The ecology of
the microbiome: networks, competition, and stability,” Science,
vol. 350, no. 6261, pp. 663–666, 2015.

[12] B. E. Morris, R. Henneberger, H. Huber, and C. Moissl-
Eichinger, “Microbial syntrophy: interaction for the common
good,” FEMS microbiology reviews, vol. 37, no. 3, pp. 384–
406, 2013.

[13] S. Saavedra, F. Reed-Tsochas, and B. Uzzi, “A simple model
of bipartite cooperation for ecological and organizational net-
works,” Nature, vol. 457, no. 7228, pp. 463–466, 2009.

[14] R. M. May, Stability and complexity in model ecosystems.
Princeton university press, 2019.

[15] S. Allesina and S. Tang, “Stability criteria for complex ecosys-
tems,” Nature, vol. 483, no. 7388, pp. 205–208, 2012.

[16] S. P. Hubbell, The unified neutral theory of biodiversity and
biogeography (MPB-32). Princeton University Press, 2011.

[17] R. V. Solé, D. Alonso, and A. McKane, “Self–organized in-
stability in complex ecosystems,” Philosophical Transactions
of the Royal Society of London. Series B: Biological Sciences,
vol. 357, no. 1421, pp. 667–681, 2002.

[18] U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera,
B. Luque, and J. Bascompte, “The architecture of mutualis-
tic networks minimizes competition and increases biodiversity,”
Nature, vol. 458, no. 7241, pp. 1018–1020, 2009.

[19] F. S. Valdovinos, “Mutualistic networks: moving closer to a
predictive theory,” Ecology letters, vol. 22, no. 9, pp. 1517–
1534, 2019.

[20] P. R. Guimaraes Jr, “The structure of ecological networks across
levels of organization,” Annual Review of Ecology, Evolution,
and Systematics, vol. 51, no. 1, pp. 433–460, 2020.

[21] I. Volkov, J. R. Banavar, S. P. Hubbell, and A. Maritan, “Neu-
tral theory and relative species abundance in ecology,” Nature,
vol. 424, no. 6952, pp. 1035–1037, 2003.

[22] J. Harte, Maximum entropy and ecology: a theory of abundance,
distribution, and energetics. OUP Oxford, 2011.

[23] S. Azaele, S. Suweis, J. Grilli, I. Volkov, J. R. Banavar, and
A. Maritan, “Statistical mechanics of ecological systems: Neu-
tral theory and beyond,” Reviews of Modern Physics, vol. 88,
no. 3, p. 035003, 2016.

[24] J. Grilli, “Macroecological laws describe variation and diversity
in microbial communities,” Nature communications, vol. 11,
no. 1, p. 4743, 2020.

[25] J. P. O’Dwyer and J. L. Green, “Field theory for biogeography: a
spatially explicit model for predicting patterns of biodiversity,”
Ecology letters, vol. 13, no. 1, pp. 87–95, 2010.

[26] R. Muneepeerakul, E. Bertuzzo, H. J. Lynch, W. F. Fagan, A. Ri-
naldo, and I. Rodriguez-Iturbe, “Neutral metacommunity mod-
els predict fish diversity patterns in mississippi–missouri basin,”
Nature, vol. 453, no. 7192, pp. 220–222, 2008.

[27] J. Rosindell, S. P. Hubbell, and R. S. Etienne, “The unified
neutral theory of biodiversity and biogeography at age ten,”
Trends in ecology & evolution, vol. 26, no. 7, pp. 340–348,
2011.

[28] A. T. Neu, E. E. Allen, and K. Roy, “Defining and quantifying the
core microbiome: challenges and prospects,” Proceedings of the
National Academy of Sciences, vol. 118, no. 51, p. e2104429118,
2021.

[29] G. Wu, T. Xu, N. Zhao, Y. Y. Lam, X. Ding, D. Wei, J. Fan,
Y. Shi, X. Li, M. Li, et al., “A core microbiome signature as
an indicator of health,” Cell, vol. 187, no. 23, pp. 6550–6565,
2024.

[30] L. Lahti, J. Salojärvi, A. Salonen, M. Scheffer, and W. M.
De Vos, “Tipping elements in the human intestinal ecosystem,”
Nature communications, vol. 5, no. 1, p. 4344, 2014.

[31] E. Simpson, “Measurement of diversity,” Nature, vol. 163, 1949.
[32] The Simpson index λ(n) is sometimes alternatively defined as

ΣS
i=1

ni(ni−1)
N(N−1) , i.e., as the probability of drawing two individuals

of the same species when sampling without replacement. The
definition (4) corresponds to the same probability when sam-
pling with replacement. The two definitions differ by a small
term of order 1/(N − 1), which is irrelevant for our analysis.

[33] A. E. Magurran, Measuring biological diversity. John Wiley &
Sons, 2003.

[34] S. P. Hubbell, “A unified theory of biogeography and relative
species abundance and its application to tropical rain forests and
coral reefs,” Coral reefs, vol. 16, pp. S9–S21, 1997.

[35] M. Malek-Mansour and G. Nicolis, “A master equation descrip-
tion of local fluctuations,” Journal of Statistical Physics, vol. 13,
pp. 197–217, Sept. 1975.

