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We introduce a simple model of "avalanches" in which there is continuous deposition of mass on
a "tilted" substrate, with avalanches occurring whenever the mass at a given site reaches a preas-
signed threshold value h, . The avalanche is defined to sweep away all mass which is downhill from
the initiation event. Basic dynamical features are studied, including the distribution of avalanche
sizes and the time intervals between avalanches. For a one-dimensional "slope" of length L, the

i —i //1

average avalanche size is found to scale as L ', and in the continuum limit the averaged steady-
—j /pI

state mass distribution a distance x from the top of the slope scales as x '. Qualitatively similar
results are found for avalanches on a two-dimensional substrate. Contrasts between the present
avalanche model and models of self-organized criticality are discussed.

I. INTRODUCTION

In this paper, we investigate the statistical properties of
a simple "avalanche" model in which there is a continu-
ous deposition of mass on a "tilted" substrate, with
avalanches occurring whenever the mass at given site
reaches a preassigned threshold value. In an avalanche,
mass is defined as falling along a preferred direction
which we consider as being imposed by an external field,
such as gravity, and in the process coalesces with and re-
moves all other mass that it contacts. Our model may
mimic processes such as the falling off of water droplets
on a thread, e.g. , dew on a cobweb, or the flow of water
on an inclined plane, e.g. , rain on a window pane, or
perhaps even real snow avalanches. The example of rain
on a window pane appears to amenable to simple, yet
quantitative experimental studies.

In addition to the potential connection with avalanche
phenomena, we are also motivated by the "sandpile"
models of self-organized criticality introduced by Bak
and co-workers, ' which have generated considerable re-
cent interest both theoretically ' and experimentally.
Our avalanche model has several features in common
with the sandpile models. There is a continuous input of
mass into the system, with transport being initiated
whenever the threshold for flow is exceeded 1ocally. In
the avalanche model, however, the mass transport after
threshold has been attained has a catastrophic nature, as
the avalanche ends only when the boundary of the system
is reached. This feature strongly contrasts with the dissi-
pation mechanism in the sandpile models. Due to this
dissipation, the sandpile model naturally evolves to a
self-organized critical state in which many dynamical
quantities exhibit power-law correlations. ' However,

the connection between the sandpile model and potential
experimental realizations has yet to be fully realized.
Our model appears to provide a better physical picture
for certain types of transport in open systems, such as
water droplets running down a window pane. Our goal is
to explore the dynamical behavior of the avalanche mod-
el, and perhaps to gain general insights about generic
models of open systems.

We have formulated both a lattice and an off-lattice
version of an avalanche model incorporating (i) droplet
deposition, (ii) droplet growth and coalescence, and (iii)
ensuing avalanche. The first two features have already
been studied extensively in a wide variety of contexts
such as the growth of thin films, ' the growth of breath
figures, ' ' " and heterogeneous nucleation. ' ' The possi-
bility of allowing for avalanching allows the system to
achieve a steady state in which there is a fluctuating
transport of mass out of the end of the system. The be-
havior of this mass flow is the main focus of this paper.

In the lattice version of the avalanche model, unit
masses are sequentially deposited at random on a d-
dimensional substrate of linear dimension L. When the
mass at any lattice site reaches a threshold value h, an
avalanche begins in which this critical mass nucleus
slides "downhill" and collects with it any mass which it
contacts, either downstream or laterally, as illustrated in
Fig. 1. In the off-lattice model, there is sequential, ran-
dom deposition of D-dimensional hyperspherical droplets
of diameter do on the substrate. When two droplets of
radii r,- and r2 touch or overlap, they coalesce into a
larger droplet of radius r =(r, +r2 )', whose location
is at the center of mass of the two original droplets. If
this newly created droplet overlaps other droplet(s),
coalescence continues until no overlaps remain. When
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the droplet mass reaches a threshold value h„ it corn-
mences sliding down the substrate, still continuing to
coalesce with other droplets in its path according to the
mechanism just outlined. In our simulations of the
avalanche model in two dimensions, periodic boundary
conditions in the lateral direction are imposed.

