
Eur. Phys. J. B 67, 473–481 (2009) DOI: 10.1140/epjb/e2008-00405-5

Understanding baseball team standings and streaks

C. Sire and S. Redner



Eur. Phys. J. B 67, 473–481 (2009)
DOI: 10.1140/epjb/e2008-00405-5

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Understanding baseball team standings and streaks

C. Sire1 and S. Redner2,a

1 Laboratoire de Physique Théorique - IRSAMC, CNRS, Université Paul Sabatier, 31062 Toulouse, France
2 Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA

Received 29 July 2008 / Received in final form 8 October 2008
Published online 5 November 2008 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2008

Abstract. Can one understand the statistics of wins and losses of baseball teams? Are their consecutive-
game winning and losing streaks self-reinforcing or can they be described statistically? We apply the
Bradley-Terry model, which incorporates the heterogeneity of team strengths in a minimalist way, to
answer these questions. Excellent agreement is found between the predictions of the Bradley-Terry model
and the rank dependence of the average number team wins and losses in major-league baseball over the past
century when the distribution of team strengths is taken to be uniformly distributed over a finite range.
Using this uniform strength distribution, we also find very good agreement between model predictions and
the observed distribution of consecutive-game team winning and losing streaks over the last half-century;
however, the agreement is less good for the previous half-century. The behavior of the last half-century
supports the hypothesis that long streaks are primarily statistical in origin with little self-reinforcing
component. The data further show that the past half-century of baseball has been more competitive than
the preceding half-century.

PACS. 89.75.-k Complex systems – 02.50.Cw Probability theory

1 Introduction

The physics of systems involving large numbers of inter-
acting agents is currently a thriving field of research [1].
One of its many appeals lies in the opportunity it offers to
apply precise methods and tools of physics to the realm of
“soft” science. In this respect, biological, economic, and a
large variety of human systems present many examples of
competitive dynamics that can be studied qualitatively or
even quantitatively by statistical physics. Among them,
sports competitions are particularly appealing because of
the large amount of data available, their popularity, and
the fact that they constitute almost perfectly isolated sys-
tems. Indeed, most systems considered in econophysics [2]
or evolutionary biology [3] are strongly affected by ex-
ternal and often unpredictable factors. For instance, a fi-
nancial model cannot predict the occurrence of wars or
natural disasters which dramatically affect financial mar-
kets, nor can it include the effect of many other impor-
tant external parameters (China’s GDP growth, German
exports, Google’s profit. . . ). On the other hand, sport
leagues (soccer [4], baseball [5], football [6]. . . ) or tour-
naments (basketball [7,8], poker [9]. . . ) are basically iso-
lated systems that are much less sensitive to external influ-
ences. Hence, despite their intrinsic human nature, which
actually contribute to their appeal, competitive sports are
particularly suited to quantitative theoretical modeling. In
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this spirit, this work is focused on basic statistical features
of game outcomes in Major-League baseball.

In Major-League baseball and indeed in any compet-
itive sport, the main observable is the outcome of a sin-
gle game – who wins and who loses. Then at the end of
a season, the win/loss record of each team is fundamen-
tal. As statistical physicists, we are not concerned with
the fates of individual teams, but rather with the average
win/loss record of the 1st, 2nd, 3rd, etc. teams, as well
as the statistical properties of winning and losing streaks.
We concentrate on major-league baseball to illustrate sta-
tistical properties of game outcomes because of the large
amount of available data [10] and the near constancy of
the game rules during the so-called “modern era” that
began in 1901.

For non-US readers or for non-baseball fans, during the
modern era of major-league baseball, teams have been di-
vided into the nearly-independent American and National
leagues [11]. At the end of each season a champion of the
American and National leagues is determined (by the best
team in each league prior to 1961 and by league playoffs
subsequently) that play in the World Series to determine
the champion. As the data will reveal, it is also useful to
separate the 1901–1960 early modern era, with a 154-game
season and 16 teams, and the 1961–2005 expansion era,
with a 162-game season in which the number of teams ex-
panded in stages to its current value of 30, to highlight sys-
tematic differences between these two periods. Our data
is based on the 163674 regular-season games that have
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occurred between 1901 and the end of the 2005 season
(72741 between 1901–60 and 90933 between 1961–2005).

