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We derive unexpected first-passage properties for nearest-neighbor hopping on finite intervals with disordered
hopping rates, including (a) a highly variable spatial dependence of the first-passage time, (b) huge disparities
in first-passage times for different realizations of hopping rates, (c) significant discrepancies between the first
moment and the square root of the second moment of the first-passage time, and (d) bimodal first-passage
time distributions. Our approach relies on the backward equation, in conjunction with probability generating
functions, to obtain all moments, as well as the distribution of first-passage times. Our approach is simpler than
previous approaches based on the forward equation, in which computing the mth moment of the first-passage
time requires all preceding moments.
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Introduction. First-passage problems concern the distribu-
tion of times for a stochastic process to first reach a defined
state [1–7]. Of fundamental importance is the statistics of the
time required for a random walk to first reach the boundaries
of a finite interval. The applications of this type of first-
passage problem are vast, including biological processes, such
as the Moran model [8,9], migration phenomena [10,11], the
behavioral dynamics of ant recruitment [12,13], as well as the
dynamics of many types of financial instruments [14,15].

First-passage phenomena are much richer and less well
understood when the hopping rates of the random walk are
spatially disordered. Transport in disordered one-dimensional
systems has a host of important applications, such as channel
transport across cellular membranes [16], molecular motors
walking on microtubules [17], the motion of RNA moving
through the ribosome during translation [18], and the search
of a transcription factor for a binding site on DNA [19].

While much progress has been made in determining
the average first-passage time and its low-order moments
[2–4,20–29], understanding the properties of the full distribu-
tion of first-passage times is incomplete. Here, we solve this
fundamental problem by focusing on the generating function
for the first-passage probability. The finite interval provides
a particularly instructive platform to investigate many basic
disorder-controlled physical phenomena, such as the diffu-
sion of a particle in a random potential [26,27,30–35], DNA
translocation through a nanopore [36], channel transport [16],
and percolation [37,38]. With our formalism, we can read-
ily evaluate first-passage probabilities and their moments for
individual realizations of disorder and thereby discover unex-
pected disorder-controlled phenomena.

The key to our solution lies in first writing the back-
ward equation for the moment generating function of the
first-passage probability, and then reformulating the resulting
recursion as a linear algebra problem. This approach leads to
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analytic expressions for the generating function in terms of the
elements of the inverse of a tridiagonal matrix [39]. Related
methods have previously provided a semianalytic solution to
the probability distribution from a one-step master equation in
time [40], and to solve the three-term recurrence for the mo-
ment generating function [41]. Other pertinent studies derive
semianalytic solutions for the first-passage time distribution,
again for arbitrary hopping rates [42–44]. These studies start
with the Laplace transform of the formal solution to the master
equation, and obtain their result in terms of undetermined
eigenvalues of the master operator.

However, these past investigations all focused on the
forward master equation, whereas we use the backward
equation due to its utility in the study of first-passage prob-
lems [4,16]. The benefits of our approach are its versatility in
elucidating first-passage properties for absorbing boundaries,
reflecting boundaries, and conditional waiting times, and its
conciseness through the use of linear algebraic results that
simplify the generating function. Additionally, our approach
does not rely on finding the eigenvalues of the master operator
numerically, leading to analytic, as opposed to semianalytic,
results.

Formalism. The backward equation is the adjoint of the
commonly used master equation for the time evolution of
the probability distribution. The backward equation is espe-
cially useful in first-passage problems for which the final
state is prescribed and the initial state becomes the funda-
mental dependent variable. Let Pi, j (t ) be the probability for
a random walk to reach a final state j for the first time at
time t when starting from state i at t = 0. Here, i denotes a
one-dimensional coordinate. The backward equation for this
first-passage probability is [2–4,21],

Pi, j (t + �t ) = bi�tPi+1, j (t ) + di�tPi−1, j (t )

+ [1 − (bi + di )�t]Pi, j (t ), (1)

where bi and di are arbitrary rates of hopping to the right
and left from site i, respectively. This equation states that the
probability to first arrive at j starting from i at time t + �t
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FIG. 1. Hopping rates for the interval with (a) two absorbing
boundaries, and (b) one reflecting and one absorbing boundary.

equals the sum of the hopping probabilities in a time �t from
i to either i − 1, i, or i + 1 times the first-passage probabilities
to j at time t from i − 1, i, or i + 1. We set �t = 1 so that
the hopping probabilities in a time �t are bi�t and di�t , and
t now counts the number of hopping events. For �t = 1, the
hopping rates must satisfy the constraints 0 � bi, di � 1 and
bi + di � 1.

