
Kinetic anomalies in addition-aggregation processes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 4533

(http://iopscience.iop.org/0305-4470/36/16/304)

Download details:

IP Address: 128.197.40.148

The article was downloaded on 06/12/2010 at 20:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 4533–4542 PII: S0305-4470(03)58535-3

Kinetic anomalies in addition-aggregation processes

M Mobilia, P L Krapivsky and S Redner

Center for BioDynamics, Center for Polymer Studies, and Department of Physics,
Boston University, Boston, MA 02215, USA

E-mail: mmobilia@buphy.bu.edu, paulk@bu.edu and redner@bu.edu

Received 20 January 2003, in final form 10 March 2003
Published 8 April 2003
Online at stacks.iop.org/JPhysA/36/4533

Abstract
We investigate irreversible aggregation in which monomer–monomer,
monomer–cluster and cluster–cluster reactions occur with constant but distinct
rates KMM,KMC and KCC, respectively. The dynamics crucially depends on the
ratio γ = KCC/KMC and secondarily on ε = KMM/KMC. For ε = 0 and γ < 2,
there is conventional scaling in the long-time limit, with a single mass scale
that grows linearly in time. For γ � 2, there is unusual behaviour in which
the concentration of clusters of mass k, ck decays as a stretched exponential
in time within a boundary layer k < k∗ ∝ t1−2/γ (k∗ ∝ ln t for γ = 2), while
ck ∝ t−2 in the bulk region k > k∗. When ε > 0, analogous behaviours emerge
for γ < 2 and γ � 2.

PACS numbers: 02.50.−r, 05.40.−a, 68.43.Jk

1. Introduction

In this work, we investigate a simple aggregation process in which three kinds of reactions
occur with constant but distinct rates:

A1 + A1
ε−→ A2

A1 + Aj
1−→ Aj+1 j � 2

Ai + Aj

γ−→ Ai+j i, j � 2.

(1)

Equivalently, the reaction matrix Kij has the value ε in the upper left corner, the value 1 for all
elements along the top and left edges of the matrix, and the value γ in the rest of the matrix.

Despite its simplicity, this model exhibits rich dynamics in which both scaling and
universality can be violated. The model was initially studied by Hendriks and Ernst [1]
to describe polymerization in which addition processes (reactions involving monomers) occur
more readily than aggregation (reactions between i and j , with i, j � 2). They found evidence
of unusual kinetic behaviour by an implicit solution for the cluster concentrations; see also
[2] for related work. Our focus is on the opposite limit in which aggregation dominates over
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addition. By explicit solutions of the rate equations, we elucidate the full range of behaviours
for this system.

From a general perspective, the origin of the anomalous behaviour in addition/aggregation
stems from the fact that the simplest case of aggregation with a constant reaction rate is
actually a marginal system. As discussed by van Dongen and Ernst [3], aggregation can be
broadly categorized by whether reactions among large clusters dominate (type I systems, in
their nomenclature) or whether reactions between large and small clusters dominate (type III
systems). The former generically leads to monotonically decaying cluster mass distributions,
while the latter gives peaked distributions. The constant reaction rate system (type II system)
is marginal by being at the boundary between these two behaviours.

Because of this marginality, the kinetics of constant-kernel aggregation is sensitive to
small perturbations in the reaction rates. Previously-studied examples of this feature include
aggregation involving two distinct monomeric units, so that the reaction rates between two
even masses, two odd masses, or an even and an odd mass are naturally distinct. Here non-
universal and non-scaling behaviour arises as a function of these rates [4, 5]. Another example
is aggregation with the rate Kij = 2 − qi − qj with 0 < q < 1 [6]. Although this reduces
to a constant-kernel system for i, j → ∞, the q-dependent terms lead to unusual kinetics.
The model studied here is in the spirit of the first example, except that we perturb only an
infinitesimal fraction of the reaction rates in a constant-kernel system. It is striking that such
a small change in the reaction rates has such a profound influence on the kinetics.

In the next two sections, we focus on the special case of ‘sterile’ monomers, where
monomer–monomer reactions do not occur. In section 2, we first determine the monomer
and dimer concentrations and show that different behaviours arise for γ � 2 and γ < 2.
Then in section 3, we derive asymptotic results for the cluster concentrations. We then
study, in section 4, these same three cases when monomer–monomer reactions can also occur.
Section 5 gives a summary as well as a discussion of the equivalence between the model and a
diffusion-controlled process in which monomers have different diffusivity than other clusters.

