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We introduce a minimal generative model for densifying networks in which a new node attaches to a
randomly selected target node and also to each of its neighbors with probability p. The networks that
emerge from this copying mechanism are sparse for p < 1

2
and dense (average degree increasing with

number of nodes N) for p ≥ 1
2
. The behavior in the dense regime is especially rich; for example, individual

network realizations that are built by copying are disparate and not self-averaging. Further, there is an
infinite sequence of structural anomalies at p ¼ 2

3
, 3
4
, 4
5
, etc., where the N dependences of the number of

triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target
can occur, the probability that the resulting graph is complete—all nodes are connected—is nonzero as
N → ∞.
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The investigation of complex networks has blossomed
into a rich discipline, with many theoretical advances and a
myriad of applications to the physical and social sciences
[1–3]. Network science has identified universal properties
that are shared by a wide range of real-world systems,
including small worldness, heterogeneous degree distribu-
tions, and network densification. The latter, observed in a
variety of social, urban, and information networks [4–7],
is a fundamental phenomenon where the number of
edges in a network grows superlinearly with the number
of nodes N. However, the vast majority of network models
exclusively focus on sparse networks, where the average
degree is finite as N → ∞. The main purpose of this
Letter is to introduce a minimal model for dense networks
and to analytically determine many of its fascinating
structural properties, including: (i) a densification transi-
tion, (ii) an infinite sequence of transitions in clique
densities, (iii) an anomalous degree distribution for dense
networks, and (iv) a completeness transition with second-
neighbor copying.
Our model is based on the generic mechanism of

copying (see also Refs. [4,8–12] for related modeling):
new nodes are introduced sequentially and each connects
to a random preexisting target node, as well as to each
of the neighbors of the target (friends of a friend)
independently with probability p (Fig. 1). This mechanism,
related to triadic closure, is known to drive the dynamics of
social networks [13–15], such as Facebook, where people
are invited to connect to a friend of a friend (see, e.g.,
Refs. [11,12]), but also information networks [4,11,16,17]
and biological networks, through the concept of duplication
[10,18–21]. Copying naturally generates highly clustered,
small-world networks [22–26] and has the further advan-
tage of being a local mechanism [27–29], a feature that

allows us to obtain precise results. As we will show,
sufficient copying triggers instabilities in the network
growth, leading to the emergence of network densification,
and produces nontrivial structural properties, including an
infinite sequence of phase transitions in the densities of
fixed-size cliques (complete subgraphs), as well as non-
extensivity and lack of self-averaging of the degree dis-
tribution. Moreover, the simplicity of the mechanism
allows for analytical solution for many network properties.
When p ¼ 0, a network built by copying is a random

recursive tree [30,31], while for p ¼ 1, a complete graph
arises if the initial graph is also complete. For p < 1

2
, the

network is sparse, while for p ≥ 1
2
, the number of links

grows superlinearly with N and the network is dense. In the
dense regime, the network is highly clustered (Fig. 2)
and undergoes an infinite series of structural transitions at
p ¼ 2

3
; 3
4
; 4
5
;… that signal sudden changes in the growth

laws of the number of 3-cliques (triangles), 4-cliques
(tetrahedra), etc.
Number of links.—We first investigate how copying

affects the growth in the number of links. Let LN denote the
number of links in a given realization of a network of N
nodes and let LðNÞ≡ hLNi denote the number of links
averaged over many realizations. Adding a new node

p(1−p)
p2

p(1−p)
2

(1−p)

FIG. 1. The copying mechanism. A new node (filled circle)
attaches to a random target (open circle) and to each of the friends
of the target (squares) with probability p.

