
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 128.197.26.12

This content was downloaded on 10/11/2016 at 18:43

Please note that terms and conditions apply.

You may also be interested in:

Excited random walk in one dimension

T Antal and S Redner

Maxima of two random walks: universal statistics of lead changes

E Ben-Naim, P L Krapivsky and J Randon-Furling

Mechanisms of the formation of biological signaling profiles

Hamid Teimouri and Anatoly B Kolomeisky

A simple method to calculate first-passage time densities with arbitrary initial conditions

Markus Nyberg, Tobias Ambjörnsson and Ludvig Lizana

-exceedance records and random adaptive walks

Su-Chan Park and Joachim Krug

Diffusion under time-dependent resetting

Arnab Pal, Anupam Kundu and Martin R Evans

Fokker–Planck description for a linear delayed Langevin equation with additive Gaussian noise

Luca Giuggioli, Thomas John McKetterick, V M Kenkre et al.

Role of depletion on the dynamics of a diffusing forager

View the table of contents for this issue, or go to the journal homepage for more

2016 J. Phys. A: Math. Theor. 49 394003

(http://iopscience.iop.org/1751-8121/49/39/394003)

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/article/10.1088/0305-4470/38/12/002
http://iopscience.iop.org/article/10.1088/1751-8113/49/20/205003
http://iopscience.iop.org/article/10.1088/1751-8113/49/48/483001
http://iopscience.iop.org/article/10.1088/1367-2630/18/6/063019
http://iopscience.iop.org/article/10.1088/1751-8113/49/31/315601
http://iopscience.iop.org/article/10.1088/1751-8113/49/22/225001
http://iopscience.iop.org/article/10.1088/1751-8113/49/38/384002
http://iopscience.iop.org/1751-8121/49/39
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Role of depletion on the dynamics of a
diffusing forager

O Bénichou1, M Chupeau1 and S Redner2

1 Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600),
Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex France
2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

E-mail: redner@santafe.edu

Received 3 May 2016, revised 11 July 2016
Accepted for publication 25 July 2016
Published 8 September 2016

Abstract
We study the dynamics of a starving random walk in general spatial dimension d.
This model represents an idealized description for the fate of an unaware forager
whose motion is not affected by the presence or absence of resources. The forager
depletes its environment by consuming resources and dies if it wanders too long
without finding food. In the exactly solvable case of one dimension, we explicitly
derive the average lifetime of the walk and the distribution for the number of
distinct sites visited by the walk at the instant of starvation. We also give a heuristic
derivation for the averages of these two quantities. We tackle the complex but
ecologically relevant case of two dimensions by an approximation in which the
depleted zone is assumed to always be circular and which grows incrementally
each time the walk reaches the edge of this zone. Within this framework, we derive
a lower bound for the scaling of the average lifetime and number of distinct sites
visited at starvation. We also determine the asymptotic distribution of the number
of distinct sites visited at starvation. Finally, we solve the case of high spatial
dimensions within a mean-field approach.

Keywords: diffusion, foraging, depletion, starvation

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Background

Failing to find food is one of the frequent causes of death for living organisms, typically a
feral animal or a bacterium. Our goal in this work is to quantitatively account for this
phenomenon of starvation, in which an organism fails to find food resources before it expends
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its own metabolic reserves and starves to death. This essential task of search for resources is
common to all living organisms [1–9]. Generally, the resource could be nourishment, an
abode, or a particular individual. Here we view the resource as food that is gradually depleted
through consumption by a forager. The ecologically relevant situation where the resource is
gradually replenished has also been investigated [10], but here we focus on the extreme case
of a harsh environment where replenishment occurs so slowly that it may be neglected.

Search for a resource has been extensively studied for the case of an omniscient forager
that has full knowledge of its environment (see, e.g., [1–3]). In this setting, the basic objective
is to determine the criterion that optimizes the foraging process. Our focus is on the com-
plementary case where the forager has no environmental knowledge nor the ability to learn
about its environment. Because the resource is gradually depleted by the forager, the ultimate
fate of the forager is to necessarily starve.

1.2. The model

We mathematically describe this foraging process in terms of the starving random walk model.
The starving random walk represents an idealized description for the dynamics of a forager
without any sensory awareness who randomly searches for food in an environment that is
depleted by the foraging process itself [11]. Here, a single forager undergoes an unbiased nearest-
neighbor random walk in discrete time on a regular d-dimensional lattice. Each lattice site initially
contains one food unit. The forager has a metabolic capacity, or intrinsic starvation time  , which
is defined as the number of steps that the random walk can travel without encountering food
before starving to death. Each time the walk lands on an empty site, it comes one time unit closer
to starvation. However, if the walk lands on a site that contains food, the food is instantaneously
and completely consumed, and the walk can again travel  additional steps without encountering
food before starving. In the continuum limit that will be employed in some of the following
sections, we use  to denote the time that the walk can travel before starving.