2. Sterile monomers

When monomers do not interact among themselves (K11 = 0), we shall show that the system
exhibits three distinct kinetic regimes, with unusual time dependences and breakdown of
conventional scaling in two of these cases.

The rate equation for the density ck(t) is [7]

ċk(t) = 1

2

∑
i+j=k

Kij ci(t)cj (t) − ck(t)
∑
j�1

Kkjcj (t) (2)

where the overdot denotes time derivative. The first (gain) term accounts for the formation of
clusters of mass k (k-mers) as a result of the bimolecular aggregation of i-mers with j -mers,
with i + j = k. The second (loss) term accounts for the aggregation of the k-mers with any
j -mer, thus leading to a decrease in the k-mer concentration. For the processes given in (1)
and with the additional constraint of K11 = ε = 0, the explicit rate equations are

ċ1 = −c1R

ċ2 = −c2 [c1 + γR]

ċk = c1ck−1 +
γ

2

∑
i+j=k
i,j�2

cicj − ck(c1 + γR) k > 2
(3)
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where we drop the time argument for compactness and introduce the shorthand R ≡ ∑
k�2 ck

for the concentration of reactive clusters (those with mass � 2). Note also that there is no
production of monomers and dimers in the reaction; they can only disappear.

The governing equation for R is obtained by summing equations (3) to give Ṙ = − γ

2 R2,
whose solution is

R = R(0)τ−1 τ ≡ 1 + 1
2γR(0)t. (4)

With the explicit expression for R, we integrate the equation for monomers to give

c1 = c1(0)τ−2/γ . (5)

The crucial point is that the value of γ controls which of R or c1 decays more rapidly. For
γ < 2, monomers are asymptotically irrelevant and conventional constant-kernel aggregation
kinetics arises. For γ � 2, however, the large disparity in the reaction rates K1j and Kij leads
to a long-lived residue of monomers and these profoundly affect the asymptotic kinetics.

To see this explicitly, we solve for the density of dimers to find

c2 = c2(0)τ−2 e−λ (6)

where we define λ = ∫ t

0 dt ′c1(t
′). Using equation (5) we express λ in terms of τ :

λ ≡ λ(τ) =
{

2r τ 1−2/γ −1
γ−2 γ �= 2

r ln τ γ = 2
(7)

where we further define r = c1(0)/R(0).
Depending on the value of γ we obtain three distinct long-time behaviours:

• For 0 < γ < 2, λ → 2r
2−γ

→ const as t → ∞. Thus the dimer concentration has a

universal t−2 asymptotic decay; only the amplitude of the decay depends on the initial
state.

• For γ > 2, the dimer density decays as a stretched exponential e−λ times a power-law
prefactor.

• For γ = 2, the dimer concentration asymptotically decays as t−(2+r), where the exponent
depends on the initial concentration ratio r = c1(0)/R(0).

3. Asymptotic mass distribution

To determine the asymptotic cluster concentrations ck, we rewrite the rate equations (3) in the
form

ċk + αck = αk (8)

where

α ≡ c1 + γR αk ≡ c1ck−1 +
γ

2

∑
i+j=k
i,j�2

cicj . (9)

Due to the recursive nature of equation (8) we immediately obtain the formal solution for ck:

ck(t) = E(t)

{
ck(0) +

∫ t

0
dt ′

αk(t
′)

E(t ′)

}
(10)

with E(t) = exp
[−∫ t

0 dt ′α(t ′)
] = τ−2 e−λ. Therefore, once we know c1, . . . , ck−1, we can

compute αk and then determine ck.
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Before proceeding to general k, it is instructive to compute c3. From equation (10), and
using the previous results for c1 and c2, we obtain

c3 = [c2(0)λ + c3(0)] τ−2 e−λ. (11)

As in the case of dimers, there are three distinct asymptotic behaviours for the trimer
concentration that are best expressed in terms of c3/c2. We obtain

c3

c2
∝




t1−2/γ γ > 2

ln t γ = 2

1 γ < 2

(12)

that is, c3/c2 ∝ λ for any value of γ (see equation (7)). While the exact expressions for
the concentrations ck become unwieldy as k grows, the asymptotic expressions turn out to be
simple: c3/c2 → λ, c4/c2 → λ2/2, etc. We will confirm this hypothesis by induction in the
following subsections.

