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Charged aggregation
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We introduce an aggregation process that begins with equal concentrations of positively and negatively
“charged” monomers. Oppositely charged monomers merge to form neutral dimers. These dimers are the seeds
for subsequent aggregation events in which neutral clusters of necessarily even mass join irreversibly to form
neutral aggregates of ever-increasing size. In the mean-field approximation with mass independent reaction rates,
we solve for the reaction kinetics and show that the concentration of clusters of mass k, ck (t ), asymptotically
scales as Ak/t , with Ak having a nontrivial dependence on k. We also investigate the phenomenon of gelation in
charged aggregation when the reaction rate equals the product of the two incident cluster masses. Finally, we
generalize our model to the case of three and more types of monomers.
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I. INTRODUCTION

Aggregation is a fundamental kinetic process in which
clusters of various masses irreversibly join to form clusters
of ever-increasing mass [1,2]. If we denote a cluster of mass i
by Ci, each reaction can be written as

Ci + Cj
Ki, j−→Ci+ j .

Here Ki, j is the reaction kernel, which specifies the rate at
which a cluster of mass i (an i-mer) joins to a j-mer to
form an (i + j)-mer. The basic observable in aggregation
is the time-dependent cluster-mass distribution whose nature
depends on the functional form of the reaction kernel. In the
approximation that all reactants are perfectly mixed, the time
dependence of the cluster mass distribution is described by an
infinite set of rate equations that account for the change in the
cluster concentrations due to reactions with other clusters.

The reaction rates Ki, j depend on the properties of the two
reacting clusters [3,4]. For diffusion-controlled reactions in
three dimensions Ki, j ∼ (Di + Dj )(Ri + Rj ), where Di and
Ri are the diffusion coefficient and the radius of a cluster
of mass i, respectively. In turn, the cluster diffusion co-
efficient is inversely proportional to its mass, which gives
Ki, j ∝ 2 + (i/ j)1/3 + ( j/i)1/3 [4–6]. Because of the compli-
cated form of this reaction rate, aggregation of Brownian
clusters is still unsolved [7]. However, a number of idealized
exactly soluble cases are known, including the constant kernel
(Ki, j = const., which has the same homogeneity degree as the
Brownian kernel), the sum kernel (Ki, j = i + j), the product
kernel (Ki, j = i j), and a few other specialized forms [8–10].
The constant-kernel case, in which the reaction rates are in-
dependent of the cluster masses, is particularly simple, and
investigations of this toy model have helped to develop the
concept of scaling in aggregation [11,12].

In this work, we investigate an extension of aggregation
that begins with equal concentrations of monomers of two
types, A and B, that we label as positively charged and neg-
atively charged. There are no physical electrostatic forces

acting, but we invoke the label “charge” to impose the con-
straint that only positively and negatively charged monomers
can merge to form dimers via the reaction [A] ⊕ [B] → [AB],
while monomers of the same charge do not interact. Each
dimer contains one A and one B monomer, and thus are neutral
[Fig. 1(a)].

In addition to the interaction between oppositely charged
monomers, neutral clusters interact with a rate that is inde-
pendent of their masses. Thus, dimers constitute the seeds to
generate neutral clusters of ever-increasing masses. Once a
neutral dimer is created, it can react only with other neutral
clusters, and neutral clusters of mass greater than or equal to
two can interact among themselves to create neutral clusters of
the form [(AB)k] for all k � 2 [Fig. 1(b)]. No other type of re-
actions occur. For electrically charged monomers, one should
include repulsive interactions between similar monomers and
attractive interactions between dissimilar monomers. More
importantly, electrostatic interactions are long ranged, and
systems with long-range interactions exhibit peculiar behav-
iors (see, e.g., Refs. [13,14] and references therein). In our
modeling, we ignore all electrostatic effects because our main
interest is the role that the stoichiometry of our model plays in
the reaction kinetics.

