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Templating aggregation
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We introduce an aggregation process that is based on templating, where a specified number of constituent
clusters must assemble on a larger scaffold aggregate for a reaction to occur. A simple example is a dimer
scaffold, upon which two monomers meet and create another dimer, while dimers and larger clusters irreversibly
join at mass-independent rates. In the mean-field approximation, templating aggregation has unusual kinetics in
which the monomer density m(t ) and the density c(t ) of all clusters heavier than monomers decay with time as
c ∼ m2 ∼ t−2/3. These strongly contrast with the corresponding behaviors in conventional aggregation, where
c ∼ m1/2 ∼ t−1. We also treat three natural extensions of templating: (a) the reaction in which L monomers meet
and react on an L-mer scaffold to create two L-mers, (b) multistage scaffold reactions, and (c) templated ligation,
in which clusters of all masses serve as scaffolds and binary aggregation does not occur.
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I. INTRODUCTION

Irreversible aggregation is a fundamental kinetic pro-
cess in which two clusters from a heterogeneous population
irreversibly merge to form a larger cluster. Symbolically, irre-
versible aggregation is represented by the reaction scheme

Ci ⊕ Cj
Ki, j−→Ci+ j, (1)

where Ci denotes a cluster of mass i and Ki, j specifies the rate
at which a cluster of mass i (an i-mer) joins to a j-mer to
form an (i + j)-mer. The basic observable in aggregation is
the cluster-mass distribution, whose properties depend on the
functional form of the reaction kernel Ki, j . In the mean-field
approximation in which all reactants are perfectly mixed, the
time dependence of the cluster-mass distribution is described
by an infinite set of rate equations that accounts for the change
in the cluster concentrations due to reactions with other
clusters.

The emergence of complex molecules from prebiotic build-
ing blocks is a key aspect in theories of the origin of life [1–8].
Aggregation processes that generate growing (and hence more
complex) clusters provide a convenient starting point for the-
oretical analyses. Pure aggregation is too minimal, however,
and one would like to enrich the reaction scheme (1) by addi-
tional processes that contribute to the emergence of complex
entities.

In this work, we investigate an aggregation process that is
augmented by the mechanism of templating. In the simplest
realization of templating aggregation, clusters of a specified
mass s serve as scaffolds that facilitate the reaction (Fig. 1).
On this scaffold, two clusters of masses k < s and s − k meet
and merge to form another cluster of mass s. Newly created
clusters of mass s can then serve as scaffolds for subsequent
reactions or they can participate in binary aggregation. The
templating reaction can be viewed as the autocatalytic repli-
cation of scaffolds. Autocatalysis is a reaction step that seems
to be an essential feature in various models of the origin of

life [9–14], and our model may provide some insights about
the kinetics of autocatalysis. We also treat simple extensions
of our model to multistage scaffold reactions and templated
ligation (a self-templating reaction in which clusters of any
mass can serve as scaffolds). Similar models might be rele-
vant to the autocatalytic formation, or self-assembly, of larger
structures in physical chemistry [15–17].

Our goal is to determine the kinetics of this template-
controlled aggregation. We first treat a particularly simple
version of templating aggregation in which the scaffolds have
mass s = 2, namely, they are dimers, and all reaction rates
are mass independent. When two monomers meet on a dimer,
the latter serves as a scaffold to facilitate the merging of the
monomers to create another dimer scaffold (Fig. 1). Sym-
bolically, this template-controlled merging of monomers on
a dimer scaffold is represented by the reaction scheme

M ⊕ M ⊕ D → D + D, (2)

where M denotes a monomer and D denotes a dimer (Fig. 1).
In our modeling, clusters with masses � 2, i.e., dimers

and heavier clusters, undergo conventional binary aggrega-
tion. The governing equations for this templating aggregation
reaction contain contributions from the three-body templating

FIG. 1. The steps in templating aggregation on a scaffold of
mass s = 2 (a dimer): (a) two monomers simultaneously meet on
the scaffold and (b) the adsorbed monomers undergo a reaction in
the presence of the template to form a second dimer, so that (c) two
free dimers result.
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reaction and the two-body reactions of conventional aggrega-
tion. This mixture of different reaction orders underlies the
unusual kinetics of our model. In the templating aggregation
with dimer scaffolds, all cluster masses must be even except
for monomers, under the assumption that only monomers and
dimers are initially present.