[36] A. McKane, D. Alonso, and R. V. Solé, “Mean-field stochas-
tic theory for species-rich assembled communities,” Physical
Review E, vol. 62, no. 6, p. 8466, 2000.



10

[37] M. R. Zaghloul, “Efficient multiple-precision computation of the
scaled complementary error function and the dawson integral,”
Numerical Algorithms, vol. 95, no. 3, pp. 1291–1308, 2024.

[38] S. G. Johnson, “Faddeeva W function implementation,” URL
http://ab-initio. mit. edu/Faddeeva, 2012.

[39] B. Ottino-Löffler and M. Kardar, “Population extinction on a
random fitness seascape,” Phys. Rev. E, vol. 102, p. 052106,
Nov 2020.

[40] M. Loftus, S. A.-D. Hassouneh, and S. Yooseph, “Bacterial
associations in the healthy human gut microbiome across popu-
lations,” Scientific reports, vol. 11, no. 1, p. 2828, 2021.

[41] P. I. Costea, F. Hildebrand, M. Arumugam, F. Bäckhed, M. J.
Blaser, F. D. Bushman, W. M. De Vos, S. D. Ehrlich, C. M.
Fraser, M. Hattori, et al., “Enterotypes in the landscape of
gut microbial community composition,” Nature microbiology,
vol. 3, no. 1, pp. 8–16, 2018.

[42] R. Vergnon, E. H. Van Nes, and M. Scheffer, “Emergent neutral-
ity leads to multimodal species abundance distributions,” Nature
communications, vol. 3, no. 1, p. 663, 2012.

[43] D. Gonze, L. Lahti, J. Raes, and K. Faust, “Multi-stability and
the origin of microbial community types,” The ISME journal,
vol. 11, no. 10, pp. 2159–2166, 2017.

[44] W. Shou, S. Ram, and J. M. Vilar, “Synthetic cooperation
in engineered yeast populations,” Proceedings of the National
Academy of Sciences, vol. 104, no. 6, pp. 1877–1882, 2007.

[45] D. R. Amor, R. Montañez, S. Duran-Nebreda, and R. Solé,
“Spatial dynamics of synthetic microbial mutualists and their
parasites,” PLOS Computational Biology, vol. 13, no. 8,
p. e1005689, 2017.

[46] M. T. Mee, J. J. Collins, G. M. Church, and H. H. Wang, “Syn-
trophic exchange in synthetic microbial communities,” Proceed-
ings of the National Academy of Sciences, vol. 111, no. 20,
pp. E2149–E2156, 2014.

[47] M. Eigen and P. Schuster, The hypercycle: a principle of natural
self-organization. Springer Science & Business Media, 2012.

[48] E. Szathmáry and L. Demeter, “Group selection of early repli-
cators and the origin of life,” Journal of theoretical biology,
vol. 128, no. 4, pp. 463–486, 1987.

[49] P. S. Laplace, Traité de mecanique céleste, Tome 4. 1805.
[50] K. B. Oldham, J. Myland, and J. Spanier, An atlas of functions:

with equator, the atlas function calculator. Springer, 2009.



11

Supplemental Material:
Neutral theory of cooperators

Jordi Piñero, Artemy Kolchinsky, Sidney Redner and Ricard Solé

CONTENTS

1. Neutral model of cooperators 12
A. Setup and notation 12
B. Birth-death process describing the representative species 12

2. Steady-state species abundance distribution 14

3. Steady-state Simpson index 17
A. Low migration Simpson index 17
B. High migration Simpson index derived from (12) 18

4. Steady-state number of species 18

5. Maximum abundances and the infiltration probability 20
A. Maximum abundances distribution 20
B. Bimodality of Qm 21
C. Infiltration probability 22

6. Residence times 23



12

1. NEUTRAL MODEL OF COOPERATORS

A. Setup and notation

Our system consists of a well-mixed population of N individuals, each belonging to a certain species. Throughout,

we use i, j, . . . as species indices and use ni ∈ {0, 1 . . . , N} to denote the number of individuals belonging to species

i. We use bold symbols to denote population vectors, such as n = (n1, n2, . . .) for the total number of individuals

for each species. Recalling the notation used in the main text, we denote by R(n) the number of nonzero elements of

the vector n, that is, the number of species present in the system. Moreover, if any species becomes extinct (ni → 0),

the species are re-indexed so that the first R(n) entries of n are always the strictly positive ones.

Due to our hypothesis of neutrality, all species evolve according to the same rules. Without loss of generality,

we take i = 1 to be the representative species, which, by neutrality, has the same statistical properties as any other

species. It will be useful to define

n◦ := (n2, n3, . . .) (S1.1)

as the vector of individual counts for the non-representative species. In order to alleviate notation, we interchangeably

use n1 ↔ n whenever appropriate.

A central concept of our analysis is the Simpson index, defined as

λ(n) =
∑

i n2
i

(
∑

i ni)2 =
∑

i

(
ni

N

)2
. (S1.2)

where we used the fact that
∑

i ni = N . As shown below, we also use the Simpson index for the non-representative

species,

λ(n◦) =
∑

i>1 n2
i

(
∑

i>1 ni)2 =
∑
i>1

(
ni

N − n1

)2
(S1.3)

Finally, we denote the steady-state expectation of the Simpson index of all species as λ∗, and the Simpson index of

the nonrepresentative species as λ∗
◦.