We now calculate the generating function of the uncon-
ditional first-passage probability for the interval with two
absorbing boundaries [Fig. 1(a)]. Define fi(t ) = Pi,0 + Pi,N as
the probability density function to first reach either 0 or N at
time t when starting from site i. In close analogy with Eq. (1),
its governing equation is

fi(t + 1) = bi fi+1(t ) + di fi−1(t ) + [1 − (bi + di )] fi(t ). (2)

We solve this equation by the generating function technique.
Multiplying (2) by zt , summing over t , and introducing the
generating function Fi(z) = ∑∞

t=0 zt fi(t ), gives the following
three-term recurrence,

biFi+1(z) + diFi−1(z) + βi(z)Fi(z) = 0, (3)

for 1 � i � N − 1, where for notational simplicity we
introduce βi(z) ≡ 1 − z−1 − bi − di. This recursion obeys
the boundary conditions F0(z) = FN (z) = 1, since f0(t ) =
fN (t ) = δt,0.

To solve (3), it is helpful to write it as a matrix
equation [41]. We first define the column vector F(z) =
[F1(z), F2(z), . . . , FN−1(z)] and using F0(z) = FN (z) = 1, this
recursion becomes

A(z) · F(z) = −w, (4)

where w = (d1, 0, 0, . . . , 0, bN−1) and A(z) is the tridiagonal
matrix of dimension (N − 1) × (N − 1),

A(z) =

⎛
⎜⎜⎝

β1(z) b1 0 . . . 0 0
d2 β2(z) b2 . . . 0 0
...

. . .

0 0 0 . . . dN−1 βN−1(z)

⎞
⎟⎟⎠.

The formal solution to Eq. (4) is

F(z) = −A(z)−1 · w. (5)

In what follows we write the i jth elements of A(z)−1 as
αi, j (z). Performing the matrix multiplication gives

Fi(z) = −[d1αi,1(z) + bN̄αi,N̄ (z)], (6)

with N̄ ≡ N − 1. Our task now is to find closed-form expres-
sions for the elements of the inverse αi, j (z). To this end we

exploit the tridiagonal form of A(z), as was done in Ref. [40]
for the forward master equation, to give the elements αi, j (z)
in terms of computationally simple products of polynomials
via Cramer’s rule [39]. For later use, we define the following
products,

Bi ≡
N̄∏

k=i

bk, Di ≡
i∏

k=1

dk . (7)

To find Fi(z), we only require the elements αi,1(z) and αi,N̄ (z),
which are given by

αi,1 = (−1)i+1 Di pi(z)

d1 p0(z)
, αi,N̄ = (−1)i+N̄ Biqi−1(z)

bN̄ p0(z)
, (8)

where we recursively define the polynomials

pN̄ (z) = 1,

pN̄−1(z) = βN̄ (z), (9a)

pi(z) = βi+1(z)pi+1(z) − bi+1di+2 pi+2(z),

for 0 � i � N̄ − 2, and

q0(z) = 1,

q1(z) = β1(z), (9b)

qi(z) = βi(z)qi−1(z) − dibi−1qi−2(z),

for 2 � i � N . Although this calculation seems complicated,
it is much faster than matrix inversion via Cramer’s rule, since
it avoids calculating the multiple zeros encountered in the
evaluation of the minors of A(z) [45]. More details are given
in Sec. I of the Supplemental Material (SM) [46].

We can now write the generating functions for the first-
passage probability for each starting position i as

F1(z) = 1

p0(z)
[(−1)N̄ B1 − d1 p1(z)],

FN̄ (z) = 1

p0(z)
[(−1)N̄ DN̄ − bN̄ qN̄−1(z)],

Fi(z) = (−1)i

p0(z)
[pi(z)Di + (−1)N̄−1qi−1(z)Bi], (10)

where the last equality holds for 2 � i � N̄ − 1. Note that
pN̄−i and qi are polynomials of order i in z−1, and each Fi(z)
is a rational function that is made up of polynomials in z. In
practice, for an interval of length N and given a set of {bi, di},
we find the polynomials pi and qi via Eq. (9), after which we
can use Eqs. (10) to compute the generating function and its
series expansion. Practically, for the expansion about z = 1
we series expand βi(z), pi(z), and qi(z) up to the order of
the moment of interest before utilizing Eq. (10). We cannot
conduct a similar series expansion about z = 0 [due to the
singularity in βi(z)] and hence use the full generating function
expressions in Eq. (10) to calculate the probability distribu-
tion.