For conventional binary aggregation with mass-
independent reaction rates and the monomer-only initial
condition, the density ck (t ) of clusters of mass k at time t and
the total cluster density c(t ) are given by [18–22]

ck (t ) = t k−1

(1 + t )k+1
, c(t ) =

∑
k�1

ck (t ) = 1

1 + t
. (3)

In the long-time limit, the density ck (t ) of clusters of any fixed
mass k and the total cluster density c(t ) decay algebraically
with time:

ck � t−2, c � t−1. (4)

These decay laws are independent of the initial condition and
hence universal.

For the specific templating aggregation process where only
dimers can act as scaffolds, all clusters heavier than monomers
necessarily have even masses. The decay laws for the various
cluster densities are algebraic in time, as in ordinary aggrega-
tion, cf. (4), but the decay exponents differ:

c1 � 2

(3t )1/3
, c2 � 1

2(3t )2/3
, c � 1

(3t )2/3
, (5)

where here c = ∑
k�2 is the density of clusters of mass 2 or

greater. An unusual feature of templating aggregation is that
the decay exponents for dimers c2(t ) and the cluster density
c(t ) are the same. In fact, the asymptotic decay of the density
of clusters of any fixed mass k has the same time dependence,
ck ∼ t−2/3. Another surprising feature is that the monomer
density c1(t ) exhibits a slower decay in time than the clus-
ter density c(t ). There is no contradiction here because the
cluster density in templating aggregation does not include
monomers.

In Sec. II, we analyze the template-controlled aggregation
with dimer scaffolds and derive the decay laws (5), as well
as the decay law for ck (t ) for k > 2. In Sec. III, we intro-
duce and study more general models of template-controlled
aggregation. First, we consider the model with scaffolds of
fixed mass L for arbitrary L � 2. Then we analyze the ef-
fect of multiple levels of templating. Specifically, we treat a
model with two types of templates, dimers and 4-mers, and
the template-controlled reaction in (2) is supplemented by the
reaction

D ⊕ D ⊕ F → F + F, (6)

where F represents 4-mers. Under the assumption that clus-
ters of mass 4 and greater undergo ordinary aggregation, we
find kinetic behaviors similar to that quoted in Eq. (5). Finally,
in Sec. IV, we study templated ligation, in which clusters of
all masses serve as scaffolds and in which no binary aggrega-
tion reactions occur. In distinction to the reactions where the
scaffolds have a specified mass, we now find that the cluster
density is the most slowly decaying quantity, c(t ) ∼ t−1/3,
while the monomer density exhibits the t−2/3 decay.

II. TEMPLATING WITH DIMER SCAFFOLDS

Templating aggregation with dimer scaffolds has nontrivial
kinetics only if the densities of monomers and dimers are
nonzero at the beginning of the evolution. In the absence of
monomers, the process reduces to ordinary aggregation; in
the absence of dimers, monomers cannot merge and there is
no evolution. The kinetic behavior is particularly clear cut
when only monomers and dimers are initially present. In this
case, the only possible cluster types are monomers and heavier
clusters, whose masses must be even.

With the assumption that clusters are perfectly mixed
and that the reaction rates are mass independent, the rate
equations for the monomer and dimer densities are

dc1

dt
= −c2

1 c2, (7a)

dc2

dt
= 1

2
c2

1 c2 − 2c c2. (7b)