PRL 117, 218301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

18 NOVEMBER 2016

0031-9007=16=117(21)=218301(5) 218301-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.218301
http://dx.doi.org/10.1103/PhysRevLett.117.218301
http://dx.doi.org/10.1103/PhysRevLett.117.218301
http://dx.doi.org/10.1103/PhysRevLett.117.218301


increases LðNÞ by 1þ phki, where hki ¼ 2LðNÞ=N is the
average degree. Thus LðNÞ grows according to

LðN þ 1Þ ¼ LðNÞ þ 1þ 2p
LðNÞ
N

: ð1Þ

The exact solution to this recurrence is [32]

LðNÞ ¼ Γð2pþ NÞ
ΓðNÞ

XN
j¼2

ΓðjÞ
Γð2pþ jÞ ð2Þ

where Γð·Þ is the Euler gamma function. The large-N
asysmptotic behavior of this solution

LðNÞ ¼

8>><
>>:

N=ð1 − 2pÞ; p < 1
2
;

N lnN; p ¼ 1
2
;

AðpÞN2p; 1
2
< p ≤ 1;

ð3Þ

with AðpÞ ¼ ½ð2p − 1ÞΓð1þ 2pÞ�−1, illustrates the change
in the N dependence at p ¼ 1

2
.

The standard deviation ΣL ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hL2

Ni − hLNi2
p

exhibits
an even richer dependence on N, with transitions at p ¼ 1

4
and p ¼ 1

2
[32]:

ΣL ∼

8>>>>><
>>>>>:

ffiffiffiffi
N

p
; p < 1

4
;ffiffiffiffiffiffiffiffiffiffiffiffiffi

N lnN
p

; p ¼ 1
4
;

N2p; 1
4
< p < 1; p ≠ 1

2
;

N
ffiffiffiffiffiffiffiffiffi
lnN

p
; p ¼ 1

2
:

ð4Þ

The salient consequences of Eqs. (3) and (4) are that
LðNÞ grows superlinearly with N and is not self-averaging
for p > 1

2
. That is, there is a wide diversity between

different network realizations starting from the same initial
condition—the first few steps are crucial in shaping the
evolution. Conversely, fluctuations are negligible only in
the sparse phase, where ΣL=LðNÞ → 0 as N → ∞; for

p < 1
4
, where ΣL scales as

ffiffiffiffi
N

p
, we further anticipate that

the distribution in the number of links for a network of N
nodes, PðL;NÞ, is asymptotically Gaussian.
Triangles and larger cliques.—A related set of transi-

tions occurs in the densities of larger-size cliques. A
k-clique is a complete subgraph of k nodes that are
connected by kðk − 1Þ=2 links. We first investigate the
number of 3-cliques (triangles). There are two mechanisms
that increase the number of triangles as a result of a copying
event—direct and induced linking. In direct linking, a
triangle is created in each copying event that consists of the
new node, the target node, and the neighbor of the target
that receives a “copying” link (Fig. 3). In induced linking,
additional triangles are created whenever copying creates
links to more than one neighbor of the target that were
previously linked to each other.
To determine theN dependence of the average number of

triangles TðNÞ, suppose that the target node has degree k
and that its neighbors are connected via c “clustering” links
(Fig. 3). If a copying links are made, the increase in the
number of triangles, ΔT, is

ΔT ¼ aþ aða − 1Þ
2

c
kðk − 1Þ=2 : ð5Þ

m
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FIG. 2. Realizations of the copying model for p ¼ 0.1, 0.4, 0.7, and 1 for N ¼ 100, and a summary of the dense regimes.

FIG. 3. Counting triangles. The target node (open circle) has
five neighbors (squares), two of which were previously joined by
“clustering" links (heavy lines). Three copying links (dashed)
create three new triangles by direct linking (one is hatched for
illustration) and one new triangle by induced linking (shaded).
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The first term on the right accounts for direct linking and
the second for induced linking. For the latter, we need to
count how many of aða − 1Þ=2 possible links between a
neighbors of the target, which also connect to the new node,
are actually present. Averaging Eq. (5) with respect to the
binomial distribution for a, we obtain, after an elementary
calculation,