While the record of each team can change significantly
from year to year, we find that the time average win/loss
record of the rth-ranked team as a function of rank r is
strikingly regular. One of our goals is to understand the
rank dependence of this win fraction. An important out-
come of our study is that the Bradley-Terry (BT) compe-
tition model [12,13] provides an excellent account of the
team win/loss records. This agreement between the data
and theory is predicated on using a specific form for the
distribution of team strengths. We will argue that the best
match to the data is achieved by using a uniform distri-
bution of teams strengths in each season.

Another goal of this work is to understand the statis-
tical features of consecutive-game team winning and los-
ing streaks. The existence of long streaks of all types of
exceptional achievement in baseball, as well as in most
competitive sports, have been well documented [14] and
continue to be the source of analysis and debate among
sports fans. For long consecutive-game team winning and
team losing streaks, an often-invoked theme is the notion
of reinforcement – a team that is “on a roll” is more likely
to continue winning, and vice versa for a slumping team
on a losing streak. The question of whether streaks are
purely statistical or self reinforcing continues to be vigor-
ously debated [15]. Using the BT model and our inferred
uniform distribution of team strengths, we compute the
streak length distribution. We find that the theoretical
prediction agrees extremely well with the streak data dur-
ing 1961–2005. However, there is a slight discrepancy be-
tween theory and the tail of the streak distribution during
1901–60, suggesting that non-statistical effects may have
played a role during this early period.

As a byproduct of our study, we find clear evidence
that baseball has been more competitive during 1961–2005
than during 1901–60 and feature that has been found pre-
viously [16]. The manifestation of this increased competi-
tiveness is that the range of team records and the length
of streaks was narrower during the latter period. This ob-
servation fits with the general principle [17] that outliers
become progressively rarer in a highly competitive envi-
ronment. Consequently, extremes of achievement become
less and less likely to occur.

2 Statistics of the win fraction

2.1 Bradley-Terry model

Our starting point to account for the win/loss records of
all baseball teams is the BT model [12,13] that incorpo-
rates the heterogeneity in team strengths in a natural and
simple manner. We assume that each team has an intrinsic
strength xi that is fixed for each season. The probability
that a team of strength xi wins when it plays a team of
strength xj is simply

pij =
xi

xi + xj
. (1)

Thus the winning probability depends continuously on the
strengths of the two competing teams [18]. When two
equal-strength teams play, each team has a 50% proba-
bility to win, while if one team is much stronger, then its
winning probability approaches 1.

The form of the winning probability of equation (1) is
quite general. Indeed, we can replace the team strength
xi by any monotonic function f(xi). The only indispens-
able attribute is the ordering of the team strengths. Thus
the notion of strength is coupled to the assumed form of
the winning probability. If we make a hypothesis about
one of these quantities, then the other is no longer a vari-
able that we are free to choose, but an outcome of the
model. In our analysis, we adopt the form of the winning
probability in equation (1) because of its simplicity. Then
the only relevant unknown quantity is the probability dis-
tribution of the xi’s. As we shall see in the next section,
this distribution of team strengths can then be inferred
from the season-end win/loss records of the teams, and a
good fit to the data is obtained when assuming a uniform
distribution of team strengths. Because only the ratio of
team strengths is relevant in equation (1), we therefore
take team strengths to be uniformly distributed in the
range [xmin, 1], with 0 ≤ xmin ≤ 1. Thus the only model
parameter is the value of xmin.

For uniformly distributed team strengths {xj} that lie
in [xmin, 1], the average winning fraction for a team of
strength x that plays a large number of games N , with
equal frequencies against each opponent is

W (x) =
1
N

N∑

j=1

x

x + xj

→ x

1 − xmin

∫ 1

xmin

dy

x + y

=
x

1 − xmin
ln

(
x + 1

x + xmin

)
, (2)

where we assume N → ∞ in the second line. We then
transform from strength x to scaled rank r by x = xmin +
(1 − xmin)r, with r = 0, 1 corresponding to the weakest
and strongest team, respectively (Fig. 1). This result for
the win fraction is one of our primary results.