Equation (7a) accounts for the decay of monomers when two
monomers meet on a scaffold to create a dimer. The first
term on the right-hand side of (7b) can be viewed as a time-
dependent source of dimers that is driven by the reaction of
monomers. Previous work has investigated the influence of
a monomer source with an arbitrary time dependence on the
aggregation kinetics [23]. Since heavier clusters with masses
k > 2 undergo conventional aggregation, their densities
satisfy

dck

dt
=

∑
i+ j=k

ci c j − 2c ck, (8)

with all cluster masses even. A useful check of the consistency
of Eqs. (7) and (8) is to verify that the mass density

c1 +
∑

k�2, k even

kck

is conserved.
As stated above, we postulate that initially

c1(0) > 0, c2(0) > 0, ck (0) = 0 (k > 2). (9)

By construction of the model, dimer scaffolds are always
present and they catalyze the continuous creation of new scaf-
folds, leading to unusual kinetics, as we demonstrate below.
The precise values of c1(0) and c2(0) affect only early-time
behavior. We often set c1(0) = 1 for simplicity and vary only
c2(0) = c(0) = ρ.

To determine the asymptotic behavior of templating aggre-
gation, we begin by adding the Eqs. (7b) and (8) to give

dc

dt
= 1

2
c2

1 c2 − c2. (10)

Equations (7) and (10) constitute a closed system of three cou-
pled nonlinear ordinary differential equations (ODEs) whose
solution determines the resulting kinetics.

The form of the equation for the monomer density suggests
introducing the modified time variable,

τ =
∫ t

0
dt ′ c2(t ′), (11)
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to recast the rate equation (7a) for monomer density into

dc1

dτ
= −c2

1,

with solution

c1(τ ) = c1(0)

1 + c1(0)τ
. (12)

The leading asymptotic behavior is c1 � τ−1, independent of
c1(0). Below we show that the dependence of c1(t ) on the
original time variable is also asymptotically independent of
c1(0). Therefore we adopt the initial condition c1(0) = 1 so
that c1(τ ) = 1/(1 + τ ).

Using the modified time variable (11), as well as the so-
lution (12), we rewrite the equation for the dimer and cluster
concentrations as

dc2

dτ
= 1

2(1 + τ )2
− 2c, (13a)

dc

dτ
= 1

2(1 + τ )2
− c2

c2
, (13b)

subject to the initial condition c2(0) = c(0) = ρ. The initial-
value problem (13) with this initial condition appears to be
intractable. Since we are mainly interested in the long-time
behavior which is independent of the initial density ρ, we
resort to the method of dominant balance [24]. This method
relies on neglecting one of the three terms in (13a) and (13b)
and selecting the alternative that leads to a consistent solution.

Using this trial and error approach, we deduce that in both
equations in (13), the right-hand side (RHS) dominates the
left-hand side (LHS). Neglecting the LHS in Eqs. (13), we
find

c � 1

4(1 + τ )2
, c2 � 1

8(1 + τ )2
, (14)

as τ → ∞. A more detailed but straightforward asymptotic
analysis of Eqs. (13a) and (13b) gives the more complete long-
time behavior

c = 1

4(1 + τ )2
+ 1

8(1 + τ )3
− 1

8(1 + τ )5
, (15a)

c2 = 1

8(1 + τ )2
− 1

16(1 + τ )4
− 1

16(1 + τ )5
, (15b)

where we drop terms of the order of τ−6 and lower. All
algebraic correction terms are universal, i.e., independent of
the initial conditions. Only terms that are exponentially small
in the τ → ∞ limit depend on the initial condition.

To find the dependence of the cluster densities on the
physical time, we substitute c2 from (14) into the definition
of the modified time (11) and invert this relation to give

t =
∫ τ

0

dτ ′

c2(τ ′)
� 8

∫ τ

0
dτ ′ (1 + τ ′)2 � 8

3
τ 3. (16)

If we employ the more accurate asymptotic formula in (15)
for c2(τ ), we instead obtain the expansion

t = 8
3 τ 3 + 8τ 2 + 11

6 τ + O(1), (17)

with three exact terms. The last term, a constant, cannot be
determined analytically since it depends on the initial condi-
tion. Limiting ourselves to the leading asymptotic behavior,

FIG. 2. Time dependences of c1(t ), c(t ), and c2(t ) on a double
logarithmic scale, with asymptotic decay of t−1/3 for c1(t ), and t−2/3

for both c(t ) and c2(t ), as predicted by Eq. (5). The ratio c(t )/c2(t )
quickly approaches 2 for increasing time, as predicted by (14).

we substitute τ � (3t/8)1/3 into (12) and (14) to arrive at the
central results given in Eq. (5).