3.1. A: γ � 2

When γ is strictly greater than 2, we easily find that ck/c2 ∝ λk−2 as t → ∞ by explicit
calculation for small k. We therefore seek an asymptotic solution for ck of the form

ck

c2
= βkλ

k−2 + · · · (13)

where . . . denotes subdominant terms in the limit t → ∞ and the amplitude βk will be
determined below.

For concreteness and simplicity, let us consider the bi-disperse initial condition in which
only c1(0) and c2(0) are non-zero while ck(0) = 0 for all k > 2. To extract the asymptotics of
ck from equation (10), only the second term on the right-hand side is needed. Let us suppose
that equation (13) holds for c2, . . . , ck. To leading order, we have αk+1 = c1ck, and substituting
ck = c2βkλ

k−2 into equation (10), we obtain

ck+1 = E(t)

∫ t

0
dt ′

c1(t
′)ck(t

′)
E(t ′)

= c2
βk

k − 1
λk−1 (14)

where to obtain the second equality we use E(t) = τ−2 e−λ. Thus βk = 1/(k − 2)! and we
arrive at the remarkably simple asymptotic solution

ck+2 = c2
λk

k!
c2 = c2(0)τ−2 e−λ (15)

with τ and λ given by equations (4) and (7). Explicitly, we have

ck+2 ∼ 1

k!
t−2+k(1−2/γ ) exp(−const × t1−2/γ ). (16)

Thus ck has a very different asymptotic behaviour than in the constant-kernel system [7]. As
discussed previously, this anomaly arises because monomers are very long-lived and these
then strongly influence the long-time kinetics.

One important caveat, however, is that the derivation of equation (15) applies only for finite
k. For sufficiently large k the neglected subdominant terms accumulate to provide a relevant
contribution. The simplest way to see that equation (15) cannot hold over entire mass range is to
use this equation to compute the total cluster density. This gives

∑
k�2 ck = c2 eλ = c2(0)τ−2,

in contrast to the correct result R(0)τ−1 given in equation (4).
We therefore conclude that the mass distribution naturally divides into a small-mass

boundary layer, k � k∗, that contains an asymptotically negligible fraction of the total mass,
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and a remaining bulk region. The extent of the boundary layer may be determined as the
maximum of ck in equation (15) and gives k∗ = λ ∝ t1−2/γ . Within this boundary layer, the
mass distribution grows rapidly with mass, but this region contains only an asymptotically
negligible fraction of the total mass. On the other hand, most of the mass, which exhibits
conventional scaling behaviour is contained in the bulk region.

In the marginal case of γ = 2, the asymptotic solution of equation (15) is still valid. Since
now λ = r ln τ , the density of dimers decays algebraically in time as c2 = c2(0)τ−(2+r), and
the width of the boundary layer grows logarithmically k∗ = λ = r ln τ . The following main
part of the mass distribution is again characterized by conventional scaling behaviour (see
equation (19)). A justification of this picture is given in the appendix. Thus for γ � 2, the
mass distribution exhibits two growing scales and conventional single-mass scaling is violated.

3.2. B: γ < 2

By solving c2, c3, . . . exactly, we are led to the hypothesis that for k � 2

ck ∝ τ−2. (17)

This indeed can be directly checked by induction. Moreover, in the scaling limit,

k → ∞ t → ∞ k

t
= finite (18)

the mass distribution admits the conventional scaling form

ck = 4

γ 2t2
e−2k/(γ t). (19)

Summing
∑

ck we indeed recover R = 2/(γ t), while the next moment
∑

kck equals one
(based on the total mass set equal to one initially). Equation (19) also describes the scaling
portion of the mass distribution when γ � 2.

The origin of the conventional scaling behaviour for the case γ < 2 is simple. For γ < 2
monomers disappear quickly, since c1 ∝ t−2/γ , and their asymptotic influence is negligible.
Thus the reaction effectively reduces to a constant-kernel system that begins with dimers. The
monomers do influence the small-mass behaviour, namely ck = Akt

−2 with mass-dependent
amplitudes Ak; e.g., A2 = c2(0)[γR(0)/2]−2 e−λ and A3 = A2[λ + c3(0)/c2(0)]. However,
as k grows the amplitude Ak approaches the constant value 4γ −2.

