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I. INVERSE ELEMENTS OF A TRIDIAGONAL MATRIX

In this appendix we succinctly reproduce the inverse elements of a general tridiagonal matrix first given in [1]. That
is, we will derive the elements of the inverse of the following matrix,

B =


b1 c1 0 0 . . . 0 0
a2 b2 c2 0 . . . 0 0
0 a3 b3 c3 . . . 0 0
...

. . .
0 0 0 0 . . . aN bN

 , (S1)

First, we know that the inverse of a general N ×N matrix is given by Cramer’s rule as [2],

αij ≡ [B−1]i,j =
(−1)i+jMji

det(B)
, (S2)

where Mji is the minor, i.e., the determinant of the matrix that results from the removal of row j and column i.
Our aim is to exploit the triangular nature of the matrix to give analytic expressions for the inverse that can be
computed much faster than general matrix inversion (which scales as N3 for Gauss–Jordan elimination). For brevity
we introduce the following determinants,

Ui ≡

∣∣∣∣∣∣∣∣∣∣

b1 c1 0 0 . . . 0 0
a2 b2 c2 0 . . . 0 0
0 a3 b3 c3 . . . 0 0
...

. . .
0 0 0 0 . . . ai bi

∣∣∣∣∣∣∣∣∣∣
, Li ≡

∣∣∣∣∣∣∣∣∣∣

bi ci 0 0 . . . 0 0
ai+1 bi+1 ci+1 0 . . . 0 0
0 ai+2 bi+2 ci+2 . . . 0 0
...

. . .
0 0 0 0 . . . aN bN

∣∣∣∣∣∣∣∣∣∣
, (S3)

with U0 = 1, U1 = b1 and LN+1 = 1, LN = bN . The key step in calculating the αij is in finding the matrix minors.
Let’s calculate the minors for a few examples,

M11 = L2,

M22 = U1L3,

M33 = U2L4,

M12 = a2L3,

M13 = a2a3L4,

M14 = a2a3a4L5,

MN,N = UN−1,

MN,N−1 = cN−1UN−2,

MN,N−2 = cN−1cN−2UN−3.

Here we have made judicious use of Schur’s formula [3] for the determinants of block matrices, which states that for
the block matrix

E =

(
A B
C D

)
, (S4)

with invertible A and D, we have

det(E) = det(A) · det(D−C ·A−1 ·B). (S5)
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When either B or C consist entirely of zeros, the above formula reduces to,

det(E) = det(A) · det(D). (S6)

We observe that the minors follow the pattern,

Mji =



(∏j−1
k=i ck

)
Ui−1Lj+1 j > i,

Uj−1Lj+1 j = i,(∏i
k=j+1 ak

)
Uj−1Li+1 j < i,

(S7)

which is proved by induction in [4]. Substituting Mji into Eq. (S2) then gives our analytic expression for the αij .
Note that det(B) = L1 = UN .

The introduction of orthogonal polynomials comes from the recursive relationship defining the determinants of the
sequences U0, U1, . . . , UN and L1, L2, . . . , LN+1. This recurrence is trivially given by Leibniz’s rule as,

LN+1 = 1, LN = bN ,

Li = biLi+1 − ciai+1Li+2,

U0 = 1, U1 = b1,

Ui = biUi−1 − ci−1aiUi−2.

(S8)

Upon re-labeling bi ⇒ βi(z), ai ⇒ di, ci ⇒ bi, N ⇒ N̄ , Ui ⇒ qi(z) and Li ⇒ pi−1(z) one then recovers the recursive
polynomials defined in Eq. (9) in the main text. Finally, since we only need the terms αi,1(z) and αi,N̄ (z), we can
use the properties of U0 = 1 and LN+1 = 1 to arrive at Eqs. (8) in the main text.