Figure 2 shows the time dependence of c1(t ), c(t ), and
c2(t ) obtained by numerical integration of Eqs. (7a)-(7b) and
(10) by Mathematica. As the initial condition we use c1(0) =
1 and c2(0) = c(0) = 0.1. The results of this numerical inte-
gration are fully consistent with the results of Eq. (5).

Having found the dimer concentration c2(t ), we now out-
line how to obtain all the cluster densities. Based on the form
of the rate equation for ck (t ) for k > 2, we anticipate that
ck = Ak c; that is, all individual cluster densities are of the
same order as the total density of clusters of mass 2 or greater.
Substituting this ansatz into Eq. (8) we obtain the following
recursion for the amplitudes:∑

i+ j=k

AiA j = 2Ak k > 2, (18)

again with all indices necessarily even. The already known
value A2 = 1

2 plays the role of the initial condition for this
recursion. Solving (18) subject to this initial condition gives

ck

c
= 1√

4π

�
(
k/2 − 1

2

)
�(k/2 + 1)

�
√

2

π

1

k3/2
, (19)

where the last asymptotic is valid when k 	 1 and generally
(19) holds in the t → ∞ limit.

This large-k asymptotic, Ak ∼ k−3/2, holds only up to a
cutoff value k∗, beyond which the Ak must decay faster than
any power law. To understand the origin of this cutoff, we note
that the sum

∑
k�1 kAk diverges if Ak ∼ k−3/2 for all k. This

divergence contradicts the mass conservation statement that∑
k�1 kck → const. To resolve this apparent divergence, the

power-law behavior of Ak must break down beyond a cutoff
value k∗. To determine k∗, we compute∑

k�1

kck ∼ c
∑

1�k�k∗
k × k−3/2 ∼ c

√
k∗.

Since both sums are constant, we see that the threshold mass
is given by k∗ ∼ c−2 ∼ τ 4 ∼ t4/3. Thus the power-law mass
distribution is cut off at k∗ to ensure mass conservation. This
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cutoff is analogous to what happens in constant-kernel ag-
gregation with a steady monomer source [22]. In this latter
example, the cutoff is determined by the condition that the
total mass in the system is equal to the total mass that is
injected up to a given time.

III. GENERAL TEMPLATING REACTIONS

There are two natural generalizations of templating aggre-
gation that we now explore. One such example is scaffolds
that are heavier than dimers, and another example is multiple
stages of scaffold reactions.

A. Templating with scaffolds of mass L

Suppose the scaffold has mass L and the simultaneous
presence of L monomers on the scaffold is required to create
a second L-mer. Aggregates of mass L and heavier also un-
dergo conventional aggregation. We assume that the process
begins with a nonzero density of monomers and scaffolds.
By construction, the masses of heavier aggregates are integer
multiples of L.

We can determine the kinetics of this model by adapting
the analysis of the previous section in a straightforward way.
Within this model, Eqs. (7a)-(7b) and (10) become

dc1

dt
= −cL

1 cL, (20a)

dcL

dt
= 1

L
cL

1 cL − 2c cL, (20b)

dc

dt
= 1

L
cL

1 cL − c2, (20c)

which again constitute a closed system of three coupled non-
linear ODEs. In terms of the modified time variable defined
in (11), the solution for the monomer density for the initial
condition c1(0) = 1 now is

c1(τ ) = 1

[1 + (L − 1)τ ]1/(L−1)
. (21)

Using this solution for the monomer density and also em-
ploying the same dominant balance method as in the previous
section, we obtain

c � 1

2L

1

[1 + (L − 1)τ ]L/(L−1)
, (22a)

cL � 1

4L

1

[1 + (L − 1)τ ]L/(L−1)
. (22b)