ΔT ¼ pkþ p2c: ð6Þ

The term p2c arises because two connected neighbors of
the target also connect to the new node with probability p2,
since linking to each node occurs independently.
We now express the average number of clustering links

hci in terms of the number of triangles TðNÞ. To this end,
we note that c equals the number of triangles that contain
the target node, hci ¼ 3TðNÞ=N. Using these relations, the
average number of triangles increases by ΔTðNÞ ¼
3p2TðNÞ=N þ 2pLðNÞ=N with each node addition.
While this recursion can be solved exactly [32], the detailed
solution is cumbersome and not illuminating. It is simpler
to specialize to the N ≫ 1 limit, where the above recursion
reduces to the rate equation

dTðNÞ
dN

¼ 3p2
TðNÞ
N

þ 2p
LðNÞ
N

; ð7Þ

whose solution is

TðNÞ ¼

8>>>>>>>><
>>>>>>>>:

2p
ð1−2pÞð1−3p2ÞN; p < 1

2
;

4N lnN; p ¼ 1
2
;

AðpÞ
1−3p=2N

2p; 1
2
< p < 2

3
;

4
Γð4=3ÞN

4=3 lnN; p ¼ 2
3
;

BðpÞN3p2

; 2
3
< p ≤ 1;

ð8Þ

with AðpÞ given in Eq. (3) and BðpÞ also calculable [32] by
solving the discrete recursion for TðNÞ.
Thus the average number of triangles TðNÞ undergoes

two transitions, with the second at p ¼ 2
3
, where TðNÞ

grows superlinearly in LðNÞ (Fig. 2). Moreover, the density
of triangles converges to a nonvanishing value even in the
sparse regime of p < 1

2
, which mirrors the high density of

triangles found in many complex networks [22–26].
The reasoning presented above can be generalized to

4-cliques (quartets) and we find that their number grows
according to the rate equation [32]

dK4ðNÞ
dN

¼ 3p2
TðNÞ
N

þ 4p3
K4ðNÞ
N

; ð9Þ

from which the average number of quartets grows as (with
all prefactors omitted)

K4ðNÞ ∼

8>>><
>>>:

N; 0 < p < 1
2
;

N2p; 1
2
< p < 2

3
;

N3p2

; 2
3
< p < 3

4
;

N4p3

; 3
4
< p ≤ 1:

At the transition points p ¼ 1
2
, 2
3
, and 3

4
, the algebraic factor

is multiplied by lnN. Generally, the average number
KmðNÞ of m-cliques evolves according to

dKmðNÞ
dN

¼ðm−1Þpm−2Km−1ðNÞ
N

þmpm−1KmðNÞ
N

: ð10Þ

Solving Eq. (10) recursively gives

KmðNÞ ∼ Nðjþ1Þpj j
jþ 1

< p <
jþ 1

jþ 2
; ð11Þ

with j ¼ 0; 1; 2;…; m − 1. Thus the N dependence of the
average number of cliques of size m undergoes m − 1
transitions at p ¼ 1 − 1

n with n ¼ 2;…; m.
Degree distribution.—Let Nk be the number of nodes of

degree k. Following standard reasoning [28,33], the degree
distribution evolves according to

dNk

dN
¼ Nk−1 − Nk

N
þ p

ðk − 1ÞNk−1 − kNk

N
þmk: ð12aÞ

The first term on the right is the contribution due to
attachment to the target node, the second term accounts for
attachments to the neighbors of the target node, and the
third term

mk ≡
X
s≥k−1

ns

�
s

k − 1

�
pk−1ð1 − pÞs−kþ1 ð12bÞ

is the probability that the new node acquires a degree k
because it attaches to a target of degree s and to k − 1
neighbors of this target. Here ns ¼ Ns=N denotes the
fraction of nodes of degree s.
When the network is sparse and large, we assume that the

fractions nk do not depend on N to recast Eq. (12) as

½2þ pðkþ 1Þ�nkþ1 ¼ ½1þ pk�nk
þ
X
s≥k

ns

�
s

k

�
pkð1 − pÞs−k: ð13Þ

This equation is not a recurrence, but it is still possible to
extract the asymptotic behavior of nk. First, we observe that
for large k, the summand on the right is sharply peaked
around s ≈ k=p and thus reduces to [20,33]
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nk=p
X
s≥k