We are interested in the statistical properties of the
avalanches and in the nature of the steady-state mass dis-

tribution on the substrate. In this work, we will primari-
ly focus on two characteristic properties of avalanches.
These are, P(t) which is the distribution of times between
successive avalanches, and R(m), the distribution of
avalanche sizes. The former quantity coincides with the
mass added between avalanches, if one mass is added to
the system per unit time and if the avalanche propagation
time is neglected compared to the time between mass
deposition events. For both the lattice and off-lattice ver-
sions of the model, we find that these dynamical quanti-
ties obey simple scaling laws. However, the spatio tem-
poral correlations of the ensuing steady state are not gen-
erally of a long-range nature, i.e., this steady state does
not appear to lie within the universality class of self-
organized criticality.

For a one-dimensional substrate, we have calculated
the steady-state properties and the temporal correlations
of the avalanches. We have also studied the conditions
for the initiation of the first avalanche in the system. In
addition to analytical calculations, we have performed ex-
tensive numerical simulations of this avalanche process
for both the lattice and continuum version of the model
for one- and two-dimensional substrates. In the simula-
tions of the lattice model, we injected between 1.5X10
and 7.5X10 particles in one dimension, and between
5 X 10 and 7. 5 X 10 particles in two dimensions in order
to study steady-state properties. For the continuum
model, the number of particles added was typically one
order of magnitude less than in the lattice models. These
simulations required a total of approximately 600 h of
CPU time on an IBM 3090 computer.

In Sec. II of this paper, we begin by giving a simple
probabilistic derivation for when the first avalanche is ex-
pected to occur on a one-dimensional substrate. In Sec.
III, we discuss the nature of the steady state in one di-
mension. For the case of the threshold h, =2 the steady
state is found by a direct solution of the master equations
that summarize the occupancy probability on the sub-
strate. In the limit of h, ~ ~, we present a complemen-
tary continuum approach from which we can derive the
steady-state avalanche properties, as well as the spatial
distribution of mass remaining on the substrate. In Sec.
IV we present extensive simulation results for avalanches
on two-dimensional substrates. Finally, in Sec. V we give
a brief discussion of our results.

II. AVALANCHE INITIATION

~ ~

~ ~ ~I I
32 LATTICE UNITS

FIG. 1. Illustration of the discrete version of the avalanche
model on a 32 X 32 substrate for h, =3. The system is shown (a)
just before and (b) just after the avalanche. For this system size,
the wedge-shaped cleared region is apparent.

We first determine the condition necessary for the oc-
currence of the initial avalanche for a one-dimensional
lattice, as mass builds up on an initially empty system of
length L. For the first avalanche to occur, it is necessary
that h, particles land on the same lattice site. This event
can be expected to occur on a system of length L when
the probability of the event is of the order of 1/L. Using
the Poisson distribution for the occupancies at each site,
we therefore have

(h& '
&~) 1

h, ! L
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From this, we find that p~( j) has the steady-state solution

Using Stirling s approximation, the steady-state mass on
the interval is peaked at a value that scales as &L, i.e., as

1 —1/A
L ' with h, =-2.

From this distribution of steady-state occupancies, we
can now determine the distribution of avalanche sizes
and the time between avalanches. For this purpose, note
that there is a unique location for the insertion of a parti-
cle in an interval containing n & m —1 particles that leads
to an avalanche of mass m. Consequently, the steady-
state distribution of avalanche sizes can be written as

R (m+1)=
[p „(n)/L ]

m=1, 2, . . . , L .

g [p (n)/L]
m=1 n=m

(12a)

By exploiting Eq. (9), the sum over p„(n) can be elim-
inated to yield the closed-form expression

R(m+1)= p (m) .
1 L+1

m+1 (12b)

L L

L —n —t+3 n+t —2X. X
L L

(13a)

The factors in the product express the probability that in
an interval which contains I masses, no subsequent
avalanche occurs for the next t time units. Since one
mass is added at each time step, t and m can again be
used interchangeably in Eqs. (12) and (13). Now appeal-
ing to Eq. (9), P(t) can be reduced to

1+—+ R (t)3 2
L L2

L!(2L +t +1) '+' (L+1)"
(L+1) L (A) !