To check the prediction of equation (2), we start with a
value of xmin and simulate 104 periods of a model baseball
league that consists of: (i) 16 teams that play 60 seasons
of 154 games (corresponding to 1901–60) and (ii) 30 teams
that play 45 seasons of 162 games (1961–2005), with uni-
formly distributed strengths in [xmin, 1] for both cases,
but with different values of xmin. Using the winning prob-
ability pij of equation (1), we then compute the average
win fraction W (r) of each team as function of its scaled
rank r. We then incrementally update the value of xmin

to minimize the difference between the simulated values
of W (r) with those from game win/loss data. Nearly the
same results are found if each team plays every opponent
with equal probability or equally often, as long as the num-
ber of teams and number of games is not unrealistically
small. The BT model, with each team playing each oppo-
nent with the same probability, gives very good fits to the
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Fig. 1. Average win fraction W (r) versus scaled rank r for
1901–60 (") and 1961–2005 (◦). For these periods, the dashed
lines are simulation results for the BT model with xmin = 0.278
and 0.435 respectively. The solid curves represent equation (2),
corresponding to simulations for an infinitely long season and
an infinite number of teams.

data by choosing xmin = 0.278 for the period 1901–60,
and xmin = 0.435 for 1961–2005 (Fig. 1). If the actual
game frequencies in each season are used to determine op-
ponents, xmin changes slightly – to 0.289 for 1901–60 –
but remains unchanged for 1961–2005.

Despite the fact that the number of teams has in-
creased from 16 to 30 since in 1961, the range of win
fractions is larger in the early era (0.32–0.67) than in the
expansion era (0.36–0.63), a feature that indicates that
baseball has become more competitive. This observation
accords with the notion that the pressure of continuous
competition, as in baseball, gradually diminishes the like-
lihood of outliers [17]. Given the crudeness of the model
and real features that we have ignored, such as home-field
advantage (approximately 53% for the past century and
slowly decreasing with time), imbalanced playing sched-
ules, and in-season personnel changes due to trades and
player injuries, the agreement between the data and sim-
ulations of the BT model is satisfying.

It is worth noting in Figure 1 is that the win fraction
data and the corresponding numerical results from simu-
lations of the BT model deviate from the theoretical pre-
diction given in equation (2) when r → 0 and r → 1. This
discrepancy is simply a finite-season effect. As shown in
Figure 2, when we simulate the BT model for progressively
longer seasons, the win/loss data gradually converges to
the prediction of equation (2).

The present model not only reproduces the average
win record W (r) over a given period, but it also correctly
explains the season-to-season fluctuation σ2(r) of the win
fraction defined as

σ2(r) ≡ 1
Y

Y∑

j=1

(W (r) − Wj(r))2, (3)
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Fig. 2. Convergence of W (r) versus scaled rank r as a function
of season length for 1961–2005, using xmin = 0.435 and 30
teams. The circles and the thick dashed curve are the baseball
data and the corresponding BT model data for a n = 162 game
season. The thin dashed lines are model data for a season of
n = 300, 500, and 1000 games averaged over 100000 seasons.
The full line corresponds to the model for an infinitely long
season with 30 teams. Finally, the + symbols give the result
of equation (2), which corresponds to an infinite-length season
and an infinite number of teams.

where Wj(r) is the winning fraction of the rth-ranked
team during the jth season and

W (r) =
1
Y

Y∑

j=1

Wj(r),

is the average win fraction of the rth-ranked team and Y is
the number of years in the period. These fluctuations are
the largest for extremal teams (and minimal for average
teams). There is also an asymmetry of σ(r) with respect
to r = 1/2. Our simulations of the BT model with the
optimal xmin values that were determined previously by
fitting to the win fraction quantitatively reproduce these
two features of σ(r).