One of the motivations for this work is to incorporate
compositional constraints on aggregation in a simple way.
Physical realizations of aggregation that involve more than
one type of monomer have been observed experimentally
[1,15,16]. In our charged aggregation model, each aggregate
necessarily consists of equal numbers of A and B monomers.
One can also envision that an (m, n) aggregate composed
of m monomers of type A and n monomers of type B is
allowed only when the ratio m/n is constrained to be in a
certain range. Furthermore, constraints can be geometrical in
nature [17], e.g., the merging of the rectangular aggregates
(m1, n1) and (m2, n2) could be possible only when one of
the “sides” are equal, that is, m1 = m2 = m, for which the
reaction is (m, n1) ⊕ (m, n2) → (m, n1 + n2). Models of ag-
gregation with various compositional constraints have also
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(b)(a)

FIG. 1. Charged aggregation: (a) Two oppositely charged
monomers merge into a neutral dimer, (b) Two neutral clusters (here
a dimer and a 4-mer) merge into a 6-mer.

been proposed [18–25]. The emergent behaviors are often
very different from ordinary aggregation, and poorly under-
stood. Our modeling is focused on understanding the role of
a particularly simple compositional constraint on the aggrega-
tion kinetics.

One of our main results is that when the reaction rates are
independent of the cluster masses, Ki, j = const., the cluster
mass distribution in charged aggregation is quite different
from that in classic aggregation with mass-independent reac-
tion rates. For charged aggregation, the density of monomers
decays as 1/(1 + t ), while the cluster-mass distribution has
the asymptotic form

ck ∼ t−1 e−εk �
(
k − 1

2

)
�(k + 1)

(1)

for any fixed k when t � 1, where here ck denotes the con-
centration of neutral clusters of mass 2k (containing k positive
and k negative monomers). Note that the above ratio of gamma
functions decays as k−3/2 for large k. As we shall discuss
in Sec. II B, the exponent ε > 0 depends on the ratio of the
monomer-monomer and cluster-cluster merging rates. It is
also worth noting that the k−3/2 decay of the cluster density
also arises in aggregation with mass-independent reaction
rates and with the steady input of monomers [6,26,27]. Our
charged aggregation can also be viewed as aggregation with
a mass-independent reaction rate and with a time-dependent
monomer source.

By way of contrast, for classic aggregation with mass-
independent rates, the density of clusters of mass k at time
t , ck (t ), is [3,4,8]

ck (t ) = 1

(1 + t )2

(
t

1 + t

)k−1

−→
t→∞

1

t2
e−k/t (2)

when the process begins with a monodisperse initial condi-
tion, ck (0) = δk,1. The latter form is valid in the scaling limit
of t → ∞ and k → ∞, with the ratio k/t kept constant. From
the scaling form of the cluster-mass distribution, the typical
cluster mass grows linearly with time and the distribution of
cluster masses is effectively constant for masses smaller than
the typical mass. The mass distributions of charged and classic
aggregation are quite different in the small-mass limit.

The outline of this paper is as follows. In Sec. II, we inves-
tigate charged aggregation within the mean-field framework
in which the reactants are assumed to remain perfectly mixed
at all times. We also assume that all reaction rates are equal.
As we shall show, the primary difference between classic
aggregation and charged aggregation is that the latter is driven

by a time-dependent source of dimers. We also treat the more
general situation where the reaction rates between monomers
is different than the reaction rate between clusters. In Sec. III,
we analyze charged aggregation when the reaction kernel has
the product form Ki, j = i j. We show that at a finite time, an
infinite cluster (gel molecule) is born, and the gel molecule
eventually engulfs the finite clusters. In Sec. IV, we generalize
to an aggregation process where the elemental building blocks
are monomers of three types: A, B, and C. The reaction starts
by the merging of three dissimilar monomers into “neutral”
trimers: [A] ⊕ [B] ⊕ [C] → [ABC]. Neutral clusters of mass
three and greater then undergo binary aggregation. We again
employ the mean-field framework and determine the cluster
mass distribution when the cluster merging rate is independent
of the cluster masses.