~R(t)+g —,t=1,2, . . . , L+1,1
(13b)

where the second relation continues to hold for the case
t =m =1 if we continue to define R(1) via Eq. (12b). The
basic qualitative features of these expressions for R ( m )

and P(t) is that they are similar in behavior to p„(m).

where (Af. ) is the average size of the avalanches in the
steady state.

By a very similar line of reasoning, the distribution of
time intervals between avalanches, or equivalently, the
mass added between avalanches, can be formally written
as P(t) =P(t)/Q, P(t), with

They are relatively featureless for m & &L, and are ex-
ponentially cut off for m )&L. Our simulation results
for R(m) and P(t) are shown in Figs. 2(c) and 2(d) for
various values of h, . For h, =2, the simulation data are
in excellent agreement with Eqs. (12) and (13).

B. Large threshold

For large values of h„numerical simulations indicate
that a steady state is reached relatively quickly, so that
many properties of the steady state and the initial
avalanche are fairly similar. Thus the exponent values
a =a' = 1 —1/h, also appear to describe the scaling of
the average avalanche size and the average time interval
between avalanches in the steady state. For large h„ the
distribution of avalanche sizes is still quite flat for sizes
less than a characteristic size. However, for the distribu-
tion of avalanche intervals the flat region is followed by a
pronounced minimum and then a sharp peak at the larg-
est possible times [Figs. 2(c) and (d)].

This striking behavior can be understood from the
peculiar evolution of the system in the large h, limit.
Starting with an empty substrate, there is a long quies-
cent period during which mass builds up to a point that is
close to the thresho1d value at each site. When the first
avalanche finally does occur, the upstream portion of the
system is still close to the avalanche threshold. Conse-
quently this portion of the substrate is highly susceptible
to additional avalanching soon after the initial event.
This suggests that there will follow a relatively short
"burst" of avalanche activity in which the initiation point
of the avalanche moves upstream through the near-
threshold portion of the system at each successive event.
This burst terminates when an avalanche occurs at the
top of the slope, thereby sweeping the slope clean. The
large-time peak in the steady-state distribution P(t) origi-
nates from the long time needed to generate an avalanche
after the slope has been swept clean. The location of this
peak quantitatively coincides with the distribution P(t)
associated with the first avalanche.

We now develop this physical picture for the dynamics
in the large h, limit in order to provide quantitative pre-
dictions for steady-state properties. Before the first
avalanche occurs, the mass at each site obeys a Gaussian
distribution p(h) whose average value (h ) increases
linearly in time, and whose width is of the order of
&(h ). The maximum mass at any site h, „ is deter-
mined by the condition Jh p(h)dh =1/L. When h

max

reaches h, the first avalanche occurs. From the integral
condition for h „, we thereby find that the first
avalanche occurs at a time r, /L = TL —h, +2h, lnL, —
and at a random location on the interval.

Since the upstream portion of the system is nearly full
at this time, the second avalanche almost surely occurs
upstream of the first avalanche. The length of this
upstream segment L', will typically be equal to L/2.
Consequently, the typical time for the occurrence of the
second avalanche ~2/L coincides with the time required
for the jtrst avalanche in a system of length L', i.e.,
~2/L = TI '. Following this argument, the time delay un-
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h,
lnx

2

h,h(x)-
2

(14)

til the i '" avalanche is r; /L —TI, where the typical dis-
i —1

tance of the i'" avalanche from the top of the slope is
I, —L /2', and the mass carried by this avalanche is

m, -l, h, . Eventually an avalanche occurs at the top of
the slope after a time delay, 7 1/I h„after which
the avalanche sequence starts over again.

