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Shocklike Dynamics of Inelastic Gases
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We provide a simple physical picture which suggests that the asymptotic dynamics of inelastic gases
in one dimension is independent of the degree of inelasticity. Statistical characteristics, including
velocity fluctuations and the velocity distribution, are identical to those of a perfectly inelastic sticky
gas, which in turn is described by the inviscid Burgers equation. Asymptotic predictions of this
continuum theory, including the t22�3 temperature decay and the development of discontinuities in the
velocity profile, are verified numerically for inelastic gases.
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Gases of inelastically colliding particles model the dy-
namics of granular materials [1,2], geophysical flows [3],
and large-scale structure of matter in the Universe [4].
Typically, a fraction of the kinetic energy is dissipated
in each collision, leading to interparticle velocity correla-
tions, a clustering instability [5–9], and, in the absence of
external energy input, an inelastic collapse [10–15]. The
last feature presents an obstacle to long-time simulations,
as an infinite number of collisions occur in a finite time.

In this Letter, we propose that a freely evolving
inelastic gas is asymptotically in the universality class
of a completely inelastic, sticky gas. Specifically, the
temperature decreases in time as t22 over an intermediate
range, but asymptotically decays as t22�3. To test this
hypothesis, we employ a simulation in which collisions
between particles with sufficiently small relative velocities
are perfectly elastic. This method allows us to bypass the
inelastic collapse and probe the asymptotic regime.

We consider N identical point particles undergoing
inelastic collisions in a one-dimensional periodic system
of length L. The particles have typical interparticle
spacing x0 � L�N and their typical velocity is y0. We
employ dimensionless space and time variables, x !
x�x0, and t ! ty0�x0, thereby rescaling the ring length
to N . Inelastic and momentum conserving collisions are
implemented by changing the sign of the relative velocity
and reducing its magnitude by a factor r � 1 2 2e, with
0 # r # 1, after each collision. It is convenient to view
the particle identities as “exchanged” upon collision, so
that in a perfectly elastic collision the particles merely
pass through each other, while for a small inelasticity
each particle suffers a small deflection. The outcome of
a collision between a particle with velocity y and another
particle with velocity u is therefore

y ! y 2 e�y 2 u� . (1)

The granular temperature, or velocity fluctuation,
T �t� � �y2�t�� 2 �y�t��2, can be estimated in the in-
termediate time regime by considering the outcome of
a single collision under the assumption that the system
remains homogeneous. In each such collision, the energy
0031-9007�99�83(20)�4069(4)$15.00
lost is DT ~ 2e�Dy�2, with Dy the relative velocity,
while the time between collisions is ��Dy. Assuming
homogeneity, we neglect fluctuations in the mean-free
path � � 1 and posit a single velocity scale so that
y � Dy � T1�2. The temperature therefore obeys the
rate equation dT�dt ~ 2e T3�2 giving

T �t� � �1 1 Aet�22, (2)

where A is a constant of order unity [1]. For small
times t ø tdissip � e21, dissipation is negligible and
the temperature does not evolve; the gas is effectively
elastic. For larger times, the dissipation leads to a e22t22

temperature decay.
However, this behavior cannot be valid asymptoti-

cally, as the temperature must decrease monotonically
with increasing dissipation. Moreover, the temperature
is bounded from below by that of the perfectly inelastic
gas with a vanishing restitution coefficient, r � 0. For
such a sticky gas, the temperature decays as t22�3 and
the typical cluster mass grows as t2�3 [16]. This behav-
ior is reminiscent of diffusion-controlled two species an-
nihilation, where a small reaction probability results in a
homogeneous intermediate time regime in which the den-
sity follows a t21 mean-field decay, even for low spatial
dimension d. However, at long times, single-species do-
mains which are opaque to opposite-species particles form
and a slower t2d�4 density decay follows [17].

For the inelastic gas, we argue that the role of the
reaction probability is played by e. For small e, a
particle can penetrate through a domain of N , Nc�e� �
e21 coherently moving particles without experiencing
a substantial deflection. The critical cluster size Nc�e�
may be estimated by considering a collision between a
moving particle and a cluster of N stationary particles.
From Eq. (1), each collision between the incident particle
and the next particle in the cluster reduces the incident
particle velocity by roughly e. After N collisions, the
incident velocity is yN � 1 2 Ne. For the particle to
pass through the cluster, the number of particles must
therefore be less than e21. It is in this range of cluster
© 1999 The American Physical Society 4069
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sizes that the system remains spatially homogeneous and
the mean-field decay T � e22t22 holds.

However, once the cluster size is larger than Nc�e� �
e21, an incident particle is “absorbed” and the decay
follows that of the perfectly inelastic gas. That is, do-
mains larger than Nc�e� are opaque and present an effec-
tive restitution coefficient reff 	 0 to incident particles.
We argue that a similar sticking mechanism also gov-
erns cluster-cluster collisions. The crossover time tstick
between these two regimes is obtained by matching the in-
termediate and long-time temperature decays, e22t22 and
t22�3, to give tstick � e23�2.