II. TWO MONOMER TYPES

A. Equal monomer and cluster reaction rates

We denote the density of monomers with positive charge as
m(t ). We also assume that the density of positively and nega-
tively charged monomers are equal. The time dependence of
the monomer density (either positively or negatively charged)
is described by the rate equation

dm

dt
= −m2, (3)

with solution, for the initial condition m(0) = 1,

m = 1

1 + t
. (4)

Let ck denote the concentration of neutral clusters of mass
2k. Under the assumption that neutral clusters react with con-
stant and mass-independent rates, the time dependence of the
neutral cluster densities is given by the rate equations

dc1

dt
= −2c1c + m2, (5a)

dck

dt
=

∑
i+ j=k

cic j − 2ckc k � 2, (5b)

where c ≡ ∑
k�1 ck is the total density of neutral clus-

ters. A useful check of the correctness of these equa-
tions is to compute the rate of change of the total
mass density

M ≡ m(t ) +
∑
k�1

kck (t ).

Adding Eq. (3) plus each of Eqs. (5) weighted by their mass, it
is immediate to see that M is manifestly conserved. Since we
chose the initial monomer density to equal 1, the total mass
M = 1.

To determine the individual cluster densities, it is neces-
sary to first solve for the total cluster density c(t ). Summing
Eqs. (5), we find that c(t ) satisfies the Riccati equation,

dc

dt
= −c2 + m2 = −c2 + 1

(1 + t )2
. (6)

This equation should be solved subject to initial condition
c(0) = 0. While Riccati equations are generally unsolvable,
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FIG. 2. Time dependence of the monomer density m(t ) from (4)
and the cluster density c(t ) from (7). Both densities decay as t−1, and
their ratio c(∞)

m(∞) approaches 1
2 (

√
5 + 1).

some can be solved by first guessing a particular solution,
c∗(t ). If such a solution can be found, no matter how triv-
ial, then the ansatz c(t ) = c∗(t ) + u(t )−1 reduces the Riccati
equation to a linear equation for u(t ) that can be solved by
elementary methods [28].

The structure of the Riccati equation (6) suggests seeking
a particular solution of the form c∗ = B/(1 + t ). Substituting
this ansatz into Eq. (6), it is straightforward to verify that
this ansatz indeed solves this equation when B = (

√
5 + 1)/2.

Then the function u(t ) satisfies

du

dt
= 1 +

√
5 + 1

1 + t
u.

Solving this equation subject to the initial condition c(0) = 0,
the full solution to (6) is

c(t ) = 2

1 + t

(1 + t )
√

5 − 1

(
√

5 − 1)(1 + t )
√

5 + √
5 + 1

. (7)

The densities m(t ) and c(t ) both asymptotically decay as t−1

when t → ∞ (Fig. 2). This behavior contrasts with clas-
sic constant-kernel aggregation, where m(t ) asymptotically
decays as t−2, while the cluster density asymptotically de-
cays as t−1. Intriguingly, for t → ∞, the ratio of clusters to
monomers in charged aggregation approaches the golden ratio
c(∞)
m(∞) = 1

2 (
√

5 + 1).
To determine the individual cluster densities ck (t ), it is

expedient to introduce the generating function,

C(z, t ) ≡
∑
k�1

ck (t )zk .

Multiplying each of Eqs. (5) by zk and summing over all k,
we recast the infinite system (5) into the single differential
equation,

dC

dt
= C2 − 2cC + z

(1 + t )2
. (8)

As in the case of the generating function solution to
constant-kernel aggregation, it proves convenient to sub-
tract (8) from (6) to give the Riccati equation for

y(z, t ) = c(t ) − C(z, t ):

dy

dt
= −y2 + 1 − z

(1 + t )2
, (9)

subject to the initial condition y(z, 0) = 0. We solve this equa-
tion by using the same approach that was used in solving
Eq. (6). From this solution, and also using the expression for
c(t ) in Eq. (7), we finally obtain

C(z, t ) = 2

1 + t

(1 + t )
√

5 − 1

(
√

5 − 1)(1 + t )
√

5 + √
5 + 1

− 2(1 − z)

1 + t

(1 + t )ζ − 1

(ζ − 1)(1 + t )ζ + ζ + 1
, (10)

where ζ = √
5 − 4z.