From this picture of avalanche events, the density
profile a distance x form the top of the slope, h (x), aver-
aged over all realizations of the system will be of the or-
der of one-half the time needed for an avalanche to occur
at this position. Therefore,

1/2

tribution of time intervals between avalanches.
Consider the difFerence sequence I r, I

=
I T, ]

—.
t t; j

which delineates the temporal occurrences of avalanches
which begin at column L = 1. Since each T belongs toJ
some interval [t, , t, +, ], and since at every t, the mass on
column L+ 1 is reset to zero, the statistics of '7 dependsJ
only on the enclosing interval [t, , t;+, ]. For large L, the
probability of having more than one Y~ in a time interval
[t, , t, +,] is small and therefore we make the "one-
avalanche" approximation (Fig. 5) in which at most
one '7 occurs in any interval [t;, t; + &]. Within this
approximation, the master equation that relates PL(t)=Prob( t = t; +, t, ) —to Pt +, ( t) =Prob( t = T; +, —T; )

reduces to

In addition, the typical size reduction of successive
avalanches by a factor of 2 suggests that the number of
avalanches in a renewal cycle is of the order of ln L.
Consequently, the average avalanche mass is given by

PL+)(t)=Pt (t) g P((t')+ —,
' g Pt (t+t')P)(t')

Lh,
ML—

lnL
(15)

+ —,'P, (t) g PL(t') .
t'=t+1

(16)

These two formulas suggest that there is a crossover from
the large-h, limit to the large-L limit when h, -lnL. In
the large L limit, the density profile on the substrate can
be viewed as a continuous function. This forms the basis
for a continuum approximation which leads to detailed
results about the statistics of avalanches. This approach
will be treated in III C.

C. Finite deposition rate model for the thermodynamic limit

For arbitrary but large values of h, and for large L, the
average density profile on the substrate becomes a
smoothly varying function of position. To discuss
avalanche statistics, it proves very useful to introduce a
variant of our original avalanche model in which each
lattice site may be occupied by an additional particle with
probability p at each time step. Since mass is deposited at
a rate p per site, then pL particles will be added to the
substrate in a unit time interval. In the limit where p ap-
proaches 0 as 1/L, the behavior of this continuum
"finite-p" model approaches that of the original
avalanche model in that one mass is added per unit time
interval. However, this finite-p model lends itself natural-
ly to a continuum description that facilitates the solution
in the large L limit.

For the finite-p model, let PL (t) be the probability dis-
tribution for a time interval t between successive avalan-
ches, where we now make explicit the fact that this distri-
bution depends on the system length L. Furthermore,
denote by t t, I the sequence of time intervals between suc-
cessive avalanches in a system of length L. This coin-
cides with the sequence of time intervals for avalanches
that pass through column L of an infinite system. We
now construct a master equation for PL (t) by relating the
time interval sequence I T; I associated with avalanches
that pass through column L+1, to the time sequence

I t, I C: [ T; ], associated with avalanches that pass through
column L of the same interval (Fig. 5). The solution to
this master equation provides information about the dis-

The first term on the right-hand side is the contribu-
tion from a time interval [t;, t, + &] of duration t in which
no avalanche occurs on the (L + 1)th column, while the
last two terms correspond to the ways in which the time
interval [t;, t, +&] of duration longer than t can be split
into two subintervals, with one of duration equal to t, by
the occurrence of an avalanche on the (L + 1)th column.
These equations are the discrete rate equations for the
"fragmentation" of the time interval t, +1—t; due to the
introduction of a new avalanche event within the inter-
val, in which L is the analog of the time and t the analog
of the fragment sizes. '

We now take the continuum limit by letting p~0 and
also rescaling t by a factor of p, i.e., the deposition rate
is now L particles in a unit time interval. With this
convention, P, (t) becomes the Poisson distribution

h,.—1

P, (t)=t ' e 'llh, —1)!. Thus Eq. (16) can be recast as

FICz. 5. A schematic time sequence of avalanches for an in-
terval of length I (solid peaks), and the additional avalanches
that begin at column I+ l (dashed peaks). The "one-avalanche"
approximation is based on assuming that no more than one
small avalanche appears between large avalanches.
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aP, (t)
P—, (t)f P, (t')dt'

fjL 0

+ —,
' PL t'+t P] t' dt'