II. CONDITIONAL FIRST-PASSAGE PROBABILITY

We are interested in the conditional FPT to reach either 0 or N without ever reaching the opposite boundary
starting from some initial site i. We focus on the conditional FPT to reach N , and later return to the case of reaching
the origin. The probability of reaching N at time t starting from i at t = 0 is given by fi(t) = Pi,N (t). Note that
fi(t) has the boundary conditions fN (t) = δt,0 and f0(t) = 0. The recurrence relation satisfied by fi(t) is the same
as Eq. (2), but with different boundary conditions. Note that fi(t) does not strictly correspond to a normalized
probability distribution over t since there is a finite probability of being absorbed at the origin and therefore never
reaching N . Therefore, we further define,

f̃i(t) =
fi(t)∑∞
t=0 fi(t)

≡ fi(t)

ϕi
, (S9)

where f̃i(t) is the properly normalized probability density function and we define ϕi as the probability for the walk
to ultimately reach the boundary at N . This eventual hitting probability is given by

ϕi =
1 +

∑i−1
k=1

∏k
i=1

dj

bj

1 +
∑N−1

k=1

∏k
i=1

dj

bj

. (S10)

We now define the generating function of f̃i(t) as,

F̃i(z) =

∞∑
t=0

ztf̃i(t), (S11)

and taking Eq. (2) multiplying by zt and summing over all t we get the three-term recurrence relation that F̃i(z)
satisfies,

biϕi+1F̃i+1(z) + diϕi−1F̃i−1(z) + βi(z)ϕiF̃i(z) = 0, i ∈ 1, 2, . . . , N − 1, (S12)
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with the boundary conditions now F̃0(z) = 0 and F̃N (z) = 1 and we have used βi(z) as defined in the main text.
For brevity, we henceforth denote Ci(z) = ϕiF̃i(z). As in the unconditional case, we rewrite Eq. (S12) as a matrix
equation,

A(z) ·C(z) = −m, (S13)

with C(z) = (C1(z), C2(z), . . . , Cτ (z)), m = (0, 0, . . . , 0, bτ ) and A(z) the (N − 1) × (N − 1) matrix defined by
Eq. (S1). Since we already have explicit expressions for the elements of the inverse of A, we can readily obtain
F̃i(z) = −bN̄αi,τ/ϕi:

F̃i(z) =
−(−1)i+τqi−1(z)Bi

p0(z)ϕi
, i ∈ {1, 2, . . . , N̄ − 1},

F̃N̄ (z) =
−bN̄q−1(z)

p0(z)ϕN̄

.

(S14)

By symmetry considerations one can then find the conditional generating functions of the first-passage time to reach
n = 0 as,

F̃1(z) =
−d1p1(z)

p0(z)(1− ϕ1)
,

F̃i(z) =
(−1)ipi(z)Di

p0(z)(1− ϕi)
, i ∈ {2, 3, . . . , N̄}.

(S15)

In the application of the disordered interval in the main text one can use the conditional first-passage time to observe
the origin of bimodalities observed for some realizations of disorder. This is possible since the origin of the bimodality
seen in Figure 4 (main text) comes from the competition between leaving the opposing ends of the system.

III. ONE REFLECTING AND ONE ABSORBING BOUNDARY

Utilizing methods from the main text we can solve the further problem of having one absorbing and one reflecting
boundary on the finite interval. We show the Markovian dynamics of such a process in Fig. 1(b), where we arbitrarily
choose the reflecting boundary at n = 0 (necessarily having b0 > 0), with the boundary at n = N chosen to be
absorbing. For this set of boundary conditions there is no distinction between conditional and unconditional first-
passage times since in all cases the process absorbs at the n = N boundary. Only the boundary conditions have
changed compared to the calculation in the main text, therefore the recurrence relation remains unchanged, and we
restate it from Eq. (3),

biMi+1(z) + diMi−1(z) + βi(z)Mi(z) = 0, i ∈ {1, 2, . . . , N − 1},

and we have again denoted βi(z) = 1 − z−1 − bi − di. As before, if one starts at the boundary at n = N then
ξN (0) = δt,0, leading to MN (z) = 1. The other boundary condition is not as trivial, and relates to the connection
between the dynamics starting from n = 0 and n = 1. Intuitively, we know that on the level of the mean first-passage
time that ⟨t1⟩−⟨t0⟩ = −1/b0, since in starting from the state n = 0 there is only one possible transition to n = 1 with
a propensity b0 occurring with mean time 1/b0—presuming that the boundary is completely reflective [5]. However,
to find the connection between the generating functions at n = 0 and n = 1 we first need to find the relationship
between ξ0(t) and ξ1(t), which are the first-passage time probability distributions to reach n = N at time t given one
starts at n = 0 and 1 respectively. We find that ξ0(t) is given by a discrete convolution between the probability to
move from n = 0 to n = 1 and the probability to then move to n = N from n = 1,