B. Birth-death process describing the representative species

In this subsection, we derive a birth-death process (one-dimensional random walk) that describes the stochastic

dynamics of n, the abundance of the representative species.
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Box 1.1: A

Box I.1: Birth probability. In a single timestep, the probability that the representative species undergoes the

transition n → n + 1 is

(1 − µ)
(

n

N

)(
N − n

N

)(
N − n

N

)
. (S1.4)

Here, 1 − µ is the probability that the timestep involves a replication (rather than migration), n/N is the

probability that an individual from the representative species is chosen to replicate, (N − n)/N is the

probability that this individual is paired with an individual from a different species, and the final (N − n)/N

is the probability that the offspring replaces an individual of a different species. Since every migration event

introduces a new species into the system, there is no contribution to the birth probability of the representative

species due to migration.

Following from rules 1) and 2) in the main text, we derive the birth and death transition probabilities (see Boxes 1.1

and 1.2 for a full derivation) as

bn = (1 − µ)
(

n

N

)(
1 − n

N

)2
(S1.5)

dn|n◦ = (1 − µ)
(

n

N

)(
1 − n

N

)[
1 −

(
1 − n

N

)
λ(n◦)

]
+ µ

(
n

N

)
(S1.6)

The birth-death process described by (S1.5)-(S1.6) is not closed. In particular, the death probability dn|n◦ depends on

the Simpson index of the non-representative species, λ(n◦). Assuming this Simpson index is tightly concentrated on

its steady-state expectation value, λ(n◦) ≈ λ∗
◦ := ⟨λ◦(n)⟩, we may approximate steady-state fluctuations by a closed

birth-death process:

bn = (1 − µ)
(

n

N

)(
1 − n

N

)2
(S1.7)

dn = (1 − µ)
(

n

N

)(
1 − n

N

)[
1 −

(
1 − n

N

)
λ∗

◦

]
+ µ

(
n

N

)
. (S1.8)
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Box 1.2: A

Box I.2: Death transition probability. We first consider the probability that, in a given timestep, the

representative species undergoes the transition n → n − 1 due to a cooperative interaction. Let B and C

denote two species different from each other and from A (the representative species). Then, we may have

(B + C) + A → (B + C) + B or (B + A) + A → (B + A) + B,

where parentheses denote cooperative interaction. Adding up all possible contributions gives

∑
i ̸=1

(
ni

N

)(
N − n − ni

N

)(
n

N

)
+
(

N − n

N

)(
n

N

)(
n

N

)

=
(

N − n

N

)(
n

N

)∑
i ̸=1

(
ni

N

)
−
(

n

N

)∑
i ̸=1

(
ni

N

)(
ni

N

)
+
(

n

N

)(
N − n

N

)(
n

N

)

=
(

n

N

)(N − n

N

)(
N − n

N

)
−
∑
i ̸=1

(
ni

N

)(
ni

N

)
+
(

N − n

N

)(
n

N

)
=
(

n

N

)(
N − n

N

)1 −
∑
i ̸=1

(
ni

N − n

)(
ni

N − 1

)
=
(

n

N

)(
N − n

N

)[
1 −

(
N − n

N

)
λ(n◦)

]
, (S1.9)

where in the last line we used definition (S1.3). In the death transition probability (S1.6), this sum is weighed

by 1 − µ, the probability that a replication event happens in a given timestep. In addition, the death probability

includes the term µ(n/N), representing the probability µ that an individual of a new species enters the system

times the probability n/N that this new migrant replaces an individual of the representative species.

2. STEADY-STATE SPECIES ABUNDANCE DISTRIBUTION

In the steady state of a one-dimensional random walk, the detailed balance condition must hold, meaning that birth

and death fluxes are balanced:

Pnbn = Pn+1dn+1, for n ∈ {1, . . . , N − 1}. (S2.10)

Rearranging, we have that

Pn = bn−1

dn
Pn−1 = · · · = P1

n−1∏
k=1

bk

dk+1
= P1

∏n−1
k=1 bk∏n
k=2 dk

. (S2.11)
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Using the birth probabilities, Eq. (S1.7), we may write the numerator on the right-hand side in (S2.11) as

n−1∏
k=1

bk =
n−1∏
k=1

(1 − µ) k

N

N − k

N

N − k

N

=
(1 − µ

N3

)n−1
(n − 1)! (N − 1)!

(N − n)!
(N − 1)!
(N − n)! (S2.12)

For the death probabilities derived in (S1.8), it is useful to approximate

dk ≈ k

N

[
N − k

N

(
1 − N − k

N
λ∗

◦

)
− µ

N − k

N
+ µ

]
= k

N

[
N − k

N

(
1 − N − k

N
λ∗

◦

)
+ µ

k

N

]
≈ k

N

N − k

N

(
1 − N − k

N
λ∗

◦

)
= λ∗

◦
N3 k(N − k) (N/λ∗

◦ − N + k) . (S2.13)

In the first line of (S2.13), we assumed that µλ∗
◦ ≪ 1, which means that at large migration, the system becomes very

diverse, and, at small migration, the system retains sufficient diversity. In the second line of (S2.13), we assumed

that the system is concentrated on small relative abundances when µ is large, thus µ(k/N)2 ≪ 1. Then, the product

in the denominator of the right-hand side in (S2.11) is approximated as

n∏
k=2

dk ≈
(

λ∗
◦

N3

)n−1
n! (N − 2)!