An important aspect of the starving random walk is that it moves in the same manner,
irrespective of its distance to food sources, as well as whether or not it has recently
encountered food. This feature contrasts with the excited random walk [12–18], in which the
walk continues to move in the same direction when it encounters food and wanders randomly
when it does not. The probability distribution of displacements for the excited random walk
exhibits many surprising properties; however, there is no starvation mechanism in the excited
random walk, and the effect of starvation is the main focus in this work. The salient feature of
the starving random walk is that its mortality is coupled to its gradually depleting environ-
ment. In this sense the starving random walk also differs from mortal random walk models
[19–22], in which a walk spontaneously dies at a fixed rate, independent of its trajectory. In
contrast, the survival probability for each realization of a starving random is coupled to its
individual trajectory, and this leads to non-trivial and dimension-dependent behaviors.

We will investigate two basic questions: (i) How long does a forager live? (ii)What is the
spatial extent of the region explored by a forager before it starves? The behaviors of these two
quantities depend in an essential way on the metabolic capacity  and the spatial dimension d,
as previously discussed in [11]. Here, we provide full details of the derivation of these results
that were only briefly sketched in [11]. We also provide new qualitative arguments to support
our analytical and numerical results in one and two dimensions that are based on an idealized
picture for the evolution of the ‘desert’—the region that is depleted of resources.

We will first treat the case of one dimension, where we first present an intuitive, heuristic
argument that provides the essential scaling behavior for the lifetime and the number of
distinct sites visited at the instant of starvation. The model is also amenable to a full and
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asymptotically exact analysis that will be presented in section 2. More generally, for any
d 2, the forager tends to carve out a compact desert because of the recurrence of the

random walk [23, 24], and then starve before it can escape this desert. As a consequence, the
forager lifetime grows slowly with —linearly in  for d=1 and as z with »z 1.9 for the
ecologically relevant case of d=2, as will be presented in section 3. We also introduce a
circular approximation to provide a lower bound for the lifetime and number of sites visited at
the instant of starvation in d=2.

As the spatial dimension increases, the transience of the random walk implies the forager
is less likely to return to previously depleted sites. Consequently, the lifetime of the forager
should be an increasing function of the dimension for a fixed metabolic capacity  . Thus a
starving random walk is long-lived for >d 2; simulations suggest that the average survival
time grows as wexp( ), with w » 1

2
in d=3 and with ω a gradually increasing function of

the spatial dimension, as was presented in [11].
In section 4, we present a mean-field approximation in which successive visits to food-

containing sites are uncorrelated; this description corresponds to the starving random walk
model in the limit of = ¥d . Here, we solve for the first-passage probability for the walk to
starve, from which we find that the average forager lifetime grows exponentially with  . We
also present new results for the distribution of lifetimes of the walk. We end with some
concluding remarks in section 5. Calculational details for the distribution of visited sites and
the average lifetime in one and two dimensions are presented in the appendices.

2. One dimension

The evolution of the system in one dimension is schematically illustrated in figure 1. As the
walk moves, a region of length L(t) that is devoid of food—the desert—is carved out. The
survival of the walk is controlled by the interplay between wandering and going hungry in the
desert interior and reaching the edge of this desert to consume food. We are interested in the
average of the lifetime of the walk and the number of distinct sites visited by the walk, as well
as the distribution of the latter at the moment of starvation. Because of the simplicity of one
dimension, these properties were explicitly calculated in [11], but the full details of the
derivation of these quantities is given here. It is instructive, however, to begin with an
intuitive argument for the lifetime and number of distinct sites visited.

Figure 1. Space–time evolution of a one-dimensional random walk that clears out an
interval—the desert—where food (shaded) has been eaten. Whenever the walk reaches
a food-containing site, the food is consumed and the desert grows by one lattice spacing
a. The walk starves when it travels  steps without encountering food.

J. Phys. A: Math. Theor. 49 (2016) 394003 O Bénichou et al

3



2.1. Heuristic approach

In one dimension, the walk clears out a desert whose length grows sporadically by steps of a
single lattice spacing a (figure 1). In the continuum limit that will be used in the argument
below, each time the forager comes to the boundary of the desert, it consumes a fixed ‘chunk’
of food that has fixed and non-zero length a in one dimension (and volume ad in d dimen-
sions). We estimate the average lifetime of the forager by partitioning a typical trajectory into
three stages:

(i) The walk first carves out a desert of a ‘dangerous’ critical length Lc—duration T1.
(ii) The walk returns M times to the same edge of the desert—duration T2.
(iii) The walk wanders for too long inside the desert and dies—duration T3.