Expanding (10) in powers of z, one can, in principle, ex-
tract ck (t ) for any k � 1. However, the expression for c1 is
already cumbersome, and the expressions for ck for k � 2
are even more so. If we only want the asymptotic behavior,
this may be more easily obtained by substituting the ansatz
ck = Ak/t into (5); one may readily check that this substitution
is self consistent. After straightforward steps, we find that the
Ak satisfy the recurrence

√
5 Ak =

∑
i+ j=k

AiA j + δk,1.

For k = 1, we have A1 = 1√
5
. To obtain the general solu-

tion for Ak , we introduce the generating function A(z) ≡∑
k�1 Akzk , multiply the above recurrence by zk , and sum over

all k. This gives the quadratic equation for the generating
function, A2 − √

5A + z = 0, whose solution is

A(z) =
√

5

2

(
1 ±

√
1 − 4

5
z

)
,

where we must choose the negative sign before the square
root to have the correct behavior for z → 0. Expanding this
expression in a Taylor series gives

ck � Ak

t
, (11a)

with

Ak =
√

5

16π

�
(
k − 1

2

)
�(k + 1)

(
4

5

)k

. (11b)

The mass distribution decays exponentially in k, with a
time-independent cutoff. This result for ck is valid in the limit
t → ∞ with k fixed.

It is now instructive to compute the moments of the cluster-
mass distribution,

Mn ≡
∑
k�1

knck, (12)

where we excluded the contribution of monomers for conve-
nience. As we will show below, it is simpler to compute the
dependence of the moments on the monomer density rather
than as a function of time and then determine the asymptotic
time dependence. The exact expressions for the first three
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moments are

M1(m) = 1 − m, (13a)

M2(m) = 2

m
+ 1 − 3m + 4 ln m, (13b)

M3(m) = (1 − m)(6 + 24m + 19m2)

m2

+ 24

m
ln m + 24 ln m + 12(ln m)2. (13c)

Equation (13a) is just the mass conservation statement. To
obtain the second moment, we multiply each of Eqs. (5a)
and (5b) by k2 and sum these equations. This gives the time
dependence of the second moment:

dM2

dt
= 2M2

1 + m2. (14a)

It is now helpful to use dm
dt = −m2 and the mass conservation

statement M1 = 1 − m to eliminate the time and express M2

as a function of m. This gives

dM2

dm
= −2(1 − m−1)2 − 1. (14b)

The solution to this equation subject to the initial condition
M2(m = 1) = 0 is just (13b).

Similarly, the time dependence of the third moment is
dM3

dt
= 6M1M2 + m2. (15a)

Once again, we eliminate the time in favor of m to yield

dM3

dm
= −6(1 − m)

(
2

m
+ 1 − 3m + 4 ln m

)
− 1. (15b)

Solving this equation subject to the initial condition
M3(m = 1) = 0 gives (13b).

Since m(t ) � t−1, the leading time dependence of the mo-
ments in (13) comes from the term with the most negative
power of m. Thus, we conclude that

M1(t ) � 1, M2(t ) � 2t, M3(t ) � 6t2. (16)

Following the above line of reasoning and with some addi-
tional effort, the time dependence of the general nth moment
as t → ∞ is

Mn(t ) � n! t n−1. (17)

This leading behavior coincides with the time dependence
of the moments in classic constant-kernel aggregation. This
equivalence seems to stem from the fact that the reactions of
neutral clusters in charged aggregation is the same as reac-
tions of all clusters in constant-kernel aggregation. The fact
that neutral clusters are created by a time-dependence source
from the reaction of oppositely charged monomers rather than
being present in the initial state does not seem to affect the
long-time behavior of the moments.

There is a subtlety in the moments that deserves mention.
For a fixed value of the mass k, the asymptotic behavior of the
cluster density is given by (11a). If (11a) remained valid for
all k, then all the moments Mn(t ) would decay as t−1, since
Ak decrease exponentially with mass and the sum

∑
k�1 knAk

converges for all n. Thus, it is necessary to take the limits
k → ∞ and t → ∞ in the correct order.