(N − n − 1)!
Γ (N/λ∗

◦ − N + n + 1)
Γ (N/λ∗

◦ − N + 2) , (S2.14)

where Γ indicates Euler’s gamma function.

Combining results, and ignoring the factors independent of n (which contribute only to the overall normalization

constant), we now compute the ratio in (S2.11) as

Pn ∝ (1 − µ)n

n(N − n)
λ∗

◦
−n

(N − n)! Γ (N/λ∗
◦ − N + n + 1)

=
( 1−µ

1−λ∗
◦

)n
n(N − n)

(1 − λ∗
◦)nλ∗

◦
−n

(N − n)! Γ (N/λ∗
◦ − N + n + 1) (S2.15)

To relate our results to a known probability distribution, we multiply the previous expression by (1 − λ∗
◦)N/λ∗

◦−N and

Γ(N/λ∗
◦ + 1), which are both independent of n, such that

Pn ∝
( 1−µ

1−λ∗
◦

)n
n(N − n)

Γ(N/λ∗
◦ + 1)

(N − n)! Γ (N/λ∗
◦ − N + n + 1)(1 − λ∗

◦)N/λ∗
◦−N+nλ∗

◦
N−n. (S2.16)

This way, expression (S2.16) consists of a combination of distributions involving the well-known binomial distribution,

though defined using Euler−Γ functions instead of factorials:

Pn ∝ (1 − µ)n

n(N − n)
Bin(N − n; N/λ∗

◦, λ∗
◦)

(1 − λ∗
◦)n

, (S2.17)
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where we use notation:

Bin(m; M, p) :=
(

M

m

)
pm(1 − p)M−m ≡ Γ(M + 1)

Γ(m + 1)Γ(M − m + 1)pm(1 − p)M−m. (S2.18)

In general, Bin(m; M, p) refers to binomial distribution over m ∈ {0, . . . , M} successes, given M total trials and

probability of success p.

In most cases, we are interested in systems with non-vanishing migration and non-negligible diversity (µ > 0 and

1/λ∗
◦ ≫ 1). In such cases, the steady-state distribution is concentrated on small relative abundances and we may

rewrite (S2.17) by introducing four approximations. First, we estimate the binomial distribution as a discretized

Gaussian (ignoring overall constants):

Bin(N − n; N/λ∗
◦, λ∗

◦) ∼∝ e−n2/2N . (S2.19)

Second, when λ∗
◦ ≪ 1, we approximate the exponential term (1 − λ∗

◦)−n ≈ enλ∗
◦ . Third, we take 1/(N − n) ≈ 1/N ,

which is accurate for n ≪ N . Finally, we simplify by replacing λ∗
◦ (the Simpson index of non-representative species)

by the expected Simpson index of the entire population:

λ∗
◦ ≈ λ∗ := ⟨λ(n)⟩ (S2.20)

where ⟨·⟩ indicates expectations under the steady-state distribution of abundances n. Combining the above approxi-

mations, we are left with the probability distribution reported in Eq. (10) in the main text.

To justify (S2.20), let us consider the definitions (S1.2)-(S1.3), and observe that

λ(n) =
(

N

N − n

)2
λ(n◦) +

(
n

N

)2
≥ λ(n◦). (S2.21)

For the upper bound, we may rewrite the equation as

λ(n) = λ(n◦) + 2Nn − n2

(N − n)2 λ(n◦) +
(

n

N

)2

≤ λ(n◦) + 2n/N

(1 − n/N)2 +
(

n

N

)2
(S2.22)

where in the last line we used that n2 ≥ 0 and λ(n◦) ≤ 1. Observe that ⟨n⟩/N is the inverse of the number of

non-extinct species, see Eq. (20) in the main text. Thus, assuming that there is a large number of species in the system,

the steady-state probability distribution should be concentrated on n ≪ N . Then, taking expectations of both sides

and ignoring terms of order n/N gives λ∗ := ⟨λ(n)⟩ ≈ λ∗
◦ := ⟨λ◦(n)⟩.
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3. STEADY-STATE SIMPSON INDEX

Here we show that the steady-state Simpson index of the system obeys Eq. (11) and can be approximated by the

expression (12) given in the main text. To begin, we rewrite Eq. (S1.2) as

λ(n) ≈
N∑

n=1
rn

(
n

N

)2
(S3.23)

where rn indicates the number of species with abundance n. Observe that
∑

n rnn = N , thus rnn/N is the fraction

of individuals that belong to the set of species with abundance n. The steady-state expectation of rn is proportional

to the probability that the representative species has abundance n, that is, ⟨rn⟩ ∝ Pn. The expected fraction of

individuals that belong to the set of species with abundance n is obtained by normalizing as

⟨rn⟩n
N

= Pnn∑
n′ Pn′n′ . (S3.24)

As a sanity check, note that
∑

n⟨rn⟩n/N = ⟨
∑

n rnn⟩ /N = 1. Finally, let us take expectation on both sides of (S3.23)

and substitute to give

λ∗ = ⟨λ(n)⟩ ≈
N∑

n=1

(⟨rn⟩n
N

)(
n

N

)
= 1

N

∑N
n=1 Pnn2∑N
n′=1 Pn′n′

, (S3.25)

which corresponds to Eq. (11) in the main text. Usefully, the right side is independent of the normalization constant

of Pn, which is not always easy to compute in practice.