During stage (i), the walk successively reaches either edge of the desert and extends it by
one lattice spacing as long as the average crossing time

=
-

t
L a

D6
1cross

2 2
( )

is less than the metabolic capacity  (which here has units of time). Equation (1) applies for a
walk that starts a distance a from one edge of a desert of length L and reaches the other side
[25]. We define the critical desert length ºL n ac c by the condition that the walk typically
starves when it attempts to cross the desert. This gives =tcross , or

L D6 2c ( )
in the large- limit. When the length of the desert equals ka, the average time tk needed to
reach either edge of the desert when starting a distance a from one edge is [25]

=
-

t
k a

D

1

2
. 3k

2( ) ( )

Thus the duration T1 of the first stage of a typical trajectory is the sum of these average return
times tk until the desert reaches the critical length ºL n ac c :

å =
=

 T
a k

D

L

D2 4
. 4

k

n

1
1

2
c
2

3
2

c

( )

During stage (ii), the walk likely starves if it attempts to cross the desert. Thus it
continues to survive only if it makes repeated excursions to the same side of the desert.
Suppose that the walk is at the left edge at the end of stage (i). The walk will typically return
M times to this edge before attempting to cross the desert, which results in its starvation. The
probabilities that the walk eventually hits the left edge or the right edge of a desert of length L
when starting a distance a from the left edge are, respectively, [25]

=
-

=- +p
L a

L
p

a

L
, 5( )

and the conditional first-passage time to the left edge is

⎜ ⎟
⎛
⎝

⎞
⎠= --t

aL

D

a

L6
2 . 6( )

The probability Pk that a random walk hits the left edge k times before hitting the right edge,
starting from a desert of length Lc, therefore is
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The first -k 1 terms in the product give the probabilities for the walk to successively hit the
left edge; after each such event the interval grows by a. The last factor is the probability to hit
the right edge when the interval has reached length +L kac . It is straightforward to verify
that this probability distribution is normalized, å P = 1k k0 . Because P ~ -kk

2 for large k,
the average number of same-side excursions until the right edge is reached, å Pkk k0 , is
infinite. Nevertheless, the typical number M of same-side excursions is meaningful. This
quantity can be defined as the median number of such excursions, so that  å P = 1 2k M k0 .
This gives
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+ - +

= -
-
+

=
a L a

L k a L ka

L a

L Ma1
1

1

2
. 8

k M0

c

c c

c

c

( )
( ( ) )( )

( )

Thus for an interval of length Lc, the right edge will typically be reached after ~M L ac

consecutive same-side excursions to the left edge. This condition defines the end of the stage
(ii). Its duration T2 is the sum of the average conditional return times to the same edge of the
desert when starting one lattice spacing away from this edge:

å =
=

+

 T
ka

D

L

D3 2
3 . 9

k L a

L a M

2

2
c
2

c

c

( )

Finally, in stage (iii), the walk fails to return to the left edge of the desert within  steps. The
duration T3 of this terminal stage is exactly  steps.

We therefore estimate of the average lifetime τ of the starving random walk as

t + + T T T 5.5 101 2 3 ( )

compared to the exact asymptotic value of 3.276 86K that will be derived in the next
section (see also [11]). Note that T1, T2 and T3 are comparable when   ¥. Moreover, the
above heuristic approach also gives the average number of distinct sites visited ⟨ ⟩ at the
instant of starvation. To make the connection between continuum diffusion and the discrete
random walk, we interpret the distance traveled by a diffusing particle up to a given time
divided by the lattice spacing as the number of sites covered by the discrete random walk.
With this correspondence, ⟨ ⟩ scales as




+ L

a
M

D

a
2

6
. 11c⟨ ⟩ ( )

To connect to the behavior of the discrete nearest-neighbor random walk, we use =D 1

2
and

a=1. Substituting these values in the above equation gives   3.4641⟨ ⟩ , compared to
the exact asymptotic value of 2.9022K  [11] that we will also derive in the next section.

2.2. Exact probabilistic approach

We now give the details of the calculation of the average number of distinct sites visited by
the walk and its distribution at the instant when the walk starves, as well as its average
lifetime, whose outline was given in [11]. We then provide explicit results by an asymptotic
analysis.
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For an unbiased n-step nearest-neighbor random walk in one dimension, the average
number of distinct sites visited, which is also the span of the walk divided by the lattice
spacing a, asymptotically grows as p~ »S n n8 2.55n [24]. The new feature for
starving random walks is that there cannot exist excursions of more than  consecutive steps
in the previous history in which the walk does not encounter food. Thus a long-lived starving
random walk spends less time roaming within the interior of a desert than an unrestricted
random walk. As a consequence, the number of distinct sites visited by starving random
walks should be larger than that for unrestricted random walks at the same time.