B. Distinct monomer and cluster reaction rates

Because charged monomers are fundamentally distinct
from neutral clusters, it is natural to investigate the ag-
gregation kinetics for the situation in which the rate of
cluster-cluster merging is set to one, as before, but the
monomer-monomer merging rate is set to λ. We now explore
the consequences of this generalization within the mean-field
approximation. The rate equations for the monomer and clus-
ter densities now are [compare with Eqs. (3) and (6)]

dm

dt
= −λm2,

dc

dt
= −c2 + λm2. (18)

The rate equation for the the dimer density now is

dc1

dt
= −2c1c + λm2, (19)

while the rate equations for the cluster densities with k � 2
are again given by Eq. (5b).

Solving the equations for m(t ), c(t ), and then c1(t ), the re-
sulting expressions for the latter two quantities are extremely
cumbersome. However, if we only want the asymptotic be-
havior, we may perform the same analysis as given above to
obtain the amplitude Ak in the asymptotic expression for ck ,
as well as the ratio of clusters to monomers as a function of λ:

Ak =
(

4

4 + λ

)k √
4 + λ

4
√

πλ

�
(
k − 1

2

)
�(k + 1)

,

c(∞)

m(∞)
=

√
λ(4 + λ) + λ

2
. (20)

From the expression for Ak , we infer that ε defined in Eq. (1)
is given by ε = ln((4 + λ)/4)).

The results for c(t ) and c1(t ) simplify considerably for a
number of special cases. For example, when λ = 1

2 , the above
ratio equals 1. In this case, the cluster density becomes the
following rational function of time:

m = 2

2 + t
, c = 2t

2 + t

12 + 6t + t2

24 + 12t + 6t2 + t3
, (21a)

while the dimer density c1 is

c1 = 2

3

A(t ) + B(t ) ln(1 + t/2)

(2 + t )(24 + 12t + 6t2 + t3)2
, (21b)

with

A = t (480 + 384t + 184t2 + 60t3 + 12t4 + t5),

B = 96(2 + t )3.

Another simple case is λ = 4
3 , where the ratio c(∞)/m(∞)

now equals 2 (Fig. 3). Here, the cluster density is again a
rational function of time

m = 3

3 + 4t
, c = 12t

3 + 4t

3 + 2t

9 + 6t + 4t2
, (22a)

and the dimer density c1 is

c1 = 3

8

A(t ) + B(t ) ln(1 + 4t/3)

(3 + 4t )(9 + 6t + 4t2)2
, (22b)

with

A = t (540 + 504t + 192t2 + 64t3), B = 27(3 + 4t )2.
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FIG. 3. The monomer density m(t ), the cluster density c(t ), and
the dimer density c1(t ) from Eqs. (22) when λ = 4

3 . All densities
decay as t−1. Asymptotically, the density ratios c(∞)

m(∞) and m(∞)
c1(∞) both

equal 2.

III. THE PRODUCT KERNEL

We now investigate charged aggregation when the reaction
kernel has the product form Ki, j = i j, which leads to a finite-
time gelation transition. At a critical gelation time, an infinite
cluster (gel molecule) is born that gradually engulfs all the
remaining finite-mass clusters as t → ∞.

For generality, we assume that the reaction rate between
monomers is λ, so that its rate equation is the first of (18),
with solution m(t ) = 1/(1 + λt ). The density of cluster is now
given by

dc1

dt
= λm2 − c1(1 − m), (23a)

dck

dt
= 1

2

∑
i+ j=k

i jcic j − kck (1 − m) k � 2. (23b)

In the loss term in (23b), we have used the fact that the mass
density of clusters,

∑
k�1 kck equals 1 − m.

To find the gelation transition, we study the time depen-
dence of the second moment M2(t ). From Eqs. (23), this
second moment satisfies

dM2

dt
= M2

2 + λm2 = M2
2 + λ

(1 + λt )2
,

whose solution is

M2 = �

1 + λt

1 − (1 + λt )
√

1−4/λ

� − 1 − (1 + λt )
√

1−4/λ
, (24)

where � ≡ 1
2 (λ + √

λ(λ − 4)). This expression is manifestly
real for λ > 4 and it can be recast into a real form for 0 < λ �
4. For the specific cases of λ = 1 and λ = 4, we find (Fig. 4)

M2 =
⎧⎨
⎩

2
1+t

1√
3 cot[

√
3

2 ln(1+t )]−1
λ = 1,

2
1+4t

ln(1+4t )
2−ln(1+4t ) λ = 4.