A. Low migration Simpson index

In the low-migration regime, we can approximate (S3.25) via the Euler-Maclaurin integrals. First, we rewrite our

expression for Pn, Eq. (10), as

Pn ∝ 1
n

e−(n−Nλ∗)2/2N+n ln(1−µ) ∼∝ 1
n

e−[n−N(λ∗−µ)]2/2N , (S3.26)

where we used that, for small migration values, ln(1−µ) ≈ −µ and ignored overall constant factors. Then, combining

with (S3.25), we obtain

λ∗ ≈ 1
N

∫N
1 e−[n−N(λ∗−µ)]2/2N n dn∫N
1 e−[n′−N(λ∗−µ)]2/2N dn′

. (S3.27)

The two integrals can be solved separately. Assuming N ≫ 1,

1
N

∫ N

1
e−[n−N(λ∗−µ)]2/2N n dn ≈ e−N(λ∗−µ)2/2 +

√
πN

2 (λ∗ − µ) erfc

√N

2 (µ − λ∗)


∫ N

1
e−[n′−N(λ∗−µ)]2/2N dn′ ≈

√
πN

2 erfc

√N

2 (µ − λ∗)

 , (S3.28)
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where we used the complementary error function, erfc(z) := 2/
√

π
∫∞

z e−t2
dt. Combining with (S3.27) yields

λ∗ ≈

√πN

2 erfcx

√N

2 (µ − λ∗)

−1

+ (λ∗ − µ), (S3.29)

where we used the definition of the scaled complementary error function, erfcx(z) := ez2erfc(z). Rearranging (S3.29),

we arrive at the result reported in Eq. (12) from the main text.

B. High migration Simpson index derived from (12)

In the main text, the scaling λ∗ ≈ 1/Nµ in the high-migration regime (µ ≫ λ) is obtained by re-evaluating (11)

using the Fisher Logseries distribution. In contrast, here we show that the same result can also be derived from (12).

To do so, we may approximate

erfcx(z) ≈ z/[
√

π(z2 + 1/2)] for z → ∞, (S3.30)

as follows by considering the first two terms of the continued fraction derived by Laplace [49, Livre X, p. 255].

Plugging into (12) and solving gives

λ∗ ≈ µ −
√

µ2 − 4/N

2 ≈ 1
Nµ

(S3.31)

where we used our usual assumption that N is large.

4. STEADY-STATE NUMBER OF SPECIES

Here, we derive the expected number of species in steady state, distinguishing between those in the cooperator core,

R∗
core, and those outside of it, R∗

out. Our derivation is only valid in the low-migration regime introduced and discussed

in Sections 3-3 A in the main text. The results derived here appear as Eqs. (24) and (25) in the main text.

As stated in the main text, the expected number of species in the core obeys R∗
core = Ncore/⟨n⟩core. We may use

Ncore + Nout = N to write

Ncore = N

(
1 − Nout

N

)
. (S4.32)

We estimate the fraction of individuals outside the core by

Nout
N

=
∑n̂min

n=1 Pnn∑N
n=1 Pnn

≈
∑1/λ∗

n=1 e−(n−Nλ∗)2/2N∑N
n=1 e−(n−Nλ∗)2/2N

≈
∫ 1/λ∗

1 e−(n−Nλ∗)2/2N∫N
1 e−(n−Nλ∗)2/2N

, (S4.33)

where we used that Nout =
∑n̂min

n=1 R∗Pnn and N =
∑N

n=1 R∗Pnn, where R∗ is the total number of species. We

also use that n̂min ≈ 1/λ∗, see Eq. (15) in the main text. We note that the denominator on the right side acts as the
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normalization constant of the Gaussian probability density function (PDF), which now together with the numerator

gives the Gaussian cumulative density function (CDF), often indicated as Φ(z). Thus, in the large N limit, we write:

Nout
N

≈ Φ
(1/λ∗ − Nλ∗

√
N

)
(S4.34)

As shown in Eq. (13), for very small migration, λ∗ ≫ N−1/2, which allows us to approximate

Φ
(1/λ∗ − Nλ∗

√
N

)
≈ Φ (−Nλ∗) ≈ Φ(−∞) = 0.

Therefore, to a first approximation, we have that

Ncore = N

(
1 − Nout

N

)
≈ N. (S4.35)

Finally, we derive Eq. (24) by combining with R∗
core = Ncore/⟨n⟩core and using the approximation ⟨n⟩core ≈ n̂max,

with the last term specified in Eq. (15).