In addition to the finite-season effects described above,
another basic consequence of the finiteness of the season
is that the intrinsically strongest team does not necessar-
ily have the best win/loss record. That is, the average
win fraction W does not necessarily increase with team
strength. By luck, a strong team can have a poor record
or vice versa. It is instructive to estimate the number of
games G that need to be played to ensure that the win/loss
record properly reflects team strength. The difference in
the number of wins of two adjacent teams in the stand-
ings is proportional to G(1 − xmin)/T , namely, the num-
ber of games times their strength difference; the latter is
proportional to (1 − xmin)/T for a league that consists
of T teams. This systematic contribution to the difference
should significantly exceed random fluctuations, which are
of the order of

√
G. Thus we require

G '
(

T

1 − xmin

)2

(4)
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Fig. 3. Season-to-season fluctuation σ(r) for 1901–60 (") and
for 1961–2005 (◦). The dashed lines are numerical simulations
of the BT model for 104 periods with the same xmin as in
Figure 1.

for the end-of-season standings to be ordered by team
strength. Figures 2 and 3 illustrate the fact that this ef-
fect is more important for the top-ranked and bottom-
ranked teams. During the 1901–60 period, when major-
league baseball consisted of independent American and
National leagues, T = 8, G = 154, and xmin ≈ 0.3, so
that the season was just long enough to resolve adjacent
teams. Currently, however, the season length is insufficient
to resolve adjacent teams. The natural way to deal with
this ambiguity is to expand the number of teams that qual-
ify for the post-season playoffs, which is what is currently
done.

2.2 Applicability of the Bradley-Terry model

Does the BT model with uniform teams strength provide
the most appropriate description of the win/loss data?
We perform several tests to validate this model. First, as
mentioned in the previous section, the assumption (1) for
the winning probability can be recast more generally as

pij =
f(xi)

f(xi) + f(xj)
, (5)

so that an arbitrary Xi = f(xi) reduces to the origi-
nal winning probability in equation (1). Hence the cru-
cial model assumption is the separability of the winning
probability. In particular, the BT model assumes that
pij/pji = pij/(1 − pij) is only a function of characteris-
tics of team i, divided by characteristics of team j. One
consequence of this separability is the “detailed-balance”
relation pik

1 − pik

pkj

1 − pkj
=

pij

1 − pij
, (6)

for any triplet of teams. This relation quantifies the obvi-
ous fact that if team A likely beats B, and B likely beats
C, then A is likely to beat C. Since we do not know the
actual pij in a given baseball season, we instead consider

zij =
Wij

Gij − Wij
, (7)
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Fig. 4. Comparison of the detailed balanced relation equa-
tion (8) for baseball data to the results of the BT model over
104 periods (dashed lines), where each period corresponds to
the results of all baseball games during either 1901–60 (trian-
gles) or 1960–2005 (circles). The xmin values are the same as
in Figure 1. The straight lines are guides for the eye, with slope
0.63 for the data for 1901–60 and 0.30 for 1961–2005.

where Wij is the number of wins of team i against j,
and Gij is the number of game they played against each
other in a given season. If seasons were infinitely long,
then zij → pij/(1 − pij), and hence

zikzkj = zij . (8)

To test the detailed balance relation equation (8), we
plot 〈ln(zikzkj)〉 as a function of 〈ln(zij)〉 from game data,
averaged over all team triplets (i, j, k) and all seasons
in a given period (Fig. 4). We discard events for which
Wij = Gij or Wij = 0 (team i won or lost all games
against team j). Our simulations of the BT model over 104

realizations of the 1901–60 and 1961–2005 periods with
the same Gij as in actual baseball seasons and with the
optimal values of xmin for each period are in excellent
agreement with the game data. Although zikzkj in the
figure has a sublinear dependence of zij (slope much less
than 1 in Fig. 4), the slope progressively increases and ul-
timately approaches the expected linear relation between
zikzkj and zij as the season length is increased (Fig. 5). We
implement an increased season length by multiplying all
the Gij by the same factor M . Notice also that 〈ln(zikzkj)〉
versus 〈ln(zij)〉 for the 1901–60 period has a larger slope
than for 1961–2005 because the Gij ’s are larger in the for-
mer period (Gij = 22) than in the latter (Gij in the range
5–19).