The existence of scaling can be proved rigorously, e.g., by the generating function
approach given in the appendix. A simpler approach is to merely assume that scaling holds and
check its consistency a posteriori. In the continuum limit, we have checked the correctness
of equation (19), which is the conventional scaling form for constant-kernel aggregation [7].

4. Reactive monomers

We now assume that monomer–monomer reactions do occur: K11 ≡ ε > 0. This situation
has already been studied by Hendriks and Ernst [3]. The rate equations for monomers and
dimers now read

ċ1 = −c1(εc1 + R) (20)

ċ2 = ε

2
c2

1 − c2(c1 + γR) (21)

while the rate equations for clusters with k > 2 are the same as in equation (3).
Correspondingly, the density of reactive clusters R evolves according to

Ṙ = 1
2εc2

1 − 1
2γR2. (22)
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It does not seem possible to solve the coupled non-linear equations (20) and (22) for c1

and R explicitly. If we treat c1 as a function of R, however, we can reduce equations (20)
and (22) to a single differential equation that can be solved to establish a functional relation
between c1 and R [1]. From this relation, we can deduce that different behaviours emerge
depending on whether γ < 2 or γ � 2.

A simpler and more fruitful way to proceed is to seek the asymptotic behaviour of c1

and R without explicitly solving the governing equations. We anticipate that there are three
possible asymptotic behaviours: (i) c1 	 R, (ii) c1 ∝ R and (iii) c1 
 R. Substituting each
of these scenarios into equations (20) and (22) shows that the latter case is impossible. Let
us now analyse the first two possibilities. When c1 	 R, equation (22) gives R � 2/(γ t),
and then equation (20) yields c1 ∝ t−2/γ . Thus the relation c1 	 R holds when γ < 2.
In the complementary regime of γ > 2, we find that c1 ∝ R is consistent; furthermore,
equations (20) and (22) now give R ∝ c1 ∝ t−1.

We now analyse these two cases in more detail.

4.1. A: γ � 2

When γ is strictly greater than 2, we substitute the ansatz

R � At−1 c1 � Bt−1 (23)

into equations (20) and (22) to get a quadratic equation for the amplitude A. The physical
requirement that A and B are both positive fixes the solution to be

A = ε − 1 +
√

ε(ε + γ − 2)

εγ − 1
B = 1 − A

ε
. (24)

The singularity at ε = γ −1 is only apparent and may be resolved by applying the l’Hospital’s
rule, to give A = γ /[2(γ − 1)] in this case.

From the formal solution (10) we can check by induction that for finite k,

ck � Bkt
−1. (25)

The amplitude Bk is found by substituting the ansatz (25) into (8), (9) to give the recursion

(µ − 1)Bk = BBk−1 +
γ

2

∑
i+j=k
i,j�2

BiBj (26)

for k > 2, where we define

µ = γA + B = 1 +
√

1 + (γ − 2)/ε. (27)

Note also that (µ − 1)B2 = εB2/2. To solve the recursion (26) we introduce the generating
function B(z) = ∑

k�2 Bkz
k to reduce (26) to

B(z) = µ − 1 − Bz

γ


1 −

√
1 − εγ

(
Bz

µ − 1 − Bz

)2

 .

When k 
 1 but still within the boundary layer, the asymptotic behaviour of B(z) leads to the
amplitude

Bk � Ck−3/2βk (28)

with

β = B
1 +

√
εγ

µ − 1
C = µ − 1

γ
√

2π

√ √
εγ

1 +
√

εγ
. (29)
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One can verify that β < 1 for all γ > 2 and ε > 0; therefore, apart from a power-law prefactor,
the amplitude Bk decreases exponentially with k.

As in the previous section, the results (25) and (28) are valid only within the boundary
layer. Thus the total density of clusters within the boundary layer is asymptotically equal to
A′t−1, where A′ = ∑

k�2 Bk = B(z = 1), or

A′ = µ − 1 − B −
√

(µ − 1 − B)2 − εγB2

γ
. (30)

Since the total density of clusters scales as At−1, only a fraction A′/A of clusters lies within
the boundary layer. Using equation (24) and (30), we find A−A′ = 2/γ ; this implies that the
density of clusters in the bulk decays as 2/(γ t). The same holds for γ � 2, although in this
case the density of clusters in the boundary layer is asymptotically negligible.