These arguments suggest the temperature decay

T �t� �

8
>><
>>:

1 t ø e21 	 tdissip ,
e22t22 e21 ø t ø e23�2 	 tstick ,
t22�3 e23�2 ø t ø N3�2,
N21 N3�2 ø t .

(3)

The last regime reflects the final state of a finite
N-particle system, namely, a single cluster of mass
m � N , velocity y � N21�2, and therefore energy T �
y2 � N21. This final velocity follows from momentum
conservation in which the total momentum P is the
sum of N individual random momenta of order unity.
Consequently, P ~ N1�2 and y � P�m � N21�2.

The above crossover picture applies equally well to
moderately inelastic gases where both tdissip and tstick are
of order unity and the asymptotic behavior is realized im-
mediately. While weakly inelastic systems with a small
number of particles N , e21 will avoid the clustering
regime and follow the t22 cooling law indefinitely, the
t22�3 sticky gas regime is always reached in the thermo-
dynamic limit, N ! `. Therefore, the t2d�2 decay con-
jectured in [18,19] based on two- and three-dimensional
simulations does not extend to lower dimensions.

To probe the long-time behavior, we performed numer-
ical simulations of N particles which are initially equally
spaced (Dx � 1) and uniformly distributed (on 
21, 1�)
in velocity. We implemented an event-driven simula-
tion, keeping the collision times always sorted to facilitate
identification of the next event. To circumvent the inelas-
tic collapse, elastic collisions were implemented whenever
the relative velocity of the colliding particles fell below a
prespecified threshold, Dy , d [3,20]. In fact, the resti-
tution coefficient for deformable spheres does approach
unity when Dy ! 0 as a consequence of the nonlinear
Hertz contact law [21].

Figure 1 shows that the temperature of the freely
cooling inelastic gas asymptotically decays as t22�3,
independent of the restitution coefficient. Moreover, the
time scale over which this decay occurs diverges in
the limit of vanishing dissipation. We also simulated
the completely inelastic gas (r � 0) where particles
aggregate (and conserve momentum) upon collision. This
gives the same asymptotic temperature decay as the
partially inelastic gas. From Fig. 1, notice that the
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FIG. 1. Temperature T �t� versus time for the freely cooling
inelastic gas with restitution coefficients r � 0.5, 0.9, and
0.99. The data represent averages over ten realizations of
N � 106 particles and 104 collisions per particle. Also shown
is a simulation for a sticky gas (r � 0). A dashed line of
slope 22�3 is plotted as reference. Least-square fits to the
postcrossover data with velocity threshold d � 1022 yield the
decay exponents 0.67, 0.67, and 0.66 for r � 0, 0.5, and 0.9,
respectively.

two crossover times tdissip � e21 and tstick � e23�2 are
consistent with the data for the cases r � 0.9 and 0.99,
and that the temperature is of the appropriate order
T �tstick� � e at the homogeneous-sticky crossover. On
the other hand, for r � 0.5 the intermediate t22 regime no
longer exists and only the sticky gas behavior is realized.

The crossover between the homogeneous gas regime
and the sticky gas regime is ultimately related to the
inelastic collapse. In Fig. 1, simulation results for purely
inelastic collisions are also shown (dots); these coincide
with the results for the velocity threshold d � 1022.
However, as soon as the first cluster is formed, the number
of collisions becomes infinite and the simulation does not
proceed any further in time. Indeed, the last data point
for these simulations marks the transition to the sticky gas
regime. This provides an additional confirmation for the
crossover picture, as the typical cluster mass of the sticky
gas, m�tstick� � t

2�3
stick � e21, matches the critical mass

for the appearance of opaque clusters.
To validate the simulation method, we checked that

results are independent of the cutoff value (provided it
is sufficiently small) as well as the subthreshold collision
mechanism (Fig. 2). In principle, the results can be
trusted as long as the typical velocity is much larger
than the cutoff, y � t21�3 ¿ d, i.e., up to time tvalid �
d23. As shown in the figure, the results for d � 1022

and 1023 nearly coincide until t � 106, consistent with
our expectation. Furthermore, the space-time evolution
of a weakly inelastic gas illustrates how aggregation
eventually dominates (Fig. 3).

We now investigate whether the velocity distribution,
and not merely the overall velocity scale, is also indepen-
dent of r . We therefore computed this distribution for
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FIG. 2. Role of threshold velocity and the collision mecha-
nism. Temperature decay for r � 0.9, N � 106 with different
threshold velocities d � 1022, d � 1023, and different sub-
threshold collision mechanisms (both sticky and elastic).

r � 0.9 (weakly inelastic), r � 0.5 (moderately inelas-
tic), and r � 0 (perfectly inelastic) at three very different
times which are well into the clustering regime. For the
r � 0 case, the cluster velocity was weighted by the clus-
ter mass, to compare with the r . 0 cases. As shown in
Fig. 4, the normalized velocity distribution,

P�y, t� � t1�3F�yt1�3� , (4)

is described by an identical scaling function F�z� for
these widely different values of r . This universality
provides further confirmation that the asymptotic behavior
for any r , 1 is governed by the r � 0 “fixed point.”