To determine the number of distinct sites visited and its distribution at the instant of
starvation, we define V ( ), the probability that a random walk has visited  distinct sites
when starvation occurs. We may express this probability as

      = ¼ - +V 1 , 122 3 4 1( ) ( ) ( )
where




ò= t F td ,k k
0

( )

with Fk(t) the first-passage probability to either edge of an interval of length ka when the walk
starts a distance a from one edge. That is, an interval of length ka has to be generated, then an
interval of length +k a1( ) , then +k a2( ) , etc, each within a time  , until the final interval
length is reached.

The details of this derivation are given in appenidx A; we make contact with the discrete
nearest-neighbor random walk by setting the diffusion coefficient =D a 22 . From the
asymptotic result given in equation (A.8), the average number of visited sites at the starvation
time is, in the large  limit

*   


òå q q q= ~
¥

V V d , 13
1 0

⟨ ⟩ ( ) ( ) ( )

where we take the continuum limit and express the distribution of visited sites in terms of the
scaled variable * q = , with * p= D a. Using the explicit form for the
distribution qV ( ) in equation (A.8) and computing this integral numerically gives

*   ~ » 1.3065 2.9022 1. 14⟨ ⟩ ( )
We now turn to the average lifetime τ, which we write as

åt t t t= + + + +
=

¥

 V n . 15
n

n
0

1 2( ) ( ) ( )

Here tn is the average return time for the random walk to hit either edge of the interval in the
nth excursion, conditioned on the walk hitting either edge before it starves, while the term 
accounts for the final excursion in which the walk starves. By definition








ò

ò

ò
t = =

t t F t

t F t

t t F td

d

d
, 16n

n

n

n

n

0

0

0
( )

( )

( )
( )

with 


ò= t F tdn k0
( ). The calculation of tn and subsequently τ are presented in appendix B

and the final result is

 t ~ 3.267 86 1. 17( )
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Thus the average lifetime of a starving random walk also scales linearly in  . Roughly
speaking, the same amount of time is spent in carving out a desert to reach the critical length,
then in enlarging it always via the same edge, before finally attempting (and failing) to cross
this desert. The underlying distributions of visited sites and lifetimes are visually similar and
are characterized by a well-defined peak near the average value and an exponential large-
argument tail. Note that the scaling of the mean number of distinct sites visited  µ T⟨ ⟩ ⟨ ⟩
is the same as that for mortal random walkers in one dimension.

3. Two dimensions

Two dimensions is the ecologically relevant situation because of the obvious connection to
the movement of land foragers. This case is also theoretically interesting because d=2 is the
critical dimension between recurrence and transience of random walks [23–25]. Four sample
trajectories of starving random walks at the instant of starvation are given in figure 2 for
metabolic capacity  = 500 to show the types of trajectories that arise. A walk survives if it
never makes an excursion of more than  steps anytime in its past history without

Figure 2. Example random-walk trajectories for  = 500 with the lifetime τ of each
walk indicated. (a), (b) Short-lived walks. (c), (d) Long-lived walks.
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encountering food. Thus the effect of starvation is to progressively bias the ensemble of
random walks as time increases. For fixed  , a short-lived trajectory is relatively compact so
that a desert is quickly carved out within which the walk starves. Conversely, a long-lived
walk typically has a ramified trajectory to ensure that the walk remains close to food-
containing sites and thus is unlikely to starve.

The starvation constraint on the trajectories is highly non-trivial and we have been unable
to solve the problem by exact methods. Thus we turn to simulations and crude approxima-
tions to elucidate some basic properties of starving random walks in two dimensions.

3.1. Simulation results

Our simulations are typically based on 106 realizations of nearest-neighbor random walks that
wander until they starve, for metabolic capacities  between 10 and 2000. For each walk, we
record the time at the instant of starvation, the position of the walk, and the number of distinct
sites visited (equal to the amount of food that the walk has eaten). From these data, we
reconstruct the underlying distributions of these quantities.