This study of game outcomes among triplets of teams
provides a detailed and non-trivial validation for the
BT form equation (2) for the winning probability. As a
byproduct, we learn that cyclic game outcomes, in which
team A beats B, B beats C, and C beats A, are unlikely
to occur.
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Fig. 5. Dependence of 〈ln(zikzkj)〉 vs. 〈ln(zij)〉 on season
length for the 1961–2005 period. All Gij ’s are multiplied by
M = 5, 10, 100 (steepening dot-dashed lines). The thick dashed
line corresponds to M = 104 and is indistinguishable from a
linear dependence with unit slope.

2.3 Distribution of team strengths

Thus far, we have used a uniform distribution of team
strengths to derive the average win fraction for the BT
model. We now determine the most likely strength distri-
bution by searching for the distribution that gives the best
fit to the game data for W (r) by minimizing the deviation
∆ between the data and the simulated form of W (r). Here
the deviation ∆ is defined as

∆2 =
∑

r[W (r) − W (r; ρ)]2∑
r W (r)2

, (9)

where W (r; ρ) is the winning fraction in simulations of
the BT model for a trial distribution ρ(x) in which the
actual game frequencies Gij were used in the simulation,
and W (r) is the game data for the winning fraction.

We assume that the two periods 1901–60 and 1961–
2005 are long enough for W (r) to converge to its average
value. We parameterize the trial strength distribution as
a piecewise linear function of n points, {ρ(yi)}, with yi ∈
[0, 1] and yn ≡ 1. We then perform Monte Carlo (MC)
simulations, in which we update the yi and ρi = ρ(yi) by
small amounts in each step to reduce ∆. Specifically, at
each MC step, we select one value of i = 1, ..., n, and

• with probability 1/2 adjust yi (except yn = 1) by
±u δy/10, where δy is the spacing between yi and its
nearest neighbor, and u is a uniform random number
between 0 and 1;

• with probability 1/2, update ρ(yi) by ±u ρ(yi)/10.

If ∆ decreases as a result of this update, then yi or ρ(yi)
is set to its new value; otherwise the change in the pa-
rameter value is rejected. We choose n = 8, which is large
enough to obtain a distribution with significant features
and for which typically 1000–2000 MC steps are sufficient
for convergence. A larger n greatly increases the number
of MC steps necessary to converge and also increases the
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Fig. 6. Optimized strength distributions ρ(x) for 1901–60 (tri-
angles) and 1961–2005 (circles), together with the optimal uni-
form distributions (dashed). For 1961–2005, we also show the
final distributions starting from yi’s equally spaced between
y1 = 0.1 and y8 = 1 with the distribution ρ: (a) uniform on
[0.1, 1] (open circles), and (b) a symmetric V-shape on [0.1, 1]
(full circles).

risk of being trapped in a metastable state because the size
of the phase space grows exponentially with n. To check
that this algorithm does not get trapped in a metastable
state, we started from several different initial states and
found virtually identical final distributions (Fig. 6). The
MC-optimized distribution for each period is remarkably
close to uniform, as shown in this figure.

Although the optimal distributions are visually not
uniform, the small difference in the relative errors, the
closeness of y1 and xmin, and the imperceptible difference
in the r dependence of W (r) for the uniform and opti-
mized strength distributions suggests that a uniform team
strength distribution on [xmin, 1] describes the game data
quite well.

For completeness, we also considered the
conventionally-used log-normal distribution of team
strengths [5,19]:

ρ(x) =
1√

2πκx
exp

[
− 1

2κ2

(
ln

(x

x̄

)
+

κ2

2

)2
]
. (10)