(25)

The second moment diverges at the gelation time, whose
value is obtained by setting the denominator in Eq. (24) to

FIG. 4. The second moment M2(t ) for product kernel charged
aggregation for λ = 1 (blue) and λ = 4 (red).

zero. This gives

tg = (� − 1)1/
√

1−4/λ − 1

λ
. (26)

For the special cases of λ = 1 and λ = 4, the gelation
time is tg = e2π/

√
27 − 1 = 2.3508 . . . and tg = 1

4 (e2 − 1) =
1.597264 . . ., respectively. The limiting behaviors of the gel
time are tg → 1 for λ → ∞, and tg → √

π/4λ for λ → 0.
From the rate equations (23a) and (23b), the time depen-

dence of the total cluster density is

dc

dt
= λm2 + g2 − (1 − m)2

2
, (27)

where g is mass in the gel phase. This gel mass is defined via

M1 =
∑
k�1

kck = 1 − m − g, (28)

where the sum is over finite-mass clusters. When t < tg, we
integrate (27) with g = 0 to yield

c = ln(1 + λt )

λ
− 1 − λ(1 − t/2)

1 + λt
t . (29)

This cluster density has a maximum for t = √
2/λ. In the

postgel phase, t > tg, we formally integrate (27) to give

c = ln(1 + λt )

λ
− 1 − λ(1 − t/2)

1 + λt
t + 1

2

∫ t

tg

dt ′ g2(t ′). (30)

IV. THREE TYPES OF MONOMERS

Given the rich dynamics of charged aggregation with two
types of monomers, it is natural to generalize to the case of
three types of monomers, A, B, and C, that are each initially
present with equal densities. In the same spirit as the two-
monomer model, we postulate that the only possible monomer
reaction event is the merging of three dissimilar monomers,
[A] ⊕ [B] ⊕ [C] → [ABC], which results in a neutral trimer
(Fig. 5). Neutral clusters of mass greater than or equal to
three continue to merge to create neutral clusters of the form
[(ABC)k] with k � 2. If we ascribe a complementary color to
each monomer species, the trimer is neutral since it has no
net color.
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FIG. 5. Aggregation with three monomer species. The elemental
event where three distinct monomer types merge into a neutral trimer
is shown.

Adopting the language from particle physics, we can think
of monomers as quarks with colors A = red, B = green, and
C = blue. A baryon is composed of three quarks, which must
contain one monomer each of red, green, and blue colors.
Hence, a trimer plays the role of an elementary baryon. We
may also envision a more general stoichiometry in which
there are both quarks and antiquarks. In the context of particle
physics, a quark-antiquark pair corresponds to a meson. In the
framework of aggregation, one can imagine a rich range of
phenomena with both baryonic aggregation, mesonic aggrega-
tion, and possibly mixed aggregation of baryons and mesons.

Returning to our minimal three-species model, the density
m of monomers of each type decays according to

dm

dt
= −m3, (31)

whose solution, subject to m(0) = 1, is

m = 1√
1 + 2t

. (32)

The density c1 of trimers now satisfies

dc1

dt
= −2c1c + m3, (33)

while the density ck of clusters of mass 3k satisfies Eq. (5b) for
k � 2.

The time dependence of the total cluster density is ac-
counted for by the Riccati equation,

dc

dt
= −c2 + (1 + 2t )−3/2. (34)

While this equation is unsolvable, it is not difficult to de-
termine the relevant large-time behavior. We first note that
it is not possible that all three terms in (34) have the same
time dependence. If one assumes that c ∼ t−α , then the terms
in this equation are of order t−(1+α), t−2α , and t−3/2, which
can never be of the same order. Thus, we seek a solution in
which two of the three terms in (34) are dominant. The only
consistent solution arises when the terms on the right-hand
side are dominant, while the left-hand side is negligible. With
this assumption, we immediately find

c � (1 + 2t )−3/4. (35)

Hereinafter we keep only the leading term and merely mention
that the correction terms can be also computed:

c = (1 + 2t )−3/4 + 3
4 (1 + 2t )−1 + · · · .