�
s
k

�
pkð1 − pÞs−k ¼ p−1nk=p;

where we use a binomial identity to compute the sum itself.
Substituting this into Eq. (13) and assuming that nk decays
slower than exponentially so that differences may be
replaced by derivatives, we obtain the nonlocal equation
for the degree distribution

d
dk

½1þ pk�nk ¼ p−1nk=p − nk: ð14Þ

The algebraic form nk ∼ k−γ solves this equation and also
gives the transcendental relation for the exponent,

γ ¼ 1þ p−1 − pγ−2; ð15Þ

which admits two solutions. One, γ ¼ 1, is unphysical
because the corresponding degree distribution is not
normalizable. The other applies when 0 ≤ p < 1

2
, where

γ ≡ γðpÞ decreases monotonically with p, with γð0Þ ¼ ∞
and γð1

2
Þ ¼ 2. Because γ > 2 for 0 ≤ p < 1

2
the average

degree hki ¼ P
k≥1knk is finite so that the network is

indeed sparse for 0 ≤ p < 1
2
.

In the dense regime, the scaling ansatz nk ¼ Nk=N fails
(see Fig. 4) and many features of the degree distribution
become anomalous. For example, the distribution does not
self-average, nodes of small finite degree are absent in
sufficiently large networks, and the distribution appears to
slowly converge to a form that is visually close to, but
distinct from, a log-normal as N → ∞ (Fig. 4). The
resolution of the degree distribution in this regime repre-
sents an intriguing challenge.
Network completeness.—Finally, suppose that a new

node connects to the neighbors of the target with proba-
bility p and to the second neighbors of the target with
probability q. Such a mechanism naturally arises in social
media, where connections to friends of a friend can extend
to higher-order acquaintances. The unexpected feature of

second-order linking is that the network is complete with
nonzero probability.
Let CðNÞ denote the probability that a network of N

nodes always remains complete for connection probabil-
ities p and q. This completeness probability is

CðNÞ ¼
YN−1

r¼1

Xr−1
k¼0

Bðr; k; pÞ½1 − ð1 − qÞk�r−k−1; ð16Þ

where Bðr; k; pÞ ¼ ðr−1k Þpkð1 − pÞr−k−1 is the binomial
probability that copying leads to k links to the neighbors
of the target. The second factor is the probability that all of
the remaining r − k − 1 neighbors of the target are con-
nected by second-order links.
Asymptotic analysis and numerical evaluation of

Eq. (16) show that CðNÞ indeed converges to a nonzero,
albeit extremely small, value [32]. A more relevant criterion
is not defect-free completeness, but whether the number
of links eventually scales as N2=2, as in the complete
graph. Simulations show that for representative values of
p and q, LðNÞ initially grows linearly with N but then
crosses over to growing asN2=2 (Fig. 5). Thus second-order
copying generically leads to networks that are effectively
complete—eventually each individual knows almost every-
body. Moreover, Fig. 5 illustrates that individual network
realizations are macroscopically disparate. This intriguing
feature also arises in empirical networks and related models
[34–36], and intellectually originates with the classic Pólya
urn model [37–39].
To summarize, we introduced a simple generative model

for network densification based on the copying mechanism
that leads to rich structural properties. A dense network
arises for copying probability p ≥ 1

2
. This regime further

partitions into disjoint windows where the densities of
k-cliques each have distinct scaling properties. Different
network realizations starting from the same initial state are
extremely diverse and all features of the resulting degree
distribution are unconventional. When second-neighbor
connections are made, the network asymptotically becomes
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FIG. 4. Simulations of 1010=N realizations for the degree
distributions nk for p ¼ 0.75 (dense regime) and various N.
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FIG. 5. N dependence of the number of links, with three
realizations for each value of p, for second-neighbor copying
with q ¼ p2.
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complete. These theoretical findings provide a simple
mechanism for the emergence of network densification
in real-world networks, and calls for future empirical
analyses of the scaling of elemental network motifs with
network size.
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