We now express these two densities in terms of the physical
time:

t =
∫

dτ ′

cL(τ ′)
� 4L

2L − 1
[1 + (L − 1)τ ](2L−1)/(L−1). (23)

Combining (21) and (22) with (23), we thereby find that
the densities of monomers and L-mers, and the total cluster
density decay as

c1(t ) �
(

2L − 1

4L
t

)−1/(2L−1)

, (24a)

FIG. 3. Templating aggregation with two levels of templating:
(a) two monomers react on a dimer scaffold; (b) two dimers react
on a 4-mer scaffold.

c(t ) � 1

2L

(
2L − 1

4L
t

)−L/(2L−1)

, (24b)

cL(t ) � 1

4L

(
2L − 1

4L
t

)−L/2L−1)

. (24c)

As one might expect, the overall reaction kinetics slows down
as the scaffold size and consequently the reaction order L in-
creases. The ratios ckL/c are again stationary in the long-time
limit and are given by the same formula (19) as for the case
L = 2. Stationarity again holds up to a threshold mass k∗ that
grows as k∗ ∼ c−2 ∼ t2L/(2L−1).

B. Multiple levels of templating

Another natural scenario is a reaction that relies on mul-
tiple levels of templating. Here we treat the simplest case of
two levels of templating in which (a) a new dimer template
is created when two monomers react on an existing dimer
template, and (b) a new 4-mer template is created when two
dimers react on an existing 4-mer template (Fig. 3). In this
formulation, dimers are not free to aggregate; only clusters
of mass 4 and greater can react via conventional aggregation.
Monomers and dimers now play special roles in the reaction.

In close analogy with Eq. (7), the rate equations for the
densities of monomers, dimers, and 4-mers are

dc1

dt
= −c2

1 c2, (25a)

dc2

dt
= 1

2
c2

1 c2 − c2
2 c4, (25b)

dc4

dt
= 1

2
c2

2 c4 − 2c c4. (25c)

The densities of heavier clusters satisfy the same Eq. (8) as
in our previous models. Summing Eq. (25c) and Eq. (8) we
deduce the evolution equation,

dc

dt
= 1

2
c2

2 c4 − c2, (26)

for the density of clusters of mass 4 and greater.
Equations (25) and (26) again constitute a closed system of

four coupled nonlinear ODEs from which we can, in principle,
determine the kinetic behavior. These equations, subject to the
initial conditions c1(0) > 0, c2(0) > 0, and c4(0)=c(0)>0,
do not possess an exact solution. Instead, we again use the
method of dominant balance to infer the asymptotic behavior.
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FIG. 4. Time dependence of c1(t ), c2(t ), c(t ), and c4(t ) on a dou-
ble logarithmic scale, with asymptotic decay of t−1/3 for c2(t ) and
t−2/3 for c1(t ), c(t ), and c4(t ).

We first neglect the LHS in Eq. (25c) to give c � c2
2/4. We

substitute this result into (26), where we also neglect the LHS
to find c4 � c2

2/8. Thus

c � 1

4
c2

2, c1 � 1

8
c2

2. (27)

There are various choices of which terms to neglect in
Eqs. (25a) and (25b). An elementary but lengthy trial and
error approach shows that the consistent dominant balance is
to keep the LHS in Eq. (25b). Since this term is negative, the
simplest choice is to neglect the first term on the RHS of this
equation. This gives

dc2

dt
= −1

8
c4

2.

Solving this equation and substituting this solution into both
Eqs. (25a) and (27), and again solving, gives

c1 � c � 2c4 � (3t )−2/3, c2 � 2(3t )−1/3. (28)

The decay laws for c and c4 are the same as in the templating
with dimer scaffolds, and even the amplitudes are identical [cf.
Eq. (5)]. The density of monomers decays similarly to c and
c4, and only the dimer density has the slowest decay of t−1/3.
We used Mathematica to numerically integrate Eqs. (25) and
(26) and the results are shown in Fig. 4. These asymptotic
behaviors are in excellent agreement with the theoretical
predictions (28).