By keeping the two dominant terms in (33), we find that
the leading asymptotic behavior of the trimer density is simply
c1 = c/2. Using (5b) we can then find the leading asymptotic
behavior of the densities ck for the first few k values, from
which we deduce that all the ck are of the same order as c
itself. Using this fact, we therefore write

ck = Ak c (36)

for any fixed k and t → ∞. Substituting this ansatz into
(5b) and keeping only the leading terms gives the recurrence

2Ak =
∑

i+ j=k

AiA j + δk,1,

whose solution is [6]

ck = c√
4π

�
(
k − 1

2

)
�(k + 1)

� c√
4π

k−3/2 k � 1. (37)

Let us now determine the asymptotic behavior of the mo-
ments Mn as defined in Eq. (12). The first moment is given by
Eq. (13a) due to mass conservation. Following the same steps
as those used for monomers with two types of charges, the
next two moments are

M2(m) = (2 − m−1)2 − m − 2 ln m, (38a)

M3(m) = 3

2m4
− 10

m3
+ 21

m2
− 18

m
+ 13

2
− m

− 6(1 − m−1)2 ln m. (38b)

We now substitute the asymptotic form m(t ) � 1/
√

2t for the
monomer density into Eqs. (38) and find that the leading time
dependence of the moments are the same as in the case of two
types of monomers: Mn(t ) � n! t n−1.

If there are n + 1 types of monomers with n � 2, the
same considerations as those used for the three-species model
lead to

m = (1 + nt )−1/n, c � (1 + nt )−(n+1)/2n. (39)

The solution for the cluster-mass density is still given by
Eq. (37), but with c now given by (39). We also find that the
asymptotic time dependence of the moments is independent
of the number of monomer types.

V. SUMMARY AND DISCUSSION

We investigated the kinetics in a model of “charged” aggre-
gation, in which the reaction begins with equal concentrations
of positively charged and negatively charged monomers. Op-
positely charged monomers join to form neutral dimers, and
neutral clusters of any mass greater than or equal to two
react freely with other neutral clusters to form aggregates
of ever-increasing size. Within the mean-field approximation,
we obtained the time dependences of the concentration of
monomers and the concentration of clusters of any size.

At a qualitative level, charged aggregation is a version
of classic aggregation, but with a time-dependent source of
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dimers (effectively the elemental constituents of charged ag-
gregation) that is decaying with time. This mechanism leads
to the densities of clusters of mass k decaying with time as
t−1 in the small-mass limit. We also explored the kinetics
of charged aggregation with a product reaction kernel. We
found that this model undergoes a conventional second-order
gelation transition at a gelation time than depends on λ, the
monomer-monomer reaction rate.

It should be worthwhile to explore the kinetics of charged
aggregation in finite spatial dimensions, where fluctuation
effects should play a significant role. The simplest case
and the one with the largest departures from mean-field
behavior is the case of one dimension. There are two nat-
ural situations that may be worthwhile to explore: (i) a
spatially homogeneous system, and (ii) positive and nega-
tive monomers initially occupying the positive and negative
infinite half-lines. Another natural situation is a steady
and spatially localized monomer input in a d-dimensional
space.

For the first scenario, charged aggregation involves a
superposition of a two-species reaction, the conversion of
oppositely charge monomers to neutral dimers, and single-
species reactions, the merging to neutral clusters of any size.
In one dimension, these two constituent reactions have very
different kinetics and their melding could lead to unusual
kinetics.

If the monomers of each type are spatially separated,
then their reaction is identical to the well-studied problem
of two-species annihilation with the same initially separated
initial condition. In charged aggregation, the localized zone
where monomers react leads to a spatially localized and time-
dependent source of dimers. It is natural to also treat a steady,
but spatially localized source of dimers in general spatial
dimension.
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