To determine the asymptotic behaviour in the bulk (k → ∞ and t → ∞), we simplify
the rate equations by neglecting the subdominant terms c1(ck−1 − ck) on the right-hand side of
equation (3). Further, the sum in (3) has three contributions. When i lies within the boundary
layer, we can replace

∑
i cick−i by ck

∑
i Bi t

−1 = ckA
′t−1; a similar contribution arises when

j lies within the boundary layer. In the bulk we replace the sum by the integral. Thus

γ

2

∑
i+j=k

cicj → γ

2

∫
dicick−i +

γA′

t
ck.

Combining all terms and using the identity γ (A − A′) = 2 we finally convert equation (3) to

ċk +
2

t
ck = γ

2

∫
dicick−i . (31)

This equation appears in the standard constant-kernel aggregation and its solution, satisfying
the aforementioned conservation laws

∫
dkck = 2/γ and

∫
dk kck = 1, is given by

equation (19).
By matching the mass distribution in the boundary layer (ck ∝ t−1βk) and in the bulk

(ck ∝ t−2), we estimate the width of the boundary layer as

k∗ ≈ ln t

ln(1/β)
(32)

with β given by equation (29). This is a much slower growth than in the case of sterile
monomers where k∗ ∝ t1−2/γ .

When γ = 2, we again expect marginal behaviour. Proceeding as in the case of γ > 2,
we find

R � t−1 c1 � t−1(ε ln t)−1. (33)

From the formal solution (10) we can check by induction that

ck � Bkt
−1(ε ln t)−k. (34)

For k > 2, the amplitude Bk is found from the recursion (26) with µ = 2, B = 1 and B2 = ε/2.
The generating function and the coefficients Bk and C are given by taking the corresponding
formulae in the γ > 2 case and setting γ = 2.

This behaviour holds in a boundary layer whose width now grows as

k∗ ≈ ln t

ln(� ln t)
� = ε

1 +
√

2ε
(35)

while in the bulk we recover the ordinary scaling mass distribution ck = t−2 e−k/t .
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4.2. B: γ < 2

We already argued that R � 2/(γ t) and c1 ∝ t−2/γ for γ < 2. Solving then for dimers we
obtain

c2 ∝
{

t−2 0 < γ < 4/3

t1−4/γ 4/3 < γ < 2.
(36)

Generally, we find

ck ∝




t−2 0 < γ < 2k
k+1

t−2 ln t γ = 2k
k+1

tk−1−2k/γ 2k
k+1 < γ < 2.

(37)

Thus for every γ < 2, small-mass clusters have abnormal kinetics: only monomers for
γ < 4/3, monomers and dimers for 4/3 � γ < 3/2, monomers, dimers and trimers for
3/2 � γ < 8/5, etc. The remaining clusters decay as t−2, and conventional scaling describes
the cluster-mass distribution.

5. Summary and discussion

For irreversible aggregation with distinct monomer–monomer (KMM), monomer–cluster
(KMC) and cluster–cluster (KCC) reaction rates, the dynamics depend crucially on the ratio
γ = KCC/KMC, while ε = KMM/KMC plays a lesser role—all that matters is whether ε = 0
or ε > 0. For ε = 0 and γ < 2, there is conventional scaling with a single mass scale growing
linearly with time. For γ � 2, there are two scales: the boundary layer k < k∗ ∝ t1−2/γ

where the mass distribution has an unusual Poisson form, and the bulk region k > k∗ where
conventional scaling holds. When ε > 0 and γ < 2, there is conventional scaling, except
that light clusters have abnormal kinetics—monomers for γ < 4/3; monomers and dimers
for 4/3 � γ < 3/2; monomers, dimers and trimers for 3/2 � γ < 8/5, etc. When ε > 0
and γ � 2, the behaviour in the boundary layer is very different from that when ε = 0. In
particular, the mass distribution decays with mass while for ε = 0 the mass distribution is
peaked.

A possibly useful reformulation of this model is to clustering on surfaces. Consider a
two-dimensional substrate with diffusing single-layer islands that aggregate whenever they
meet. In the diffusion-controlled limit, the reaction rate of an island of radius R and diffusivity
D is proportional to D ln R [8]. To a good approximation, we can ignore the island radius and
think of point-like islands that always occupy a single-lattice site. When such a cluster hops
onto already occupied site, two clusters immediately coalesce into a single cluster.