With the normalization convention of equation (10), the
average team strength is simply x̄, which can be set to
any value due to the invariance of pij with respect to the
transformation x → λx. Hence, the only relevant parame-
ter is the width κ. Using the same MC optimization pro-
cedure described above, we find that a log-normal ansatz
for the strength distribution with optimal parameter κ
gives a visually inferior fit of the winning fraction in both
periods compared to the uniform strength distribution,
especially for r close to 1 (see Fig. 7). The relative error
for the log-normal distribution is also a factor of 6 and
3 larger, respectively, than for the optimal distribution
in the 1901–60 and 1961–2005 periods. However, we do
reproduce the feature that the optimal log-normal distri-
bution for 1961–2005 is narrower (κ = 0.238) than that
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Fig. 7. Comparison of the winning fraction W (r) extracted
from the actual baseball data (symbols) to the model with a
constant ρ(x) (dashed lines), and with the optimal log-normal
distribution ρ(x) (full lines). The log-normal fit to the data is
inferior to that provided by a uniform distribution, as illus-
trated in Fig. 1.

for 1901–60 (κ = 0.353), indicating again that baseball is
more competitive in the second period than in the first.

3 Winning and losing streak statistics

We now turn to the distribution of consecutive-game win-
ning and losing streaks. Namely, what are the probabili-
ties Wn and Ln to observe a string of n consecutive wins
or n consecutive losses, respectively? Because of its emo-
tional appeal, streakiness in a wide variety of sports con-
tinues to be vigorously researched and debated [15,20,21].
In this section, we argue that independent game outcomes
that depend only on relative team strengths describes the
streak data for the period 1961–2005 quite well. The agree-
ment is not as good for the period 1901–60 and suggests
that non-statistical effects may have played a role in the
longest streaks.

Historically, the longest team winning streak (with ties
allowed) in major-league baseball is 26 games, achieved
by the 1916 New York Giants in the National League over
a 152-game season [22]. The record for a pure winning
streak since 1901 (no ties) is 21 games, set by the Chicago
Cubs in 1935 in a 154-game season, while the American
League record is a 20-game winning streak by the 2002
Oakland Athletics over the now-current 162-game sea-
son. Conversely, the longest losing streak since 1901 is 23,
achieved by the 1961 Philadelphia Phillies in the National
League [23], and the American League losing-streak record
is 21 games, set by the Baltimore Orioles at the start the
1988 season. For completeness, the list of all winning and
all losing streaks of ≥ 15 games is given in the Appendix.

Figure 8 shows the distribution of team winning and
losing streaks in major-league baseball since 1901. Because
these winning and losing streak distributions are virtually
identical for n ≤ 15, we consider Pn = (Wn + Ln)/2,
the probability of a winning or a losing streak of length

0 5 10 15 20 25
n

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P n

Fig. 8. Distribution of winning/losing streaks Pn versus n
since 1901 on a semi-logarithmic scale for 1901–60 (") and
1961–2005 (•). The dashed curves are the result of simulations
with xmin = 0.278 and xmin = 0.435 for the two respective
periods. The smooth curves are streak data from randomized
win/loss records, and the dotted curve is 2−n.

n (Fig. 8). It is revealing to separate the streak distri-
butions for 1901–60 and 1961–2005. Their distinctness is
again consistent with the hypothesis that baseball is be-
coming more competitive. In fact, exceptional streaks were
much more likely between 1901–60 than after 1961. Of the
55 streaks of ≥ 15 games, 27 occurred between 1901–30,
13 between 1931–60, and 15 after 1960 [24].

The first point about the streak distributions is that
they decay exponentially with n, for large n. This behavior
is a simple consequence of the following bound: consider a
baseball league that consists of teams with either strengths
x = 1 or x = xmin > 0, and with games only between
strong and weak teams. Then the distribution of winning
streaks of the strong teams decays as (1 + xmin)−n; this
represents an obvious upper bound for the streak distri-
bution in a league where team strengths are uniformly
distributed in [xmin, 1].

We now apply the BT model to determine the form
of the consecutive-game winning and losing streak distri-
butions. Using equation (2) for the single-game outcome
probability, the probability that a team of strength x has
a streak of n consecutive wins is

Pn(x) =
n∏

j=1

x

x + xj

x0

x + xn+1

xn+1

x + xn+1
. (11)

The product gives the probability for n consecutive wins
against teams of strengths xj , j = 1, 2, . . . , n (some fac-
tors possibly repeated), while the last two factors give the
probability that the 0th and the (n+1)st games are losses
to terminate the winning streak at n games. Assuming a
uniform team strength distribution ρ(x), and for the case
where each team plays the same number of games with ev-
ery opponent, we average equation (11) over all opponents
and then over all teams.
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The first average gives:

〈Pn(x)〉{xj} = xn

〈
1

x + y

〉n 〈
y

x + y

〉
, (12)

with
〈

1
x + y

〉
=

1
1 − ε

ln
(

x + 1
x + ε

)
,

〈
y

x + y

〉
= 1 − x

1 − ε
ln

(
x + 1
x + ε

)

for a uniform distribution of team strengths in [xmin, 1].
Here we use the fact that each team strength is indepen-
dent, so that the product in equation (11) factorizes. We
now average over the uniform strength distribution, to
find, for the team-averaged probability to have a streak
of n consecutive wins,

〈Pn〉 =
1

1 − xmin

∫ 1

xmin

f(x) eng(x) dx, (13)

where

f(x) =
[
1 − x

1 − xmin
ln

(
x + 1

x + xmin

)]2

g(x) = lnx + ln
[

1
1 − xmin

ln
(

x + 1
x + xmin

)]
.

Since g(x) monotonically increases with x within [xmin, 1],
the integral in equation (13) is dominated by the behavior
near the maximum of g(x) at x = 1 for large n. Performing
the integral by parts [25], the leading behavior is

〈Pn〉 ∼ eng(1), (14)

with

g(1) = − ln(1 − xmin) + ln ln
(

2
1 + xmin

)
.

As expected, 〈Pn〉 decays exponentially with n, but with
a decay rate that decreases as teams become more hetero-
geneous (decreasing xmin). In the limit of equal-strength
teams, the most rapid decay of the streak probability
arises, Pn = 2−n, while the widest disparity in team
strengths, xmin = 0, leads to the slowest possible decay
Pn ∼ (ln 2)n ≈ (0.693)n.

We simulated the streak distribution Pn using the
same methodology as that for the win/loss records; re-
lated simulations of streak statistics are given in refer-
ences [19,21]. Taking xmin = 0.435 for 1961–2005 – the
same value as those used in simulations of the win/loss
records – we find a good match to the streak data for
this period. The apparent systematic discrepancy between
data and theory for n ≥ 17 is illusory because streaks do
not exist for every value of n. Moreover, the number of
streaks of length n ≥ 17 is only eight, so that fluctuations
are quite important.

For the 1901–60 period, if we use xmin = 0.278, the
data for Pn is in excellent agreement with theory for

n < 17. However, for n in the range 17–22, the data is
a roughly factor of 2 greater than that given by the an-
alytical solution equation (14) or by simulations of the
BT model. Thus the tail of the streak distribution for this
early period appears to disagree with a purely statistical
model of streaks. Again, the number of events for n ≥ 17 is
5 or less, compared to a total number of ∼ 70000 winning
and losing streaks during this period. Hence one cannot
exclude the possibility that the observed discrepancy for
n ≥ 17 is simply due to lack of statistics.

Finally, we test for the possible role of self-
reinforcement on winning and losing streaks. To this end,
we take each of the 2166 season-by-season win/loss histo-
ries for each team and randomize them 105 times. For each
such realization of a randomized history, we compute the
streak distribution and superpose the results for all ran-
domized histories. The large amount of data gives streak
distributions with negligible fluctuations up to n = 30 and
which extend to n = 44 and 41 for the two successive pe-
riods. More strikingly, these streak distributions based on
randomized win/loss records are virtually identical to the
simulated streak data as well as to the numerical integra-
tion of equation (13), as shown in Figure 8.

4 Summary

To conclude, the Bradley-Terry (BT) competition model,
in which the outcome of any game depends only on the rel-
ative strengths of the two competing teams, quantitatively
accounts for the average win/loss records of Major-League
baseball teams. The distribution of team strengths that
gives the best match to these win/loss records was found
to be quite close to uniform over a range [xmin, 1], with
xmin ≈ 0.28 for the early modern era of 1901–1960 and
xmin ≈ 0.44 for the expansion era of 1961–2005. This same
BT model also reproduces the season-to-season fluctua-
tions of the win/loss records. An important consequence
of the BT model is the existence of a non trivial detailed-
balance relation which we verified with satisfying accu-
racy. We consider this verification as a quite stringent test
of the theory.