Regarding the expected number of species outside the core, we similarly use R∗
out = Nout/⟨n⟩out. To proceed, we

start by estimating the expected abundance of species outside the core,

⟨n⟩out =
∑n̂min

n=1 Pnn∑n̂min
n=1 Pn

≈ Nout
N

∑N
n=1 Pnn∑1/λ∗

n=1 Pn

. (S4.36)

where, again, we used that Nout =
∑n̂min

n=1 R∗Pnn and N =
∑N

n=1 R∗Pnn, where R∗ is the total number of species.

We also use that n̂min ≈ 1/λ∗, see Eq. (15) in the main text. Rearranging, and substituting Pn by using our main

result Eq. (10) from the main text, gives

R∗
out = Nout

⟨n⟩out
≈ N

∑1/λ∗

n=1 e−(n−Nλ∗)2/2N /n∑N
n=1 e−(n−Nλ∗)2/2N

, (S4.37)

We estimate the sum of the denominator in the right-hand side of (S4.37) by the Gaussian normalization factor,
√

2πN . For the numerator, we approximate

1/λ∗∑
n=1

1
n

e−(n−Nλ∗)2/2N ≈ e−(1−Nλ∗)2/2N
1/λ∗∑
n=1

1
n

≈ −
√

2πNµ ln λ∗, (S4.38)

where in the last approximation we evaluated the (slow-changing) exponential term in the range 1 ≤ n ≤ 1/λ∗ as

e−(1−Nλ∗)2/2N ≈ eNλ∗2/2, and then plugged in our estimation of λ∗ in the low-migration regime (Eq. (12) in the main

text). Combining the above gives (25) as reported in the main text.
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5. MAXIMUM ABUNDANCES AND THE INFILTRATION PROBABILITY

A. Maximum abundances distribution

We begin by deriving the probability that a species trajectory (sampled at stationarity) has maximum abundance m,

which we term Qm. First, we consider the probability that an abundance trajectory with initial value n reaches (or

exceeds) abundance ℓ ≥ n (ℓ ̸= 0). We term this probability un(ℓ). Second, we derive an analytic expression for

u1(ℓ), the probability of reaching (or exceeding) ℓ when the trajectory starts at abundance one. Third, we connect

results for u1 to Qm and study the shape of Qm in the low-migration regime. And fourth, we estimate the infiltration

probability, i.e., the probability that a trajectory reaches maximum abundance m ≥ Nλ∗.

Consider the probability that a trajectory with initial abundance n reaches (or exceeds) some target abundance

ℓ ≥ n (ℓ ̸= 0) before going extinct. We denote this probability as un(ℓ). We focus in particular on u1(ℓ), which

captures the probability that a species that has just migrated into the system reaches (or exceeds) abundance value

ℓ > 1. We will focus our analysis on the regime of low migration.

As described above, our model can be reduced to a birth-death process with transition probabilities bn and dn,

Eqs. (S1.7)-(S1.8). We are also using the approximation λ∗(n) ≈ λ∗. Then, the probability un(ℓ) must obey two

boundary conditions:

u0(ℓ > 0) = 0 and uℓ(ℓ) = 1. (S5.39)

The first condition states that the probability of hitting a target once the species has gone extinct (n → 0) is null,

while the second condition states that the probability of hitting the target while on target is one. For the values of

n ∈ {1, . . . , ℓ − 1}, the probability un(ℓ) obeys a recurrence:

un(ℓ) = bnun+1(ℓ) + dnun−1(ℓ) + (1 − bn − dn)un(ℓ) . (S5.40)

We rearrange (S5.40) to give:

bn[un+1(ℓ) − un(ℓ)] = dn[un(ℓ) − un−1(ℓ)]. (S5.41)

We then define the difference wn(ℓ) = un(ℓ) − un−1(ℓ), which obeys w1(ℓ) = u1(ℓ) since u0(ℓ) = 0. Then,

from (S5.41), we write

wn(ℓ) = dn−1

bn−1
wn−1(ℓ) =

n−1∏
k=1

dk

bk
w1(ℓ). (S5.42)

We note that this product is similar to the inverse product obtained in (S2.11), but differs by one in the indexing of
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the death probability factors. Moreover, since un(ℓ) =
∑n

m=1 wm(ℓ), the recurrence (S5.40) is solved by

un(ℓ) =
n∑

m=1

n−1∏
k=1

dk

bk
u1(ℓ). (S5.43)

We use the condition uℓ(ℓ) = 1 to write

u1(ℓ) =
[

ℓ∑
m=1

m−1∏
k=1

dk

bk

]−1

, (S5.44)

which is an exact enumeration for u1(ℓ).

To find a closed-form approximation of Eq. (S5.44) for our model, we recall results (S2.12), (S2.13) and (S2.14),

and carefully rearrange the indices where needed. After some algebra, this results in
m−1∏
k=1

dk

bk
≈
(

λ∗

1 − µ

)m−1 (N − m)!
(N − 1)!