0

+ —,'P, (t) f Pi(t')dt' . (17)

mh, +const Xx, x « 1
C

(x ' /h, )exp( —x '/coh, ), x »1 (22)

Substituting Eqs. (21) and (22) into the definition (18)
for PL(t), we find

Since the typical time between avalanches goes to zero as
the size of the system increases, we anticipate that the
asymptotic behavior of PL(t) can be written in the scaling
form'

1/h
L ', small time

1 —1/h h —1 h . (23)
L 't ' exp( Lt —'/h, !), large time

PL (t) =- TL 'p( t /TL ) . (18)

Here TL is the typical time between avalanches on an in-
terval of length L, and the exponent value —1 is required
by the normalization of the total probability. Substitut-
ing this scaling form into the rate equations and making—xTL
use of the fact that as L ~ ~, e ~1 with x =—t/TL,
the dependence on x and TL in Eq. (17) can be separated
into two equations:

hc
—

1

d TL TL
TL CO

dL (h, —1)!
h h —

1
C

[p(x)+xp'(x )]co= — + f P(y)dy
h, 2 x

(19)

+ ,' f y—' P(x+y)dy .

The first equation can be immediately solved to yield for
the typical time between avalanches:

TL =(L/h, !) '(coh, ) (20)

Since the average mass residing on the L'" column is pro-
portional to TL, Eq. (20) also predicts that there is a
power-law density profile as a function of distance from
the beginning of the interval, with a characteristic ex-
ponent —1/h, . A related quantity, which can be found
by this reasoning is the distribution of positions at which
an avalanche occurs, Q(x). Since Tt ' —j Q(x)dx, we

—1+ 1/h
conclude that Q(x) -x ' for large x.

At this stage, we convert the integrodifferential equa-
tion for the scaling function P(x) to a recursion relation
between the moments mt, =—J 0 x "P(x)dx. Thus by multi-

plying the second half of Eq. (19) by x" and integrating
over all x, we find

1
6)km' —my+ h

C
C

1

2(k +h, )

P(k+ l, h, )

2

for k & 1 . (21)

where /3(n, m) is the f3 function. In both the limits x ~0
and x ~ ~, these recursion relations can be solved to
yield the asymptotic behavior of the moments. Then by
inverting the Mellin transform, we find the following
asymptotic forms for P(x):

Here the crossover between small and large times is
determined by comparing t with the quantity

1/h
(h, !/coh, L ) '. For large times, Eq. (23) coincides with
the time interval distribution for the first avalanche given
in Eq. (5) when the time t is identified with ( h ) in (5).
On the other hand, for small times, Eq. (22) approaches a
constant [Fig. 2(c)], while Eq. (5) has a power-law time

h —1

dependence t ' [Fig. 2(a)].

D. Autocorrelation functions for mass transport

We now study the autocorrelation functions associated
with the mass transport to quantify the fluctuations in
the mass flow through the system. For this purpose, we
define the autocorrelation function for the mass con-
tained in the interval

c „,(t) = ( n (t')n (t'+ t ) ) —( n (t') )', (24)

where n(t) is the total mass in the system at time t, and
the angle brackets denote a time average over t'. Here
we define the time so that the deposition rate is one parti-
cle per unit time interval. For the particular case h, =2,
we can exploit the matrix formulation for the evolution
of the system upon single-particle addition, Eq. (10), to
formally write the autocorrelation function as

OXp„(0)
c „,(t)=(0, 1,2, . . . , L)M' 1Xp„(1) —(n(t))

L Xp (L)

(25)

Since the net mass leaving the system at time t is simply
n(t+1) —n(t) —1, the autocorrelation of the fiux cs„„(t)
is-given by

c„„„(t)=2c„,(t) —c „,(t —1) c„,(t+1}. — (26)