A plot of the average number of distinct sites visited at starvation (figure 3) is suggestive
of the algebraic behavior  ~ a⟨ ⟩ . While a naive linear fit to the data on a double loga-
rithmic scale gives a » 1.66, there is a systematic upward curvature in the data of ln⟨ ⟩
versus ln . We account for this curvature by defining two types of  -dependent exponents:
(a) a local exponent that is obtained from the slopes of four adjacent data points in a window
that is moved to progressively larger  , and (b) a running exponent that is obtained by
successively deleting the first point, the first two points, the first three points, etc, in the data.
These two  -dependent exponents both appear to extrapolate to the common value a » 1.8
(figure 3(a) inset). (For the average lifetime and the root mean square displacement, we use
only the running exponent because it has smaller fluctuations.)The closeness of this exponent
to 2 and the fact that d=2 is the critical dimension of random walks may indicate that the
true dependence of ⟨ ⟩ on  is quadratic but modified by a logarithmic correction.

Figure 3. (a) Average number of distinct sites visited for 106 realizations of starving
random walks in d= 2 at the starvation time as a function of  . The curve through the
points is a guide for the eye. The inset shows the local exponent (!) and the running
exponent . (b) The scaled distribution of number of distinct sites visited for four
representative values of  . The data have been averaged over a 15-point range and only
every fifth data point is displayed. All data are based on 106 for each value of  .
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Perhaps the most surprising aspect of this data is that the distribution of distinct sites
visited at the instant of starvation does not satisfy single-parameter scaling, as initially
reported in [11]. This is in stark contrast to the cases of d=1 and d=3, where this same
distribution does obey single-parameter scaling. This lack of scaling indicates that two
dimensions represents a unique situation.

The dependence of the average walk lifetime τ on  is shown in figure 4. Again, there is
a small and systematic upward curvature of the data of τ versus  on a double logarithmic
scale. Thus we employ the same analysis as that used for the number of distinct sites visited,
to estimate that the asymptotic exponent for the lifetime extrapolates to a value near 1.9 (inset

Figure 4. (a) Average lifetime of starving random walks in d=2 as a function of  .
The inset shows the running exponent. (b) The scaled distribution of lifetimes tP t( )
for three representative values of  . Data are based on 106 realizations for each  .

Figure 5. (a) Average rms displacement of a single coordinate for starving random
walks at the instant of starvation in d=2 as a function of  . The inset shows the
running exponents in the main plot. (b) Scaled distribution of this rms displacement for
three representative values of  . Data are based on 106 realizations for each value of  .
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to figure 4(a)). The closeness of this exponent estimate to 2 again suggests that perhaps the
dependence of τ on  may be modified by a logarithmic correction. The distribution of
lifetimes for different values of  collapse onto a single universal curve, with an exponential
long-time decay, when each distribution is scaled by the average lifetime τ (figure 4(b)). This
contrasts with the lack of scaling displayed by the distribution of visited sites.

Finally, we study the root mean square displacement of a single Cartesian coordinate
ºx xrms

2⟨ ⟩ and its distribution at the instant of starvation. As shown in figure 5(a), it
appears that ~ nxrms , with ν close to 1. This dependence accords with naive expectations
based on the dependence of τ on  . Namely, if ~xrms and t ~ 2, and furthermore, the
distribution of lifetimes is sharply peaked about its most probable value, then we should
expect that t~xrms , which is the same scaling of rms displacement versus time as an
unrestricted random walk. Finally, figure 5(b) shows the scaled distribution of the absolute
value of a single coordinate at the instant of starvation. The distributions for different  all
collapse onto a universal curve that decays exponentially, in contrast to the Gaussian decay of
a pure random walk. This distinction stems from the difference between the ensemble of
trajectories for starving random walks and for unconstrained random walks. Indeed, the long-
lived trajectories for a starving random walk are more ramified and more spatially extended
than for a pure random walk, as the walk needs to remain close to resources to survive.

3.2. Circular approximation: heuristic approach

Because of the typically labyrinthine desert geometry in two dimensions, it does not seem
feasible to determine the properties of two-dimensional starving random walks exactly. Thus
we develop an approximation that is based on the assumption that the desert remains circular
at all times. While obviously crude (compare with figure 2), this approximation provides a
lower bound for the average lifetime at starvation because a circular desert is the most
unfavorable geometry for the walk to survive.

We now adapt the heuristic argument given in 2.1 for one dimension to this circular
approximation. Each time the walk hits the edge of the desert, it eats one unit of food, which
we take to be a small patch of area a2, with a the lattice spacing. After each meal, the area of
the desert increases by a2 so that its radius after n meals is p=R nan

2 . Moreover, we
assume that after reaching the desert boundary, the walk starts a distance a from the enlarged
boundary to begin another excursion (figure 6), as on the lattice.

Following section 2.1, we again decompose a typical trajectory into three phases:

Figure 6. Schematic illustration of the evolution of the desert in the circular
approximation. When the random walk hits the boundary, it is restarted a distance a
from the newly enlarged boundary.
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(i) The walk carves out a circular desert of a ‘dangerous’ radius Rc.
(ii) After Rc is reached, the walk makes M excursions into the desert without starving.
(iii) The walk wanders too deeply into the desert and starves.

