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Optimally frugal foraging
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We introduce the frugal foraging model in which a forager performs a discrete-time random walk on a lattice in
which each site initially contains S food units. The forager metabolizes one unit of food at each step and starves
to death when it last ate S steps in the past. Whenever the forager eats, it consumes all food at its current site and
this site remains empty forever (no food replenishment). The crucial property of the forager is that it is frugal
and eats only when encountering food within at most k steps of starvation. We compute the average lifetime
analytically as a function of the frugality threshold and show that there exists an optimal strategy, namely, an
optimal frugality threshold k∗ that maximizes the forager lifetime.
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I. INTRODUCTION

Foraging is a fundamental ecological process whose phe-
nomenology has been the basis for a large body of research
(see, e.g., Refs. [1–6]). Theories of foraging have attempted to
determine good strategies for a forager to maximize its food
consumption. Such strategies balance the interplay between
exploitation, where a forager consumes food in a current search
domain, and exploration, where a forager moves to a new
search domain that may be potentially richer. This dichotomy
between exploitation and exploration underlies a wide range
of optimization phenomena for which statistical physics ideas
have been fruitful, including the management of firms [7,8],
the multiarm bandit problem [9,10], the secretary problem
[11], Feynman’s restaurant problem [12], and human memory
[13,14]. In each of these cases, there is a continual tension
between continuing to exploit a current strategy or exploring
a new part of the strategy space where resources may be more
plentiful.

Typically these optimization problems do not account for
the depletion of resources due to their consumption by the
forager. The starving random walk [15–17] explicitly accounts
for this basic coupling between forager motion and depletion.
In this starving random walk model, a forager performs a
random walk on a lattice in which each site initially contains
S food units. When a forager lands on a food-containing site,
all the food there is consumed and the forager is fully satiated.
The forager metabolizes one unit of food at each step so that
it starves when it last ate S time steps in the past. When the
forager lands on an empty site, it comes one time unit closer
to starvation. In this model, food is not replenished, so that the
forager is doomed to eventually starve to death. One interesting
aspect of the starving random walk is the nontrivial dependence
of the forager lifetime on its intrinsic starvation time S and the
spatial dimension d [15,16].

A basic feature of the starving random walk is that the
forager mindlessly eats whenever food is encountered. Is it

possible that the forager can live longer with a different con-
sumption strategy? By incorporating the attribute of frugality,
in which the forager eats only when it is nutritionally depleted
below a specified level (Fig. 1), we will show that the average
lifetime of a forager can be dramatically increased compared to
the starving random walk. This frugality mimics what occurs
in ecological foraging, where foragers reduce their activity
when satiated and resume foraging only when sufficiently
depleted; parallel behavior occurs in predatory animals [18–
27]. Because of satiation, such animals do not eat all the food
that they encounter [28]. The concept of “laziness” has also
been invoked to describe how animals budget their time among
different basic everyday activities [29]. For instance, ants have
been reported to increase their foraging activity when they get
close to starvation [30]. Existing random search models do not
address such aspects of foraging. While delaying consumption
might seem to be a risky survival strategy, we will show here
that (i) frugality typically increases the forager lifetime and (ii)
the lifetime is maximized at an optimal frugality.

II. THE MODEL

The frugal forager starts at the origin in a food paradise,
where each lattice site initially contains S units of food. The
forager immediately eats all the food at the origin, so it begins
in a fully satiated state. Subsequently, the forager performs a
lattice random walk, independent of whether the forager lands
on a food-containing site or an empty site. That is, the forager
can only detect food that is on the same site as the forager.

The forager is characterized by its metabolic capacity, or
intrinsic starvation time S , which is the number of random-
walk steps that the forager can travel without encountering food
before starving to death. In each step, the forager metabolizes
one unit of food. If the forager lands on an empty site, the
forager therefore comes one time unit closer to starvation. If
the forager lands on a food-containing site and the forager is
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FIG. 1. The nutritional state of a frugal forager as a function of
time for the case S = 5 and frugality threshold k = 3. In the red zone,
the forager does not eat, even when it encounters food, while in the
green zone the forager eats whenever it encounters food. This forager
starves at t = 10.

within k time units of starvation, then all the food at this site
is consumed and the forager returns to a fully satiated state.