Γ(N/λ∗ − N + m)
Γ(N/λ∗ − N + 1) . (S5.45)

Next, we use the Stirling approximation Γ(z + 1) ≈
√

2πzz+1/2e−z (valid for z ≫ 1), and apply it to each of the

terms in (S5.45). Expanding terms up to second order in m/N , assuming N ≫ 1 and λ∗ ≪ 1, we reach
m−1∏
k=1

dk

bk
≈ exp

{
m2

2N
−
(

λ∗ + ln(1 − µ) + 1
2N

)
m + λ∗ + ln(1 − µ)

}
. (S5.46)

We now ignore the term 1/2N and use the fact that, in the low-migration regime, λ∗ ≫ µ. This allows us to

approximate (S5.46) as
m−1∏
k=1

(
dk

bk

)
≈ em2/2N−λ∗(m−1) . (S5.47)

We now plug (S5.47) back into (S5.44) and for convenience introduce the notation xℓ := (ℓ − Nλ∗)/
√

2N . This

gives

1
u1(ℓ) ≈

ℓ∫
1

m−1∏
k=1

(
dk

bk

)
dm ≈ eℓ2/2N−(ℓ−1)λ∗

[√
2ND(xℓ) + 1

2

]
−
[√

2ND(x1) − 1
2

]
, (S5.48)

where we used the Euler-Maclaurin approximation of the sum as an integral plus boundary terms, and ignored terms

of order O(1/N) in the exponents. We also introduced the Dawson function:

D(z) := e−z2
z∫

0

et2
dt . (S5.49)

After a bit of rearranging, we arrive at Eq. (28), the expression in u1(ℓ) presented in the main text.

B. Bimodality of Qm

It can be seen from Fig. 6 (inset) in the main text that the distribution Qm has a bimodal shape, with a local minimum

that separates two modes. This allows us to assign species trajectories into two classes: those whose maximum
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abundance value crosses over the threshold located at the local minimum of Qm and those that do not. We denote the

first set as the dynamical core.

To identify the location of the local minimum of Qm, recall from the main text that Qm = u1(m) − u1(m + 1),

thus we can approximate Qm ≈ −du1/dm. Then, the local minimum is given by the condition

0 = d

dm
Qm ≈ − d2

dm2 u1(m) ∝ −2
(

d

dm
vm

)2
+ v(m) d2

dm2 vm (S5.50)

where, for notational convenience, we introduced vm = 1/u1(m) to denote the right side of Eq. (S5.48). Considering

that equation, it can be shown that the derivatives of vm become very small at m = Nλ∗, where the minimum of the

exponent’s argument is reached. Linearizing the right side of Eq. (S5.50) around m ≈ Nλ∗ and then solving gives

m∗ ≈ Nλ∗ − 1
2 − 2N − 3/4

eNλ∗2/2−λ∗
(√

2ND(x1) − 1/2
)

+ 1
. (S5.51)

In Eq. (S5.56), we show that
√

2ND(x1) ≈ 1/λ∗. Since λ∗ ≫ 1/
√

N in the low-migration regime, the denominator

in the last term in Eq. (S5.51) is exponentially large, allowing us to ignore this whole term. We also have Nλ∗ ≫ 1/2,

thus dropping all sub-dominant terms gives the approximation

m∗ ≈ Nλ∗ . (S5.52)

To summarize, we have shown that the maximum abundance distribution Qm has a local minimum at values of

m ≈ Nλ∗. Interestingly, the value of this local minimum in Qm corresponds to the center of the Gaussian contribution

to the abundance distribution Pn (Eq. (12) in the main text) in the low-migration regime. However, this point is not

exactly the high-abundance mode of the steady-state distribution, which is located at n̂max = Nλ∗ − 1/λ∗.

C. Infiltration probability

Here we derive the infiltration probability to the dynamical core, β. We will use the asymptotic expansion of the

Dawson function [50, 42:6:4],

D(z) = 1/(2z) + O(z−3) for |z| → ∞ . (S5.53)

Observe that β corresponds to the cumulative probability to cross over the local minimum of Qm located at Nλ∗:

β =
N∑

m=Nλ∗

Qm =
N∑

m=Nλ∗

[u1(m) − u1(m + 1)] = u1(Nλ∗) − u1(N) ≈ u1(Nλ∗) . (S5.54)

Here we first used (26) from the main text, and then u1(N) ≈ 0. The latter approximation is justified because

u1(N) ∼ e−N/2 up to polynomial factors, as follows from Eq. (S5.48) and the fact that the Dawson function
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contributes only polynomial terms, see (S5.53). To obtain a closed-form expression for β, we substitute back

into (S5.48) and keep leading-order terms to arrive at

β ≈ 1
−

√
2ND(x1)

. (S5.55)

Since x1 = (1 − Nλ∗)/
√

2N ≈ −λ∗√N/2 ≪ −1 in the low-migration regime, Eq. (S5.53) implies

√
2ND(x1) ≈

√
2ND

(
− λ∗

√
N/2

)
≈ −

√
2N/(

√
2Nλ∗) = −1/λ∗ , (S5.56)

allowing us to approximate β ≈ λ∗, and thus recovering expression (29) from the main text.

6. RESIDENCE TIMES

In this section, we calculate the mean residence time of species whose trajectories reach the dynamical core, as defined

in SM5. We also argue that the cooperator core obtained in our study of the steady-state abundance distribution and

the dynamical core are effectively equivalent.