The same BT model was also used to account for the
distribution of team consecutive-game winning and losing
streaks. We found excellent agreement between the pre-
diction of the BT model and the streak data for n < 17
for both the 1901–60 and 1961–2005 periods. However, the
tail of the streak distribution for the 1901–60 period with
n ≥ 17 is less accurately described by the BT theory and it
is an open question about the mechanisms for the discrep-
ancy, although it could well originate from lack of statis-
tics. We also provided evidence that self-reinforcement
plays little role in streaks, as randomizations of the ac-
tual win/loss records produces streak distributions that
are indistinguishable from the streak data except in for
the n ≥ 17 tail during the 1901–60 period.

We also showed that the optimal team strength distri-
bution is narrower for the period 1961–2005 compared to
1901–60. This narrowing shows that baseball competition
is becoming keener so that outliers in team performance



480 The European Physical Journal B

over an entire season – as quantified by win/loss records
and lengths of winning and losing streaks – are less likely
to occur.

We close by emphasizing the parsimonious nature of
our modeling. The only assumed features are the Bradley-
Terry form equation (2) for the outcome of a single game,
and the uniform distribution of the winning probabilities,
controlled by the single free parameter xmin. All other
model features can then be inferred from the data. While
we have ignored many aspects of baseball that ought to
play some role – the strength of a team changing during
a season due to major trades of players and/or injuries,
home-field advantage, etc. – the agreement between the
win fraction data and the streak data with the predictions
of the Bradley-Terry model are extremely good. It will be
worthwhile to apply the approaches of this paper to other
major sports to learn about possible universalities and
idiosyncracies in the statistical features of game outcomes.

SR thanks Guoan Hu for data collection assistance, Jim Albert
for literature advice, and financial support from NSF grant
DMR0535503 and Université Paul Sabatier.

Appendix: Team winning and losing streaks

Table 1. Winning streaks of n ≥ 15 games since 1901.

n year team
26 1916 New York Giants (1 tie)
21 1935 Chicago Cubs
20 2002 Oakland Athletics
19 1906 Chicago White Sox (1 tie)
19 1947 New York Yankees
18 1904 New York Giants
18 1953 New York Yankees
17 1907 New York Giants
17 1912 Washington Senators
17 1916 New York Giants
17 1931 Philadelphia Athletics
16 1909 Pittsburgh Pirates
16 1912 New York Giants
16 1926 New York Yankees
16 1951 New York Giants
16 1977 Kansas City Royals
15 1903 Pittsburgh Pirates
15 1906 New York Highlanders
15 1913 Philadelphia Athletics
15 1924 Brooklyn Dodgers
15 1936 Chicago Cubs
15 1936 New York Giants
15 1946 Boston Red Sox
15 1960 New York Yankees
15 1991 Minnesota Twins
15 2000 Atlanta Braves
15 2001 Seattle Mariners

Table 2. Losing streaks of n ≥ 15 games since 1901.

n year team
23 1961 Philadelphia Phillies
21 1988 Baltimore Orioles
20 1906 Boston Americans
20 1906 Philadelphia As
20 1916 Philadelphia As
20 1969 Montreal Expos (first year)
19 1906 Boston Beaneaters
19 1914 Cincinnati Reds
19 1975 Detroit Tigers
19 2005 Kansas City Royals
18 1920 Philadelphia As
18 1948 Washington Senators
18 1959 Washington Senators
17 1926 Boston Red Sox
17 1962 NY Mets (first year)
17 1977 Atlanta Braves
16 1911 Boston Braves
16 1907 Boston Doves
16 1907 Boston Americans (2 ties)
16 1944 Brooklyn Dodgers (1 made-up game)
15 1909 St. Louis Browns
15 1911 Boston Rustlers
15 1927 Boston Braves
15 1927 Boston Red Sox
15 1935 Boston Braves
15 1937 Philadelphia As
15 2002 Tampa Bay
15 1972 Texas Rangers (first year)
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