The desert radius reaches a dangerous value Rc when the average time to go from the
edge to the center is roughly one-half of the metabolic capacity  . This typically corresponds
to the average conditional time to reach a small disk in the center of the desert without having
touched its edge, at the radius Rc, starting from a radius -R ac [25]. This gives the criterion


R

D4 2
,c

2

from which =R D2c .
We now estimate the time to reach this critical radius. When the desert is subcritical, a

forager typically survives an excursion no matter where it exits the desert. For a walk that
starts at radius -R an , the time to reach the edge of the desert is ~t aR D2n n . The number
of meals nc that the forager must eat for the desert to reach the critical radius is determined
from p =R n ac

2
c

2, or p=n D a2c
2. Thus the duration of phase (i) is the sum of the

excursion times until the critical radius is reached:

å å p
= = ~
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As we will show, the duration of phases (ii) and (iii) are negligible compared to phase (i).
Phase (iii) has duration  by definition. For phase (ii), if we know the typical number M of
times that the walk returns to the edge of the desert of initial radius Rc before starving, then its
duration is given by

òå= µ + -
=

+ +
T R n n n M nd . 19

n n

n M

n
n

n M

2 c
3 2

c
3 2

c

c

c

c

( ) ( )

While we are unable to determine M, we can provide an upper bound that we write as +M .
Suppose that the desert radius remains fixed at Rc each time the walk returns to the boundary.
The number of returns +M in this case is strictly greater than M. To estimate +M , we need the
probability  that the walk does not starve in this fixed-size desert between two consecutive
returns to the edge of the desert. We estimate  as the probability that the walk does not reach
the core of the desert, which we take as a small disk of radius b that is much less than Rc. This
quantity is just the splitting probability for a walk that starts at radius -R ac to return to
radius Rc before reaching radius b. For unconstrained diffusion, this splitting probability is
given by [25]


 

=
-

- R a b

R b

Cln

ln
1

ln
for 1. 20c

c

[( ) ]
( )

( )

with C a constant of order 1 as long as b Rc. The probability that the walk returns k times
to the outer boundary Rc before starving is  P = -1k

k ( ). Hence the average number +M
of returns to this boundary is




 å= P =

-
µ+

=

¥

M k
1

ln . 21
k

k
0

( )
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Since we previously showed that µnc , we have < + M M nc. Thus equation (19) yields

 µ <T M n ln . 222 c ( )
Thus phase (ii) has negligible duration compared to that of phase (i), so that the average
lifetime τ of the walk in the circular approximation scales as 3 2. Similarly, the number M of
returns to the edge of the desert during phase (ii) is negligible compared to the number nc of
such returns during phase (i), so that ⟨ ⟩, the average number of distinct sites visited in the
circular approximation scales as  .

3.3. Circular approximation: microscopic approach

We now determine the distribution V ( ) of the number of distinct sites visited at starvation in
the circular approximation and then extract the average lifetime and the average number of
distinct sites visited. As in one dimension, we write V ( ) as

      = ¼ - +V 1 ,2 3 4 1( ) ( )

where again 


ò= t F tdk k0
( ), with Fk(t) the first-passage probability at time t to any point of

the circular boundary of radius Rk when the walk starts a distance a from this boundary.
Following a similar approach as in the case of one dimension (see appendix C), we obtain the
following expression for the distribution of visited sites at the instant of starvation3
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D j

j
,

2
e exp

4
e erfc ,

23
k

j

m

j
m

m

1 1

k m
2 2( )

( )
where  q pº a D2 ( ). Because of the simultaneous appearance of  and θ, this distribution
of the number of distinct sites visited does not obey single-parameter scaling, as mentioned in
section 3.1.

A numerical evaluation of (23) is not straightforward because the sums converge slowly,
but it appears that average number of distinct sites visited grows as

 ~ b a24⟨ ⟩ ( )

with b  0.9. This value roughly accords with the scaling that was obtained from the
heuristic circular approximation. Using the circular approximation, we may also deduce the
average lifetime of the walk (appenidx D). Subject to the same convergence issues as in the
number of distinct sites visited, the lifetime appears to grow as

t ~ g b24( )
with g  1.4. This exponent estimate is also close to that obtained in the heuristic circular
approximation.