Our formalism can be readily extended to the conditional
first-passage probability, namely, the probability to first reach
a specified boundary without touching the other boundary
(Sec. II of the SM [46]). We can also treat the case of a
reflecting boundary. Here, the dynamics at the reflecting end
of the interval must be treated as a special case in which some
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FIG. 2. (a) Mean first-passage times on a disordered interval of
length N = 100 for three realizations of the hopping rates as a func-
tion of starting position i (solid). The dashed curves show the square
root of the second moment of the first-passage time for these same
realizations. The red solid curve shows the mean first-passage time
of the homogeneous interval with bi = di = 1/3 for all i. (b) The
local bias ln(bi/di ) [smoothed over a 10-point range (green) and by
a Bezier curve (black)] for the realization in black in (a). The arrows
show the direction of the local average bias.

of the elements of A(z) are altered, although the functional
forms in Eqs. (10) remain the same. Details of this calculation
are shown in Sec. III of the SM [46].

Application to the disordered interval. A salient feature of
first passage in the interval is the huge disparity in the mean
first-passage time (MFPT) between different realizations of
the hopping rates {b j, d j}. We use Eq. (10) to derive the
exact MFPT that represents an average over all random-walk
trajectories. We choose each b j from a uniform distribution
on [0, 2/3], so that each dj = 2/3 − b j . Since b j + d j = 2/3,
there is a 1/3 probability for the walk to remain at the same
site in a single event. This choice eliminates the annoying and
obfuscating even-odd oscillations that arise for the nearest-
neighbor random walk with bj + d j = 1.

Figure 2(a) illustrates this disparity in the MFPT between
several representative realizations of the {bj, d j} (up to three
orders of magnitude for an interval of length 100). Even larger

realization-specific variations occur for higher moments of
the FPT [dashed lines of Fig. 2(a)]. Moreover, the first mo-
ment and the square root of the second moment for a single
realization of hopping rates can differ by more than an order
of magnitude (especially near the ends of the interval). This
fact demonstrates that the statistics of the first-passage time
are not captured by the MFPT. Finally, the dependence of the
MFPT on starting position has no resemblance to the parabolic
profile that arises in the absence of disorder [4]. This is also
true for cases of weaker disorder (see Fig. S1 [46]). Instead,
the MFPT is nearly independent of the starting location in
certain subintervals and changes rapidly within intervening
boundary layers. This behavior stems from the existence of
local potential wells that are induced by the disordered hop-
ping rates.

For the realization shown in black in the figure, there is
a negative bias over most of the first ≈40% of the interval
[Fig. 2(b)] so that the MFPT for starting points in this range
is small. A small region of positive bias at i/N ≈ 0.2 is re-
sponsible for a steplike increase in the FPT at this point. The
bias suddenly becomes positive for i/N � 0.4 which causes
the rapid increase in the MFPT over this range of i/N . The
effective potential well for 0.4 � i/N � 0.8, keeps the MFPT
roughly constant in this range. In general, wherever the local
bias leads to an effective potential well, the MFPT (and higher
moments) is nearly independent of starting location within
this well and then suddenly jumps when the local bias changes
sign.

It is revealing to determine the convergence of the MFPT
to its true value upon averaging over progressively larger
numbers of realizations of the hopping rates. Here, we use the
dichotomous distribution in which each bj takes the values 0.3
or 0.6 equiprobably, while d j = 0.9 − b j . With this choice,
there is a countably finite number of hopping-rate realizations
so that we can average over all random walk trajectories and
over all realizations of the hopping-rate disorder for a given
(albeit short) interval length.

For a given realization of hopping rates indexed by α,
we define the MFPT starting from site i as 〈t (α)

i 〉. The true
average MFPT, averaged over all M = 2N−1 realizations of
the hopping rates, is then

〈ti〉 ≡ 1

M

M∑
α=1

〈
t (α)
i

〉
. (11a)

How close is the MFPT over a subset of realizations of the
hopping rates to the average over all realizations of the hop-
ping rates? To address this basic question, we define the partial
average in which we select a random fraction f = M/M of
all hopping-rate realizations and compute the exact MFPT for
this subset, again for random walks that start at site i:

〈ti〉 f ≡ 1

M

M∑
α=1

〈
t (α)
i

〉
. (11b)

An appropriate deviation measure is the relative difference
between the true average and the partial average as a function
of f , which we define as Ei( f ):

Ei( f ) ≡ 〈ti〉 − 〈ti〉 f

〈ti〉
. (12)
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(a) (b)

FIG. 3. (a) The average deviation in Eq. (12) when a finite frac-
tion f of all hopping-rate realizations is sampled for an interval
length N = 12. (b) The average deviation as a function of f for
various starting positions along the interval.