The limiting situation where the forager always eats when it
encounters food is known as the starving random walk [15,16],
which here we term as the normal forager. We denote k as the
frugality threshold, which can lie in the range 0 � k � S − 1
(Fig. 1). The case of k = S − 1 corresponds to the normal
forager that eats anytime it encounters food. Because the the
forager returns to a fully satiated state upon eating, up to k

food units are “wasted” by this consumption rule. The opposite
limiting case of k = 0 corresponds to the maximally frugal
forager that will be discussed in Sec. IV A. Figuratively, this
frugal consumption rule is akin to a decision that we often
make when driving a long distance on a highway, where we
fill the gas tank of the car only when the fuel level falls below
a specified level.

As in the case of the normal forager, an important feature
of the dynamics is that the mortality of the frugal forager
is coupled to its gradually (and quite slowly) depleting en-
vironment. Moreover, the lifetime of the forager depends on
its full trajectory. That is, this foraging process is inherently
non-Markovian because the dynamics depends on the times of
all the forager’s previous encounters with food, i.e., the times
between visits to distinct sites of a random walk [31–34].

III. SIMULATION ALGORITHM AND RESULTS

We simulated a frugal forager for a range of frugality
threshold levels in spatial dimensions d = 1, d = 2, and d =
3. In all cases, a direct simulation, in which the full state of the
lattice is initially stored in computer memory and continually
updated, is prohibitively inefficient. For example, to directly
simulate the maximally frugal forager with S = 104 in d = 3,
where the forager lifetime is roughly 1010 (see Fig. 4) and
therefore a typical displacement is roughly 105, would require
a lattice of the order of 1015 sites.

However, because the forager consumes food only at a
sparse subset of sites, it is highly advantageous to only store in
computer memory those sites where food has been consumed.
For this purpose, we use a binary-search tree to store each
such emptied site. The binary tree structure ensures that

checking whether a site has been previously visited is fast. The
search time scales logarithmically in the number of emptied
sites, compared to linearly in the number of emptied sites
if these sites were stored in a linear list. Storing only the
emptied sites also drastically reduces the memory requirement
to scaling linearly with the actual number of emptied sites.
Furthermore, not storing the entire lattice eliminates the need
to declare, initialize, and update extremely large lattices that
are large enough to eliminate finite-size effects. In higher
than one dimension, we also use lexicographic ordering of the

FIG. 2. Simulation results for dependence of the forager lifetime
on frugality threshold k for various S in (a) d = 1, (b) d = 2, and (c)
d = 3. The case k = S − 1 corresponds to a normal forager (starving
random walk).
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FIG. 3. Simulation results for dependence of the forager lifetime
on S at the optimal frugality threshold k∗ in d = 1, d = 2, and d = 3.

coordinates to order the positions of the emptied sites in the
binary search tree.

Using this efficient algorithm, we find that the average
forager lifetime is maximized at distinct optimal thresholds k∗
in d = 1, d = 2, and d = 3 (Fig. 2). Thus, it is advantageous
for a forager to tune its frugality level to an optimal value. It is
also worth noting that as the value of S of a forager increases,
which correlates with larger body size, the forager maximizes
its lifetime by becoming progressively more frugal. That is, k∗
is a sublinear function of S .

Finally, we simulated the forager lifetime at the optimal
value of the frugality threshold in d = 1, 2, and 3. This optimal
frugality threshold is determined from plots such as those
given in Fig. 2. This maximal lifetime, which we write as T ∗,
appears to grow as a power law in S in d = 1 (Fig. 3). On the
double logarithmic scale of this figure, there is a slight upward
curvature in the data for d = 1, but the dependence of T ∗ on
S appears to be close to quadratic.

For d = 2 and d = 3, T clearly grows faster than a power
law in S . On a semilogarithmic scale, however, the data for
d = 2 is curved downward, while last five points of the data
for d = 3 is nearly linear. A rudimentary analysis suggests that
T ∼ exp(

√
S) for d = 2, while for d = 3, the same analysis

suggests that T ∼ exp(Sν), with ν in the range of 0.8 to 0.9.
Thus, it is possible that the dependence is a simple exponential
in d = 3. The point that we wish to emphasize is that in all
dimensions, it is highly advantageous for a forager to tune its
frugality threshold to its optimal value.

IV. ANALYTICS

To understand the conditions that optimize the forager
lifetime, we first investigate the behavior of a frugal forager in
the limit where k � S; that is, the forager is extremely frugal.
By probabilistic arguments, we will show that the dependence
of the lifetime T on S becomes progressively more steep for
increasing k and that the lifetime also grows more quickly than
that of the normal forager (the case k = S − 1). These two facts
mandate that there must exist an optimum frugality k∗, where
the dependence of the lifetime on S is the fastest.