The exponents in equations (24a) and (24b) are substantially smaller than the corresp-
onding values obtained by numerical simulations, b » 1.8 and g » 1.9. Thus the circular
approximation is a relatively weak lower bound for the starving random walk on the lattice.
This disparity is not unexpected because the true shape of the desert is generally quite
ramified (figure 2). Such a desert shape allows the walk to eat much more often than in the
circular approximation. In spite of the imprecise numerical results, the circular approximation
gives a lower bound for ⟨ ⟩ and τ in two dimensions, where the complex desert shape seems
to render an exact calculation unfeasible. The circular approximation also captures the two-

3 Equation (23) corrects errors in the corresponding formula in [11].
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parameter scaling for the distribution of the number of distinct sites visited, a property that
does not exist in one dimension.

4. Infinite-dimensional limit

We provide here a detailed analysis of a starving random walk in a large dimension d, that
was quickly discussed in [11]. For large spatial dimension d, an N-step random walk visits
A N distinct sites on average [23, 24], with A a constant that approaches 1 as  ¥d . Thus
the depletion of the environment plays an insignificant role as the walk typically visits new
(food-containing) sites at each step. We therefore investigate the starvation dynamics for large
d under the assumption that the walk hits a previously visited or a previously unvisited site at
each step with time-independent probabilities λ and l-1 respectively. For a hypercubic
lattice in d 1 dimensions, a naive estimate for the probability λ is just the backtracking
probability d1 2( ). The relevant point is that λ is very small in the high-dimensional limit.

Under the assumption that visits to full or empty sites are independent events with the
probabilities given above, the time until the walk starves undergoes a stochastic process in a
one-dimensional ‘starvation space’—an interval of length  . When the origin is reached in
this starvation space, it corresponds to the starvation of the walk on the lattice (figure 7). A
walk at site n in starvation space can wander n additional steps on the lattice without
encountering food before it starves. When the walk hits a previously visited (empty) site in
physical space, the time to starvation decreases by one. This corresponds to a hop to the left
(with probability λ) in starvation space. Conversely, when the random walk hits a new (food-
containing) site, it can wander an additional  steps on the lattice until starvation occurs. This
corresponds to an immediate hop to site  in starvation space with probability l-1 .

Based on this picture, we compute tn, the average time until the walk starves when
starting from position n in starvation space. These average starvation times satisfy the
backward equations [25]:




  
l

l l
= - +
= + - +-

t t
t t t n

1 1,
1 1 2 . 25n n

1

1

( )
( ) ( )

In the equation for tn, the first term accounts for hopping to a previously visited site, in which
case the walk can wander -n 1 additional steps before starving. The second term accounts
for hopping to a new food-containing site, in which case the walk can wander  more steps
before starving. The last term accounts for the time elapsed for a single step. We use the first
equation to eliminate t1 in the recursion for t2, and thereby determine t2 in terms of t .
Repeating this elimination gives each tn in terms of t , and ultimately the closed equation
for t

Figure 7. Evolution of a high-dimensional random walk in ‘starvation space’. A walk at
position n can survive n additional steps without encountering food.
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In the (unrealistic) limit of l  1, the average starvation time approaches  , while, for the
relevant high-dimensional limit where l  0, the average starvation time grows
exponentially with  .

We may also solve for the probability that the walk starves at a given time. Let Qn(t) be
the probability that a walk at time t can wander without food for an additional n steps before
starving. This probability obeys the recursion



  

 
l
l

l

= -
= - -
= - - + - + + -

+

- 

F t Q t
Q t Q t n
Q t Q t Q t Q t a

1 ,
1 1 1,

1 1 1 1 . 27
n n

1

1

1 1

( ) ( )
( ) ( )
( ) ( )[ ( ) ( ) ( )] ( )

The first equation accounts for a walk that is one time step from starvation and hops to an empty
site, and thus gives the first-passage probability that the walk dies at time t. The second equation
accounts for processes in which a walk hops to an empty site and thus moves one time unit closer
to starvation. The last equation accounts for events in which a walk hops from any point in
starvation space to a full site. When this occurs, the walk can survive  additional time units
without eating before it starves.

We impose the initial condition d= =Q t 0n n,( ) , corresponding to the walk being fully
sated at the outset. To solve equations (27a), we multiply each equation by z t, and sum from
t=1 to ¥. In terms of the the generating function = åQ z Q t zn t n

t
0( ) ( ) , we obtain the

algebraic equations
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Solving these equations, the generating function for the first-passage probability is





l l
l l

=
-

- - -
F z

z z

z z

1

1 1 1
. 28( ) ( ) ( )

[ ( )( ) ]
( )

Notice that = =F z 1 1( ) , which means that the sum of the first-passage probability over all
times equals 1. Thus the walk eventually must starve. One can also readily verify that the
average first-passage time given in (26) is reproduced by

å= =
¶
¶ =

t tF t z
F z

z
. 29

z 1

⟨ ⟩ ( ) ( ) ( )

Because F (z) has a simple pole at l l= » + -z z 1 1c ( ) to lowest order, the first-passage
probability decays exponentially with time. The characteristic decay time of the first-passage
probability is given by -zc

1, which has the same scaling as the average first-passage time given
in equation (26).