By diagonalizing the matrix M for intervals up to
L =400 and also by direct simulation of the autocorrela-
tion function for an interval of length 25, 000, we obtain
identical results, which are shown in Fig. 6(a}. At short
times, there is an anticorrelation of the flux which merely
reflects the fact that immediately after one avalanche has
occurred, there will be a finite time delay until the next
avalanche. At long times, the correlation function is flat,
indicative of no long-term memory effects. This behavior
continues to hold for small values of h, & 2 [Fig. 6(b)].
On the other hand, for large h, there is an oscillation in
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the correlation function with a periodicity that coincides
with the "renewal" time, i.e., the time for the slope to be
swept clean [Fig. 6(c)].

In two dimensions, we observe qualitatively similar be-
havior, except for the oscillations associated with the

large h, limit. The absence of the oscillations stems from
the lack of a well-defined renewal event. In both one and
two dimensions, it appears that the correlation function
decays rather quickly; there does not appear to be any
evidence for power-law behavior.
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FIG. 6. Numerical results for the autocorrelation function of
the mass flux in one dimension for the cases (a) h, =2 and (b)
h, =5 for L =5000, and (c) h, =50 and L =500.

IV. AVALANCHES ON TWO-DIMENSIONAL
SUBSTRATES

In two dimensions, the time until the first avalanche
and the size of this initial avalanche can also be obtained
by the statistical arguments given in Sec. II. For the ini-
tial avalanche to occur, the density must again reach a
value where the most populated site contains h, particles.
Using the Poisson distribution, this condition is reached

2(1 —1/A j
when a total of L ' particles have been deposited
on the substrate. Consequently, the exponent
a =2( 1 —I /h, ) for a two-dimensional substrate.

An avalanche in two dimensions can accrete mass in
the lateral as well as in the longitudinal direction. In the
lattice model, stationary mass which is laterally nearest
neighbor to the avalanche is defined to become part of
the avalanche (Fig. 1). In the continuum case, any sta-
tionary droplet which is touched by the avalanche is con-
sidered to join the avalanche. Owing to this lateral mass
accretion, the mass of the initial avalanche has a different
dependence on system size than in one dimension. This
size dependence can be found in terms of the shape of the
region which is swept out by the avalanche. Since the
first avalanche occurs when the density reaches a value of—2/A,
the order of L ', the cleared region will have a
wedge shape whose opening angle a is given by—2/h, ,

tan (a/2) ~L '. Multiplying the area of this wedge
by the initial mass density leads to the mass of the initial
avalanche scaling as L with a'=(2 —4/h, ). Analogous
arguments yield the same values for the exponents o. and
a' in the two-dimensional continuum model.

We used numerical simulations to test many of these
predictions. Figure 7 shows the distributions of mass
added until an avalanche, P(t), and the mass removed by
an avalanche R(m), for both the first avalanche, and in
the steady state. These results were obtained from
single-particle deposition on a square of linear dimension
L =512 for various thresholds h, . Estimates for the ex-
ponents a and a' defined in Eqs. (7) were obtained by ex-
trapolating simulation results for L in the range 32—512
to L ~ ~. Figure 8 shows the L dependence of the mea-
sured deviations of a(L) and a'(L) from their asymptotic
values of 2(1 —I /h, ) and 2(1 —2/h, ), respectively. The
behavior as L ~ ~ is in good agreement with our
theoretical expectation.

A noteworthy feature of the distribution of initial
avalanche sizes in two dimensions is the power-law be-
havior at small sizes, R(m) —m ', as shown in Fig.
7(b). This behavior stems from the fact that the location
of the initial avalanche is uniformly distributed and that
the size of the initial avalanche varies as the square of the
distance from the bottom of the slope. Consequently, by
first writing the size distribution as a function of the loca-
tion of the avalanche and then changing variables from
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avalanche location to avalanche size will lead to the
power-law behavior observed in the figure.