A. Maximally frugal forager

We first treat the extreme case of a maximally frugal
forager that can only eat if it encounters food at the instant
of starvation, i.e., k = 0. From investigating this limit, we
thereby infer that always consuming resources whenever they
are encountered, i.e., the normal forager with k = S − 1, is a
suboptimal survival strategy.

To continue to survive, the maximally frugal forager must
land on previously unvisited sites at times S, 2S, 3S , etc.
(For simplicity, we consider even S and hypercubic lattices.)
If the forager lands on a previously visited site (where food
was consumed, by definition) at time mS , with m an integer,
starvation immediately occurs, and the forager lifetime equals
mS . It is worth noting that the maximally frugal forager is
equivalent to a self-avoiding flight [35–37], in which each
step of the flight is determined by the displacement of a
nearest-neighbor random walk of S steps and in which landing
on a previously visited site is not allowed. Thus, the result (6)
for the forager survival probability that we will derive below
also describes to the survival probability of a self-avoiding
flight.

We first show that the survival probability decays exponen-
tially in time in any dimension. Define Sm as the probability that
a maximally frugal forager survives until time mS , and let Rm

denote the probability for a pure random walk to return to its
starting point at time mS . The forager survives its first potential
starvation event at time S with probability S1 = 1 − R1. We
obtain an upper bound for the survival probability at time
2S by demanding that the forager steps to a different site
from where it was at time S . The probability for this event
is again S1. Because we have not included the possibility that
the forager has returned to the origin at time 2S , the true
survival probability will be smaller still. Therefore, S2 � (S1)2.
Continuing this reasoning gives Sm � (S1)m, a result that is
valid for any S . Thus, the survival probability is bounded from
above by an exponential decay in m.

We obtain a lower bound by noting that the forager is sure
to survive if its position always has a positive increment in a
single coordinate direction between times mS and (m + 1)S .
Let Q1(d) be the probability that a random walk has a
single coordinate equal to zero at time S in d dimensions.
Then the probability that a single coordinate has increased is
1
2 [1 − Q1(d)]. We therefore have the bounds

2d
(

1
2

)m
[1 − Q1(d)]m � Sm � (1 − R1)m , (1)

so that Sm asymptotically decays exponentially in m and,
correspondingly, exponentially in time. However, we will show
the mean lifetime of the forager in low spatial dimension is
controlled by an intermediate-time regime for large S , where
the survival probability decays faster than exponentially in m

for d � 2.
We start by deriving an exact recurrence that is satisfied

by the survival probability of a maximally frugal forager and
then give explicit results for S → ∞. Formally, the survival
probability is given by

Sm = Pr{�m = 1,�m−1 = 1, . . . ,�1 = 1} , (2a)

where �m is the indicator function that equals 1 if the forager
visits a new site at step mS and equals 0 otherwise. The above
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equation merely states that the forager always visits a new site
every mth step.

The survival probability satisfies the recursion

Sm = Pr{�m = 1|�m−1 = 1, . . . ,�1 = 1}
× Pr{�m−1 = 1, . . . ,�1 = 1}

= Pr{�m = 1|�m−1 = 1, . . . ,�1 = 1} Sm−1 . (2b)

To obtain explicit results from this exact recurrence, we
make the approximation

Pr{�m =1|�m−1 =1, . . . ,�1 =1} � Pr{�m =1} ; (3)

that is, correlations with past events are ignored. As a parenthet-
ical remark, it is worth noting that our approximation (3) be-
comes asymptotically exact as S → ∞. In the “worst” case of
S = 1, where the maximally frugal forager is equivalent to the
self-avoiding walk (SAW), the approximation (3) still provides
good results. For d > 2, our “uncorrelated” approximation
gives μd � 2d(1 − R) for the SAW connectivity constant μd .
For the cubic lattice, this formula gives μ3 � 3.96..., com-
pared with the numerical result μ3 = 4.68.... The analogous
comparisons for higher dimensional hypercubic lattices are
μ4 � 6.46..., compared with μ4 = 6.78... (numerical); and
μ5 � 8.65..., compared with μ5 = 8.85... (numerical).