IV. TEMPLATED LIGATION

We now investigate a self-templating reaction in which
clusters of all masses can merge only in the presence of a
scaffold with mass equal to the sum of masses of the reaction
partners. Furthermore, we postulate that all clusters (apart
from monomers) serve as scaffolds. This templated ligation
process [9,10,14,25,26] is represented by the reaction scheme

Ci ⊕ Cj ⊕ Ci+ j
Li, j−→ Ci+ j + Ci+ j . (29)

We assume that this ligation reaction is the only dynamical
process in the system. In particular, binary aggregation of
clusters does not occur. The absence of aggregation reactions
means that an initially compact mass distribution with a max-
imum mass J remains compact forever; that is, c j (t ) = 0 for

all j > J . However, for unbounded initial mass distributions
that decay sufficiently rapidly with mass, we anticipate that
the emergent behaviors are universal, that is, asymptotically
independent of the initial condition. One such example is
the exponential initial mass distribution c j (0) = 2− j−1 whose
mass density is normalized to 1:

∑
j�1

j c j (t ) = 1. (30)

If the ligation rates Li, j are mass independent, the equations
for the evolution of the cluster-mass distribution are

dck

dt
= ck

∑
i+ j=k

ci c j − 2ck

∑
j�1

c j c j+k . (31)

While purely ternary aggregation reactions, as embodied
by the RHS of Eq. (31), are rare, they are relevant in cer-
tain situations. For example, the evolution of aligned spin
domains in an Ising chain with zero temperature Swendsen-
Wang or Wolff dynamics [27,28] is governed by purely
ternary aggregation processes. However, for these two exam-
ples the governing equations are recursive and solvable. In
contrast, Eq. (31) is hierarchical and appears to be unsolv-
able. A mathematically related nonrecurrent structure arises
in the rate equations for cluster eating [29] and for combined
aggregation-annihilation [30]; albeit these problems are more
tractable since the underlying reactions are binary.

In the models analyzed in Secs. II and III, the evolution
equations for the lightest cluster species and the total cluster
density constitute a closed system of ODEs. There is no such
simplification in templated ligation because of the ternary
structure of the equations for the total cluster density and the
monomer density:

dc

dt
= −

∑
i, j�1

ci c j ci+ j, (32a)

dc1

dt
= −2c1

∑
j�1

c j c j+1. (32b)

Nevertheless, we can extract the long-time behavior from
Eq. (31) by invoking scaling. Similarly to aggregation [31,32]
(see also [21,22] for reviews) and the related catalytic ag-
gregation model [33], we expect that the mass distribution
approaches the scaling form

ck (t ) = c2�(kc) (33)

in the scaling limit k, t → ∞, c → 0, with kc = finite.
The mass conservation statement (30) and the definition of

the cluster density then lead to the integral constraints:∫ ∞

0
dx x�(x) = 1,

∫ ∞

0
dx �(x) = 1. (34)

Here we replace the summations by integrations, which is
appropriate in the long-time limit where scaling is valid.

Substituting the scaling ansatz (33) into (32a), the time
dependence of the total cluster density is given by

dc

dt
= −Bc4, (35a)
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with

B =
∫ ∞

0
dx

∫ ∞

0
dy �(x)�(y)�(x + y). (35b)

Solving (35a) gives the time dependence of the cluster
density:

c � (3Bt )−1/3. (36)

Using (36) and the scaling form (33) we conclude that the
density of monomers is then

c1 � �(0)(3Bt )−2/3. (37)

We can derive an alternative expression for the amplitude B
from the integral of the scaled mass distribution that is simpler
than the the double integral in Eq. (35b). Assuming �(0) > 0
and substituting (37) into (32b) we obtain

B =
∫ ∞

0
dy �2(y). (38)

To obtain the scaling function itself, we substitute the
scaling form (33) into the governing equations (31) and find
that the scaling function �(x) obeys the nonlinear integro-
differential equation:

B

[
2�(x) + x

d�(x)

dx

]
= 2�

∫ ∞

0
dz �(z)�(z + x)

− �

∫ x

0
dy �(y)�(x − y). (39)

Notice that by integrating (39) over all x, we recover (35b).
In the limit x → 0, Eq. (39) reduces to (38). These relations
serve as useful consistency checks.