Further insights about the behavior of the inelastic gas
are provided by the connection to the Burgers equation
[4,22]. Since sticky gases are described by the inviscid
(n ! 0) limit of the Burgers equation,

FIG. 3. Space-time evolution of a 500 particle system with
r � 0.9 and d � 1022, up to t � 600.
yt 1 yyx � nyxx , (5)

supplemented by the continuity equation rt 1 �ry�x �
0, we conclude that this continuum theory also describes
the asymptotics of the inelastic gas in the thermodynamic
limit. The Burgers equation may be reduced to the
diffusion equation by the Hopf-Cole transformation y �
22n�lnu�x , and therefore is solvable. In our case, the
relevant initial condition is delta-correlated velocities
�y0�x�y0�x0�� � d�x 2 x0�. The resulting velocity profile
is discontinuous, and the corresponding shocks can be
identified with clusters in the sticky gas. Indeed, both
shock coalescence processes and cluster-cluster collisions
in the sticky gas conserve mass and momentum.

The relation to the Burgers equation is useful in several
ways. First, statistical properties of the shock coalescence
process have been established analytically [23]. For
example, the tail of the particle velocity distribution (4)
is suppressed according to

F�z� � exp�2const 3 jzj3�, jzj ¿ 1 . (6)

This behavior can be understood by considering the den-
sity of the fastest (order unit velocity) particles. For
such a particle to maintain its velocity to time t, it must
avoid collisions. This requires that an interval of length
~ t ahead of the particle must be initially empty [24].
For an initially random spatial distribution, the probabil-
ity of finding such an interval decays exponentially with
length; thus P�1, t� � exp�2const 3 t�. Using F�z� �
exp�2const 3 jzjg� and z � yt1�3 then yields g � 3.
Interestingly, over most of the range of scaled veloci-
ties, the numerically obtained velocity distribution devi-
ates only slightly from a Gaussian, reflecting the small
constant in (6) [23].
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FIG. 4. Scaling of the velocity distribution for restitution
coefficients r � 0, 0.5, and 0.9, at times t � 103, 104, 105.
The nine data sets represent averages over 200 realizations in a
system of N � 105 particles and with the cutoff d � 1023.
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FIG. 5. Shock profile of an inelastic gas. Density and velocity
are plotted at time t � 105 in a system with N � 2 3 104

particles, r � 0.99 and d � 1024. A line with slope t21 is
plotted for reference. The number of shocks is consistent with
the expected number Nt22�3 � 9.

Another important prediction of Eq. (5) is that the
velocity is linear in the Eulerian coordinate x and the
Lagrangian coordinate q�x, t�,

y�x, t� �
x 2 q�x, t�

t
. (7)

This form also characterizes the asymptotic velocity
profile of inelastic gases. Figure 5 shows such a sawtooth
velocity profile from an inelastic gas simulation. The
slopes of the linear segments of the profile are consistent
with the t21 prediction of Eq. (7). The inelastic collapse
is simply a finite time singularity characterized by the
development of a discontinuity in the velocity profile, i.e.,
a shock.

In higher dimensions as well, the temperature of an
inelastic gas is a monotonically increasing function of
r , and hence it is bounded from below by the r � 0
case. Therefore, we speculate that r � 0 remains the
fixed point in higher dimensions. On the other hand, the
Burgers equation vt 1 v ? =v � n=2v approximately de-
scribes the sticky gas in the limit n ! 0 [4]. The known
t2d�2 temperature decay of the Burgers equation [4], valid
for 2 # d # 4 (with possible logarithmic corrections at
the crossover dimensions), then yields

T �t� �

8
>><
>>:

1 t ø e21,
e22t22 e21 ø t ø e24��42d�,
t2d�2 e24��42d� ø t ø N2�d ,
N21 N2�d ø t .

(8)

Interestingly, both the decay exponents [18,19], the for-
mation of stringlike clusters [5,11,20], and even the
possibility of a percolating network of clusters [25],
features that were found primarily numerically, are all
predicted by the Burgers equation. Additionally, the
critical cluster size increases with the dimension accord-
4072
ing to Nc�e� � e22d��42d�, suggesting that the inelastic
collapse is avoided when d . dc � 4, and that the ho-
mogeneous gas behavior T � e22t22 holds indefinitely
above this critical dimension.

In summary, our results suggest that the asymptotic be-
havior of a one-dimensional inelastic gas with many par-
ticles is governed by the r � 0 sticky gas fixed point, and
that the appropriate continuum theory is the inviscid Burg-
ers equation. This connection provides several exact sta-
tistical properties of inelastic gases. Conversely, inelastic
gases may provide a useful tool to study shock dynamics.
The suggestive behavior of the inelastic gas in higher di-
mensions deserves careful investigation.
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