Returning to the calculation of the forager survival proba-
bility, we need to determine Pr{�m = 1}. For this purpose, it
is useful to introduce its generating function, which is known
to be [34]

�(z) ≡
∑
n�0

Pr{�n = 1}zn = −1 + 1

(1 − z)R(z)
. (4)

Here R(z) ≡ ∑
n�0 Rnz

n is the generating function for the
return probability Rn of a nearest-neighbor random walk at
the (nS)th step, which has the asymptotic behavior [34]:

Rm � 2[d/(2πmS)]d/2 . (5)

We now expand 1/R(z) as

1 − R1z + (
R2

1 − R2
)
z2 − (

R3
1 − 2R1R2 + R3)z3 + · · ·

� 1 −
∑
j�1

Rjz
j .

In the second line, powers of Rj greater than 1 are neglected
compared to linear terms because, forS 
 1, which we assume
throughout, Rj ∼ S−d/2.

Substituting the above expansion for 1/R(z) in Eq. (4), we
obtain the series for �(z), from which we can immediately read
off Pr{�m = 1} = 1 − ∑

1�j�m Rj . Using this expression in
Eqs. (2b) and (3) gives the following compact expression for
the survival probability:

Sm � exp

(
−

m∑
�=1

�∑
j=1

Rj

)
. (6)

Now substituting Rj from (5) in (6), and approximating
the double sum by a double integral, we obtain, after several

straightforward steps,

− ln Sm �

⎧⎪⎪⎨
⎪⎪⎩

√
32
9π

m3/2 S−1/2 d = 1 ,

2
π

m ln m S−1 d = 2 ,

mAd S−d/2 d > 2 ,

(7)

with Ad ≡ 2ζ (d/2)(d/2π )d/2 for d > 2.
Note that the lower bound (1) for the survival probability

imposes the constraint that (7) cannot hold when m � S in
d = 1, and when m � eS in d = 2. Imposing this constraint,
the average number of “generations” that forager survives in
d = 1 can be found from

〈m〉=
∑
m�1

Sm �
∫ βS

0
e−α(m3/S)1/2

dm +
∫ ∞

βS
e−γm dm ,

where α = √
32/9π , and β, γ are constants of order 1 that do

not affect the leading asymptotic behavior for largeS . It is clear
that the integral over the finite range dominates in the above
expression for 〈m〉. Computing this integral and performing
similar calculations in higher dimensions leads to

T �

⎧⎪⎨
⎪⎩


(2/3)
(

π
12

)1/3S4/3 d = 1 ,

π
2 lnS S2 d = 2 ,

1
Ad

S1+d/2 d > 2 .

(8)

Our numerical results for d = 1,2,3 agree with the predictions
of Eq. (8); see Fig. 4(a).

From (8), the maximally frugal forager in d = 1 lives
longer than the normal forager, whose lifetime is T ∼ S
[15,16]. Moreover, the maximally frugal forager consumes
S〈m〉 ∼ S4/3 units of food over its lifetime, while the lifetime
consumption of the normal forager is S3/2. Despite living
a factor of S1/3 longer, the frugal forager asymptotically
consumes a factorS−1/6 less resources. Thus extreme frugality
in one dimension leads to a longer lifetime and less resource
consumption.

B. General frugality threshold

We now generalize to the case of frugality threshold with
general k > 0; here the forager can eat up to k time steps before
starvation. For this more general situation, we will show that
the average lifetime has an optimum with respect to k.

As a preliminary, we first study the case of k = 1, where the
forager starves when it lands on a doublet of two consecutive
empty (previously visited) sites and remains within the doublet
at the next step. We exploit the same assumption of lack of
correlations (as was used to derive (6) for the maximally frugal
forager) to decompose the probability of visiting new sites at
times mS and mS + 1 so that we can write

Pr{�m =1 and �′
m =1} � Pr{�m =1}Pr{�′

m =1}
� [Pr{�m = 1}]2 .

Here �m is the indicator function to visit a new site at step mS ,
while �′

m is the indicator function to visit a new site at step
mS + 1. Using this decomposition, the probability to survive
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(a)

(b)

FIG. 4. Simulation results for the lifetime T of (a) the maximally
frugal and (b) the threshold k = 1 forager vs S .

m generations is given by

Sm(k = 1) � exp

⎡
⎣−

m∑
�=1

( �∑
j=1

Rj

)2

⎤
⎦ , (9)

where we have again assumed that the states of adjacent sites
are uncorrelated with each other. Substituting in the expression
for Rm given in (5) and approximating the sums by integrals,
we obtain

− ln Sm(k=1) �

⎧⎪⎨
⎪⎩

4m2

π
S−1 d = 1 ,

4m ln2 m
π2 S−2 d = 2 ,

mA2
d S−d d > 2 .