The time dependence given in Eq. (36) together with Eq.
(39) for � constitutes a formal solution cluster-mass distri-
bution for the ligation reaction. While the explicit solution of
(39) is likely not possible, we have found, in a direct way, the
time dependence of the cluster densities.

V. SUMMARY AND DISCUSSION

We introduced an aggregation model that is based on the
mechanism of templating. Here an aggregate of a specified
mass acts as a scaffold upon which smaller clusters meet and
merge to create a cluster that can also act as a scaffold. Clus-
ters whose mass is either larger than or equal to the scaffold
mass additionally undergo conventional aggregation. Within
a mean-field description and also under the assumption that
all the reaction rates are mass independent, we determined the
time evolution of the cluster-mass distribution.

For this templating-controlled aggregation, the resulting
kinetics is much slower than in conventional aggregation. In
the simple case where the scaffold is a mass-2 dimer and two
monomers must meet on this scaffold to create another dimer,
the monomer density decays with time as t−1/3, while the
densities of clusters of mass 2 or greater all decay as t−2/3.
Thus the decay of the monomer density is slower than the
densities of clusters of mass 2 and greater. In conventional
aggregation, the density of clusters of any mass decays as
t−2, while the total cluster density decays as t−1. That is,
the monomer density decays faster than the cluster density.

To summarize, the relation between the monomer and cluster
densities is c1 ∼ c2 in ordinary aggregation and c1 ∼ c1/2 in
templating aggregation.

In templating aggregation with dimer scaffolds, a three-
body reaction drives the evolution of monomers and dimers,
while heavier clusters undergo conventional aggregation via
two-body reactions. This mixture of different reaction orders
is the underlying reason for the much slower kinetics com-
pared to conventional aggregation. Intriguingly, the relative
cluster densities ck/c in templating aggregation, Eq. (19),
are the same as those in conventional aggregation which is
augmented by a steady source of small-mass clusters [21,22].

We extended our model to a scaffold of arbitrary mass L,
upon which L monomers must meet and react to create another
L scaffold. Another natural extension is to allow multiple lev-
els of templating. For a two-stage templating reaction in which
dimers and 4-mers act as scaffolds to promote the reaction,
we observed similar behavior as in single-stage templating, in
which cluster densities of mass 4 and greater decay as t−2/3,
while only the dimer density decays as t−1/3.

We also introduced and investigated a templated ligation
reaction, where clusters of all masses serve as scaffolds,
and there is no binary aggregation. For this purely ternary
reaction, the total cluster density decays as t−1/3, while in-
dividual cluster densities decay as t−2/3. These decays are
slower than those in templating aggregation. Also in contrast
to templating aggregation, the mass distribution in templated
ligation was predicted to approach a scaling form. Even with
mass-independent reaction rates, templated ligation is calcu-
lationally quite challenging. We were able to determine the
time dependence of basic observables, but the amplitudes of
these decay laws and the precise form of the scaled mass
distribution remain unknown.

More generally, templating-driven aggregation can be
viewed as a modification of conventional binary aggregation,
but with a nontrivial time-dependent source of scaffolds (ei-
ther dimers or dimers and 4-mers) that serve as the input to
the aggregation process. It is remarkable that the nontrivial
and slow time dependence of these small elemental clusters
modifies the densities of all heavier clusters so that the overall
aggregation reaction has a slower dynamics compared to con-
ventional aggregation. From the perspective of applications,
there are many situations where templating plays a major role
in many types of reactions. In addition to applications for
models of the origin of life mentioned in the Introduction
[1–14], other applications include, for example, self assem-
bly of colloids [34], synthesis of exotic materials [35–37],
and protein aggregation [38]. Perhaps our simple modeling
can provide a starting point for understanding these types of
template-controlled reactions.
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