Figure 3(a) shows this deviation Ei( f ) vs i for various
ensemble fractions f . Using 50% of all possible realizations
leads to a deviation of roughly 10%, while using 1% of all
realizations gives a deviation of roughly 25%. Since any sim-
ulation can realistically only sample an infinitesimal fraction
of all realizations, simulations of first-passage properties in
disordered systems will be pointless because of their poor
accuracy. Again, the deviations for the higher-order moments
are much larger than that of the mean (not shown). We ad-
ditionally show the dependence of Ei( f ) on f across three
orders of magnitude. Surprisingly, this is well fit by a power
law with exponent −1/2, a result which holds even when a
less disordered dichotomous distribution is used (see Fig. S2
in the SM [46]).

Another unexpected feature that emerges from our ex-
act approach is that bimodal first-passage distributions arise
for certain realizations of the hopping rates. Related “echo”
phenomena have been observed previously in systems where
disparate paths with very different timescales contribute to
the first-passage probability [4,47,48]. We show one such
example in Fig. 4(a) with bi chosen uniformly in the range
(0, 1/3) and di = 1/3 − bi, with the walk starting at i = 2 on
an interval of length 10. Also shown in this figure are the
local biases at each site i, ln(bi/di ). The essential feature of
this bias profile is that it is negative at i = 1, almost neutral at
i = 2, and generally positive for i > 2. Thus a particle starting
at i = 2 exits via the left edge with appreciable probability
and does so quickly because of the strong negative bias at
i = 1. However, if the particle initially hops to the right, it
then experiences a rightward bias, which leads to the second
later-time peak in the first-passage probability. To verify this
crude picture, we construct a synthetic interval of length 20
in which the segment [0,5] has a bias to the left and the
segment [5,20] has a bias to the right, with both biases of
magnitude |v| = 0.3 [Fig. 4(b)]. When the random walk starts
at i � 5, it is likely to remain in the region i � 5 and exit the
interval on the left side, corresponding to the early-time peak
in Fig. 4(b). However, if the random walker traverses to the
region i > 5, it is likely to remain on this side of the interval,
ultimately leading to the second, longer-time peak in Fig. 4(b).

Summary. We analytically derived the generating function
of the first-passage probability and all its moments on inter-
vals with arbitrary nearest-neighbor hopping rates. It is in only

100 4 6 82

FIG. 4. (a) The first-passage probability f2(t ) on the interval
[0,10]. The schematic shows the local bias ln(bi/di ) at each site.
The inset shows the explicit values of ln(bi/di ). (b) The first-
passage probability f6(t ) for an interval of length N = 20 in
which the synthetically generated bias changes sign at i = 5 with
|v| = |bi − di| = 0.3.

one dimension, where disorder can lead to anomalous scaling
laws, for which our techniques can reveal the full probability
distribution of first-passage times and all its moments. Our
exact approach reveals and elucidates unexpected anomalies
in first-passage properties, such as the steplike spatial depen-
dence of the first-passage time for individual hopping-rate
realizations, the huge disparities in the first-passage time in
different realizations of hopping rates, and the similarly huge
disparities between the first moment and the square root of
the second moment of the FPT. We additionally found that
bimodal first-passage distributions can arise in certain real-
izations that possess a general outward bias in the hopping
rates from an interior point. Here, a random walk that starts
near this interior point may exit via the “downstream” side
of the interval and do so quickly. Conversely, the walk may
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also exit via the “upstream” side, but with a much longer
exit time. When the exit probabilities via the downstream and
upstream sides are comparable, two well-resolved peaks in the
first-passage probability arise. This bimodality is unexpected
for a system without any reflecting boundaries.

We also quantified the slow convergence of the first-
passage time, averaged over a finite fraction of all hopping-
rate realizations, to the true average over all such realizations.
This slow convergence has profound implications for compu-

tational studies of first passage. Since realistic simulations can
only sample a tiny fraction of all hopping-rate realizations,
numerical results for first-passage properties from such simu-
lations are doomed to be wildly inaccurate. It is only through
analytical methods, such as those presented here, that one can
obtain accurate results for first-passage properties.
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