(10)

Now we follow the steps parallel to those that gave Eq. (8),
to find, for the average lifetime T for k = 1,

T (k = 1) �

⎧⎪⎪⎨
⎪⎪⎩

π√
8
S3/2 d = 1 ,(

π
4 lnS

)2S3 d = 2 ,

1
A2

d

S1+d d > 2 .

(11)

These expressions again agree with numerical simulations
[Fig. 4(b)]. It is important to note that the lifetime for the k = 1
forager exceeds that of the maximally frugal forager (k = 0).
Because the lifetime of the normal forager (k = S − 1) is

TABLE I. Comparison between simulation results for the expo-
nent τ in T ∼ Sτ in one dimension (top row) and our analytical
predictions (bottom row): Eq. (8) for k = 0, Eq. (11) for k = 1, and
then the first line of (14) for k > 1.

k = 0 1 2 4 8 16 32 64 128

Simul. 1.33 1.53 1.53 1.56 1.63 1.69 1.76 1.79 1.83
Analytic 1.33 1.50 1.53 1.61 1.69 1.76 1.82 1.86 1.90

shorter than that of the maximally frugal forager, there must be
an intermediate frugality value k∗ that maximizes the lifetime.

We now extend the calculational approach for k = 1 to
general frugality threshold k, with k � S . For a forager to
starve in one dimension, it first has to be metabolically depleted
to its frugality threshold, then step to the interior of a gap
of consecutive previously visited sites, and finally make k

subsequent steps within this gap. The average length of a gap
that will trap the forager is simply 〈N (k)〉, the mean number
of distinct sites visited by a random walk of k steps [33,34].
Following the same reasoning as that applied for the case
k = 1, we obtain

Sm(k) � exp

⎡
⎣−

m∑
�=1

( �∑
j=1

Rj

)〈N(k)〉
⎤
⎦ . (12)

Here we make the uncontrolled approximation that the survival
probability averaged over all random-walk trajectories can be
obtained by averaging the number of distinct sites visited in
the exponent of the above expression.

Substituting the return probability (5) for nearest-neighbor
random walks into (12), the leading behavior of the survival
probability is

− ln Sm(k) ∼

⎧⎪⎨
⎪⎩

m1+〈N(k)〉/2/S〈N(k)〉/2 d = 1 ,

m(ln m)〈N(k)〉/S〈N(k)〉 d = 2 ,

m/Sd〈N(k)〉/2 d > 2 .

(13)

From these results, we obtain the lifetime

T (k) ∼

⎧⎪⎨
⎪⎩
S (2〈N(k)〉+2)/(〈N(k)〉+2) d = 1 ,

S〈N(k)〉+1/(lnS)〈N(k)〉 d = 2 ,

S1+d〈N(k)〉/2 d > 2 ,

(14)

with the asymptotic behavior of 〈N (k)〉 for k 
 1 given by
[33,34]

√
8k/π (d = 1), πk/ ln k (d = 2), and k/R(1) (d = 3).

Because of the uncontrolled nature of the approximation
in (12), one should not anticipate that our prediction for the
dependence of T on S for different frugality thresholds k will
match simulation results quantitatively. However, these two
results are gratifyingly close in spite of the crudeness of our
approach (Table I).

V. SUMMARY

We introduced a family of foraging models that are char-
acterized by two parameters—the amount of food per site S
(measured in units of the amount metabolized by the forager
in a single step) and the frugality threshold k, the number of
steps before starvation when the forager can consume food. The
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frugal forager model is simple to formulate but is technically
challenging, as the dynamics is both stochastic and inherently
non-Markovian. The simplest version of our model, namely,
the case k = 0 andS = 1, reduces to the standard self-avoiding
walk, which is well understood only in low spatial dimensions.
For our frugal forager model, the spatial dimension plays a
crucial role, and the attribute of frugality introduces a new
layer of complexity into the dynamics. The interplay between
conservation (not eating) and consumption leads to a rich
dynamics in which the lifetime of the forager is maximized
at an optimal level of frugality. While it naively seems that
being frugal is inherently risky, this strategy turns out to be
superior to that of the normal forager, which always eats when

it encounters food. We also extended our approach to obtain
the forager lifetime in any dimension and for general frugality
threshold k � S by exploiting the classic formalism for visits
to distinct sites of a random walk.
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