At stationarity, let us denote by Tn the mean first passage time (MFPT) from a species with initial abundance

n to reach extinction (at abundance 0). We observe that a core species will spend a long time at high abundance

values; hence, we assume that the mean residence of a species whose trajectory belongs to the dynamical core can be

approximated by the MFPT from Nλ∗ to extinction,

τcore ≈ TNλ∗ . (S6.57)

The MFPT Tn obeys the following recurrence:

Tn = bnTn+1 + dnTn−1 + (1 − bn − dn)Tn + 1. (S6.58)

By defining the differences vn := Tn − Tn−1, this can be rearranged into a first-order recurrence,

vn = dn−1

bn−1
vn−1 − 1

bn−1
. (S6.59)

Recurrence (S6.59) is generally solved by

vn = Un−1v1 − Qn−1, with Um−1 :=
m−1∏
k=1

dk

bk
and Qm−1 =

m−1∑
k=1

1
bk

m−1∏
j=k+1

dj

bj
. (S6.60)

Next, from Eq. (S5.47) above,

Um−1 ≈ em2/2N−λ∗(m−1). (S6.61)
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For the other coefficient, we have

Qm−1 =
m−1∑
k=1

1
bk

m−1∏
j=k+1

dj

bj
= Um−1

m−1∑
k=1

1
bk

k∏
j=1

bj

dj
. (S6.62)

The expression for Qm−1 is related to the steady-state distribution Pk because

Pkdk = Pk−1bk−1 ⇒ Pk = P1

k−1∏
j=1

bj

dj+1
= d1P1

1
bk

k∏
j=1

bj

dj
, (S6.63)

therefore we may rewrite Qm−1 as

Qm−1 = Um−1

P1d1

m−1∑
k=1

Pk = Um−1

P1d1
C(m − 1). (S6.64)

Here, we defined C(ℓ) =
∑ℓ

k=1 Pk, as the cumulative distribution of Pk up to ℓ. Returning now to (S6.60),

vn = Un−1

(
v1 − 1

P1d1
C(n − 1)

)
. (S6.65)

At this point, we introduce the boundary conditions of the recurrence (S6.58). First, we have T0 = 0, which implies

v1 = T1 − T0 = T1. In addition, we have

TN = dN TN−1 + (1 − dN )TN + 1 ⇔ dN (TN − TN−1) = 1 ⇔ vN = 1
dN

. (S6.66)

The expected number of species in steady-state, R∗, satisfies the balance equation between outflow due to extinction

and inflow due to migration:

µ = R∗P1d1, (S6.67)

Recall dN = µ from Eq. (6) in the main text. Put together, these results imply that

1
µ

= vN = UN−1

(
T1 − R∗

µ
C(N − 1)

)
, (S6.68)

which allows us to obtain

T1 = 1
µ

[ 1
UN−1

+ R∗C(N − 1)
]

≈ R∗

µ
. (S6.69)

Here, we used that, in the low-migration regime, UN−1 ≈ eN/2−λ∗N ≫ 1 in the large N limit, while C(N − 1) ≈ 1

since all the mass is concentrated below n = N . Therefore,

vn ≈ R∗Un−1

µ
(1 − C(n − 1)), (S6.70)

Using the definition of vn, the condition v1 = T1, and setting n = Nλ∗, which is the starting abundance value for our

MFPT, then we have

TNλ∗ =
Nλ∗∑
m=1

vm ≈ R∗

µ

Nλ∗∑
m=1

Um−1 [1 − C(m − 1)] . (S6.71)
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Next, we observe that in the low-migration regime, Pk is well-approximated as a Gaussian distribution with mean

Nλ∗ and standard deviation
√

N (see Eq. (10) in the main text). Hence, C is approximated as the cumulative density

function of this Gaussian distribution, so 1 − C(m − 1) ≈ 1 for small m and 1 − C(m − 1) ≈ 1/2 for m ≈ Nλ∗.

On the other hand, for our range of m ∈ [1, Nλ∗] ∩ N, Um−1 has a local maximum at m = 1 and, at small values of

m, decays exponentially with rate 1/λ∗, see Eq. (S6.61). Therefore, in the low-migration regime where Nλ∗2 ≫ 1,

one can verify that as m increases, Um−1 decays essentially to 0 while 1 − C(m − 1) remains very close to 1. This

allows us to approximate:

Nλ∗∑
m=1

Um−1 [1 − C(m − 1)] ≈
Nλ∗∑
m=1

Um−1. (S6.72)

The right-hand side corresponds to the expression for 1/u1(Nλ∗) that we approximated in (S5.48). Using our

definition of β (S5.54) and our result (S5.55) in terms of the Dawson function, we combine with (S6.71) to give

TNλ∗ ≈ R∗

µ

√
2NFN

(
Nλ∗ − 1√

2N

)
≈ R∗

µβ
. (S6.73)

Recall that in the low-migration regime, R∗ ≈ R∗
core, which, combined with Eq. (24) in the main text, approximates

the MFPT (S6.73) as

TNλ∗ ≈ 1
µλ∗[1 − (Nλ∗)−1] . (S6.74)

Result (S6.74) is equal to our estimate of τcore obtained in Eq. (30) in the main text. This shows that the same

expression for τcore can be derived using two different arguments: a dynamical argument based on the MFPT

calculation, and a steady-state argument based on the principle of detailed balance given in Sec. 4 in the main text.