ξ0(t) =

t−1∑
t′=1

b0(1− b0)
t′ξ1(t− t′ − 1), (S16)

where b0(1 − b0)
t′ is the geometric probability to move to n = 1 at time t′ + 1, and ξ1(t − t′ − 1) represents the

probability to move to n = N in the remaining time t− t′ − 1. Multiplying this equation by zt and summing over t
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will then give us a relationship between M0(z) and M1(z),

M0(z) = b0

∞∑
t=0

t−1∑
t′=1

zt(1− b0)
t′ξ1(t− t′ − 1),

= b0

∞∑
y=1

∞∑
t=y+1

(1− b0)
t−y−1ztξ1(y),

= b0

∞∑
y=1

z

1 + (b0 − 1)z
zyξ1(y),

=
b0z

1 + (b0 − 1)z
M1(z).

Taking the derivative of this with respect to z gives,

M ′
0(z) =

b0z (((b0 − 1) z + 1)M ′
1(z) +M1(z))

((b0 − 1) z + 1) 2
, (S17)

and evaluating at z = 1 gives us the known boundary condition on the mean-level,

⟨t1⟩ − ⟨t0⟩ = −1/b0. (S18)

As was done in the main text, we can now write the matrix formulation of the recurrence relation for Mi(z),

C(z) ·M(z) = −k, (S19)

where M is as previously defined, k = (0, 0, . . . , 0, bτ ), and C(z) is identical to A(z) with the exception of the top-left
element which is given by,

[C(z)]1,1 = β1(z) +
d1b0z

1 + (b0 − 1)z
. (S20)

As previously, one can then find M by inverting the matrix C(z), giving,

M(z) = −C(z)−1 · k. (S21)

We now redefine the functions βi(z) to account for the change in the top-left element of C(z),

βi(z) =

{
1− z−1 − b1 − d1 +

d1b0z
1+(b0−1)z , i = 1,

1− z−1 − bi − di, i ∈ {2, 3, . . . , τ},
(S22)

in which case the formulae in Eqs. (8) also define the elements of C(z)−1 with the βi(z) as defined in Eq. (S22). Then
completing the matrix multiplication in Eq. (S21) we find the generating functions for first-passage on a finite interval
with one absorbing and one reflecting boundary,

Mi(z) = − (−1)i+τqi−1(z)Bi

p0(z)
, i ∈ {1, 2, . . . , τ − 1},

Mτ (z) =
−bτqτ−1(z)

p0(z)
.

(S23)

IV. SUPPLEMENTARY FIGURES

Figure S1 shows the dependence of the MFPT on starting position for single realizations of the hopping rates, but
for varying degrees of disorder. Here bi = 1/3+Uniform(−a, a) and di = 2/3− bi, with a varying between 0 and 1/3.
Over this range of a the MFPT varies over three orders of magnitude. The important aspect of these plots is that
features of the MFPT versus starting position are qualitatively the same as the degree of disorder is reduced.

Figure S2 shows the counterpart of Fig. (3) in the main text but again with a smaller degree of disorder. We find
that the exponent of −1/2 that describes the power-law decay of Ei(f) with respect to f is identical to that in the
case of stronger disorder shown in Fig. S2.
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FIG. S1. Similar to Fig. 2(a), but for variable disorder. Here bi = 1/3 + Uniform(−a, a) and di = 2/3 − bi, with a = 1/3
(black), 0.3 (red), 0.2 (blue), 0.1 (green), and 0.0 (magenta).

FIG. S2. (a) The average deviation in Eq. (12) when a finite fraction f of all hopping rate realizations are sampled. Interval
length N = 12. (b) The average deviation as a function of f for various starting positions along the interval. We use a
dichotomous distribution with weaker disorder in the hopping rates than that given the main text. Here each bj takes the
values 0.4 or 0.5 equiprobably, while dj = 0.9− bj . We find the same power law to describe the deviation as a function of f as
in the case of stronger disorder shown in Fig. 2(b).

To show the range of first-passage times for the ensemble described in Figure 3, we show the extreme longest
and shortest first-passage times compared to the average MFPT over disorder (Fig. S3). The longest time arises for
hopping rates that are biased toward the center of the interval, while the shortest time arises for hopping rate that are
biased from the center toward the ends of the interval. The longest and shortest times differ by 2 orders of magnitude,
with both these extremal times differing from the disorder average time by an order of magnitude.
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FIG. S3. The longest and the shortest first-passage from the ensemble in Fig. 3. Also shown in the disorder-averaged first-
passage time.
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