Simulations were also performed for the off-lattice
avalanche model. Figures 9 and 10 are "snapshots" of
the system at various stages of evolution; these impart a

helpful visualization of the avalanche process. Imme i-
ately after the first avalanche, there is a characteristic
wedge-shaped area that is cleared (Fig. 9). The steady-
state configurations (Fig. 10) are relatively inhomogene-
ous and exhibit regions of large droplets which are just
about to avalanche, as well as empty regions where
avalanches have recently occurred. For these off-lattice
simulations, the diameter of the deposited droplets was
1.5, and the substrate sizes ranged from 64X64 to 1024
X 1024.

The shape of the cleared area can be found by a simple
geometric argument (Fig. 11). When a moving droplet of
mass m and radius m ~m' falls a distance dy, it ac-
cretes additional mass dm which is proportional to the
differential area swept out by the avalanche, pwdy, where
pis esuth bstrate mass density. This leads to a mass

"orthewhich increases with fall distance y as (py),or t e
I /( —1)width of the wedge growing as (py) . For droplets

of dimensionality D =2, the width of the wedge increases
linearly with y, while for D )2, the width grows more
slowly.

In the off-lattice model, we also measured the distribu-
tion of mass added to initiate the first avalanche and the
mass removed by the first avalanche. We considered
both two- and three- dimensional droplets on a two-
dimensional substrate. For droplets of spatial dimension
D =2 the distributions shown in Fig. 12 are very similar,
both qualitatively and quantitatively, to those of the lat-
tice model on a two-dimensional substrate, as shown in
Fig. 7. From the data for the average mass added to gen-
erate the first avalanche, M, for h, = 3, 5, and 100, we es-
timate the exponent a to be very close to our theoretical
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FIG. 7. Simulations results for the discrete avalanche model
on a 512 X 512 substrate. Shown are (a) the distribution o
times (or mass added) before the first avalanche and (b) the size
distribution of the initial avalanche. In (c) and (d) the time and
size distributions are shown in the steady state.
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FIG. 8. Dependence of 6+ =a(L) —o. and 6a'=6a'=a'(L) —a' on
lattice size L for (a) h, =2 and (b) h, =5. Here +=2(1—lib, )
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FIG. 9. "Snapshots" of two-dimensional off'-lattice avalanche models just after the first avalanche has occurred for various values

of D and h, . The initial droplet diameter is 1.5 and the linear dimension of the system is 256.

prediction of a = 1 —1/h, for both two- and three-
dimensional droplets. However, for the exponent a' rela-
tively large corrections to the asymptotic scaling behav-
ior of a(L) on L exist. This appears to stem from the
finite initial width mo-h, ' of the wedge swept out by
the first avalanche.

This finite initial width of the wedge gives rise to a sub-
stantial contribution to the mass of an avalanche which is
linear in y, in addition to the nonlinear contribution. To
account for this linear component, we consider the quan-
tity AL':

W' =W —ah,"DpI. , (27)

which is simply the mass of the avalanche with the linear
contribution, whose amplitude is governed by an adjust-
able parameter a, subtracted out. By this analysis, the
effective values of the exponent a'(L) were found to con-
verge to a value close to 2 —4/h, as 1.~~ for two-
dimensional droplets.

For three-dimensional droplets, the fact that the region
cleared by the avalanche has a width which grows more
slowly than linear in the fall distance leads to qualitative-
ly different predictions for the exponent a'. In this case,
the area swept out by the initial avalanche scales as
p' ' "yo ' ", where yo~I. is the distance from the
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FIG. 10. Snapshots of the continuum system in the steady state for various values of D and h, .

start of the avalanche to the bottom of the slope. Conse-
quently, the mass in this cleared area scales as
(pl. )

' ", and this leads to

believe that the discrepancy stems from our simulations
being too small to view the mass in the incoming path of
the avalanche as a continuum.