If monomers hop with rate D while all heavier clusters hop with the same unit rate, then
the corresponding reaction rates for point-like islands are K11 = 2D,K1j = 1 + D,Kij = 2.
As a result

ε = K11

K1j

= 2D

1 + D
γ = Kij

K1j

= 2

1 + D
. (38)

For immobile monomers, D = 0, we have ε = 0 and γ = 2. In this case, the cluster
mass distribution is

ck+2 = c2(0)τ−(2+r) λ
k

k!
(39)

within a boundary layer that grows logarithmically with time k∗ = r ln(1 + R(0)t), where
r = c1(0)/R(0). In the bulk, ordinary scaling holds in which ck = t−2 e−k/t .
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When D > 0, γ is always less than 2. Therefore,

R = 1 + D

t
c1 ∝ t−1−D. (40)

The decay rate for clusters of mass k > 1 is also simple:

ck ∝




t−2 D > 1/k

t−2 ln t D = 1/k

t−1−kD D < 1/k.

(41)
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Appendix A. Generating function approach

In the case of sterile monomers, we can employ the generating function approach as an
alternative to a direct solution. The generating function

G(z, t) ≡
∑
k�2

zkck(t) (A1)

recasts an infinite set of rate equations into a single differential equation

∂G

∂t
= γ

2
G2 + (zc1 − α) G. (A2)

This is a Bernoulli equation that is readily solved in terms of G−1. The solution is

G−1 = τ 2 e(1−z)λ

G(z, 0)
−

∫ τ

1

dτ ′

R(0)

( τ

τ ′
)2

e(1−z)(λ−λ′) (A3)

where λ = λ(τ) and λ′ = λ(τ ′). For the bi-disperse initial condition, ck(0) = c1(0)δk,1 +
c2(0)δk,2, we have G(z, 0) = c2(0)z2 and R(0) = c2(0). Using these relations together with
c2 = c2(0)τ−2 e−λ we rewrite (A3) as

G−1 = e−zλ

c2z2
− e−zλ

c2

∫ τ

1

dτ ′

(τ ′)2
e−(1−z)λ′

. (A4)

We now consider in detail the marginal case of γ = 2 and justify the two-scale structure
of the mass distribution. When γ = 2, we have λ = r ln τ and (A4) becomes

G(z, t) = c2(t)z
2 eλz

(
1 − r

1+r
z
)

1 − r
1+r

z − z2

1+r

[
1 − τ−1−r(1−z)

] . (A5)

The term τ−1−r(1−z) in the denominator can be ignored within the boundary layer.
Therefore, the denominator becomes (1 − z)[1 + (1 + r)−1z], and the generating function
simplifies to

G(z, t) = c2(t)z
2 eλz 1

2 + r

[
1

1 − z
+

1 + r

1 + z
1+r

]
. (A6)

To extract the mass distribution, we expand G(z, t) in a Taylor series in z. This gives

ck+2

c2
=

k∑
n=0

λn

n!

[
1

2 + r
+

1 + r

2 + r

(
− 1

1 + r

)k−n
]

. (A7)



4542 M Mobilia et al

Thus apart from the leading contribution that equals λk/k!, in agreement with our previous
result in equation (15), we find all the correction terms; e.g., the leading correction is
(1 + r)−1λk−2/(k − 2)!.

When both the quadratic and the transcendental terms in the denominator balance each
other, the generating function accounts for the main part of the mass distribution. The both
terms are comparable when 1 − z ∝ τ−1. Writing 1 − z = ζ/τ and taking z → 1, τ → ∞
limit, with ζ kept finite, we simplify the generating function

G = c2(0)

τ

1

1 + (2 + r)ζ
. (A8)

This form of the generating function implies that

ck = c2(0)

(2 + r)τ 2
exp

[
− 1

2 + r

k

τ

]
. (A9)

Since γ = 2 and (2 + r)R(0) = 2c2(0) + c1(0) = 1 (for the bi-disperse initial conditions
R(0) = c2(0) and the mass density is always set equal to one), the above scaling form reduces
to the anticipated scaling form of equation (19).
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