D 2
D —1 h,

(28) V. DISCUSSION

Our numerical results for large h, are in good agreement
with this prediction (Fig. 13), but not so good for smaller
values of h, . Numerically, we find a'=1.0 and 0.4S, re-
spectively, for h, = 5 and 3, while the corresponding
values from Eq. (28) are 0.9 and 0.5. In these cases, we

We have introduced a simple avalanche model in
which there is a continuous input of mass on a tilted sub-
strate, with avalanches occurring whenever the mass at a
given location reaches a preassigned threshold value. In-
spired in part by the sandpile models of Bak and co-
workers, ' one of the goals of our study is to ascertain
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the type of dynamical behavior that can occur in open
systems for which transport is inhibited by an intrinsic
threshold. We anticipate that experimental studies of
this system will provide the impetus for additional
theoretical work.

A basic feature of our model is that once an avalanche

FIG. 13. A plot similar to Fig. 12, except for three-
dimensional droplets (D =3).

starts, it necessarily propagates instantaneously to the
end of the system. Thus our model is dominated by iner-
tial effects, whereas the self-organized criticality models
of Bak and co-workers are strongly dissipative in nature.
This seems to be an essential reason for why power-law
decays in the autocorrelation functions associated with
mass transport do not arise in our avalanche model. Ex-
perimentally, it is not obvious how to design a system
which will be dominated by dissipation. In the two re-
cent experiments on real sandpiles, ' the systems have to
be driven a finite "distance" from the critical state in or-
der to generate mass transport. In this aspect, the experi-
ment of Jaeger, Liu, and Nagel exhibits several features
which are qualitatively similar to our model. Because the
system must be driven by a finite amount to generate
avalanches, there is a characteristic relaxation time
which is related in some fashion to this driving distance.
However, in the sandpile experiment it seems that the
avalanche involves the entire surface, as the slope is de-
scribed always by a single angle. This would correspond
to the maximal avalanches that occur in our model. It
might be interesting to perform sandpile experiments in
much larger systems, so that size-dependent effects, simi-
lar to what we observe, might be studied. Furthermore,
large sizes might allow one to observe the dissipation that
could give rise to power-law dynamical behaviors.

While inertial effects appear to play a primary role in
governing the avalanche dynamics in our model, it is evi-
dent that in an experimental realization of water drops
sliding down an inclined plane, an avalanche is not neces-
sarily catastrophic nor is it instantaneous. Owing to wet-
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ting eAects, a sliding drop may leave behind a trail of
liquid, and this mass loss can eventually cause the droplet
to stop. This stopping mechanism appears to be analo-
gous to the dissipation in the sandpile models. Conse-
quently, by generalizing our model to allow for the possi-
bility that an avalanche can lose mass and also can stop
when a lower mass threshold is reached, one might recov-
er some of the scaling properties of the sandpile model.
It should therefore be interesting to study experimentally
the dynamics of liquid droplets sliding down both wetting
and nonwetting substrates.

For our avalanche model, the dynamical behavior de-
pends crucially on the ratio of the threshold h, to the log-
arithm of the system size L (in one dimension). For small
thresholds, the cleared region downhill from the
avalanche can quickly fill up to the avalanche threshold
again. Consequently, the location and size of successive
avalanches is essentially uncorrelated. For large thresh-
olds, a relatively predictable sequence is followed. There
is a long quiescent period where mass builds up to the
threshold height on the substrate. Then there follows a
short period of intense activity in which each avalanche
breaks off uphill from the previous event. This phase
ends when a avalanche begins at the top of the slope, thus
sweeping the system clean. In the case where L ~ ~, it
is possible to formulate a continuum approach that pre-

diets the system size and threshold dependence of many
dynamical quantities.

There are several additional aspects of the avalanche
model which could be modified in order to explore the
influence of such variations on the dynamics of the sys-
tem. These include allowing for a finite propagation time
for an avalanche, and also allowing for an incomplete
sweeping away of the already-deposited mass as the
avalanche passes by. By varying the parameters associat-
ed with these generalizations, one might gain a better un-
derstanding of underlying mechanisms of the power-law
decay of correlations in the sandpile models. These gen-
eralizations may also prove to be useful in interpreting
experimental systems of fluid drops sliding down inclined
substr ates.
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