Finally, we determine the distribution of the number of sites visited by the walk on the
lattice. The essential ingredient to determine this distribution is the return probability Rn,
namely, the probability for a walk that starts from site n in starvation space to reach  without
first hitting 0. Each such return corresponds to the random walk visiting a new site on the
physical lattice without starving. These return probabilities satisfy the recursion
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In the equation for Rn, the first term accounts for the walk hitting a previously unvisited site,
in which case the walk is at site  in starvation space, while the second term accounts for the
walk hitting an empty site, in which case the walk is at site -n 1 in starvation space.

The solution to this recursion is simply l= -R 1n
n. From these return probabilities, we

now infer the distribution of distinct sites visited at starvation. For a walk that starts at site 
in starvation space, the probability that  distinct sites are visited on the lattice before the
walk starves is simply given by

 


= -P R R1 . 31( ) ( ) ( )

This equation expresses the fact that to visit  distinct sites on the lattice, the walk must visit
a full site  times, each within  steps, before the walk staves. From this result, the average
number of distinct sites visited before the walk starves is

 



 l l=
-

= --R

R1
1 . 32⟨ ⟩ ( ) ( )

As might be expected in this mean-field description, the average lifetime given in
equation (26) and the average number of distinct sites visited before starving are the same up
to an overall constant factor of l-1 , and both grow exponentially with the metabolic
capacity  . These long-lived trajectories in large spatial dimension arise from the low
probability to encounter a previously visited site.

5. Summary and discussion

The starving random walk model represents a minimalist description for the consumption of a
depleting resource by an unaware forager. While there is much literature on optimizing the
search for resources by a rational forager that possesses complete knowledge of its
environment (see, e.g., [1–9]), the complementary starving random walk model in which the
forager has no propensity to move toward food and no environmental knowledge seems
mostly unexplored. The fundamental parameters for a starving random walk are its metabolic
capacity  , namely, the number of steps that the walk can wander in a row without food
before starving to death, and secondarily the spatial dimension d. The latter parameter enters
because of the non-trivial dimension dependence of visits to distinct sites for random walks.

We solved the starving random walk model in one dimension by probabilistic methods to
give the average lifetime of the walk, the average number of distinct sites visited at the instant
of starvation, and the distribution of the latter. Qualitatively, a forager carves out a growing
desert until the desert reaches a dangerous critical length of the order of D . When this
length is reached, the walk can still survive if it returns to the same side of the desert, but
starves when it attempts to cross to the other side. From this picture, the average number of
distinct sites visited at the instant of starvation, which is the same as the total amount of
consumed food, scales as  , while the average lifetime scales as  .

In the ecologically relevant case of two dimensions, a probabilistic solution for the
lifetime and number of distinct sites visited as a function of the metabolic capacity remains an
open challenge, especially as it would be possible to compare these results with the char-
acteristics of land animals. By numerical simulations, both the average number of distinct
sites visited and the average lifetime appear to scale algebraically with  , with an exponent
close to 1.8 for the former quantity and exponent close to 1.9 for the latter. The spatial
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probability distribution of starving random walks is exponential rather than the Gaussian for a
pure random walk. This difference reflects the feature that a long-lived starving random walk
remains close to the source of food, which means that it should explore a ramified and more
spatially extended region than a pure random walk. We provided a (weak) lower bound for
the average lifetime and number of distinct sites visited within a circular approximation. The
two-dimensional case is particularly challenging, as the distribution of the distinct sites visited
does not obey single-parameter scaling [11] and the relation between the geometry of the
carved out desert and the lifetime of the walk is not yet resolved.

In greater than two dimensions, the transience of the random walk means that visits to
new (i.e., food containing) sites occur at a fixed rate. Thus a starving random walk is much
more long lived for >d 2 than in d 2. Indeed, we previously found [11] that the average
lifetime τ grows as wexp( ), with w » 1

2
in d=3 and with ω slowly growing with d.

Simulation results up to 5 dimensions suggest that β is a continuously growing function of
dimension [11] and β reaches the mean-field value of 1 only when  ¥d . Preliminary
numerical simulations indicate that the distribution of times between visits to distinct sites has
a slower than exponential decay for spatial dimensions >d 2 and only gradually approaches
an exponential decay for  ¥d [26]. These features suggest that the critical dimension of
the starving random walk problem may be infinite.

Thus starving random walks represent a new type of non-equilibrium process in which
the dynamics is controlled by the times between visits to distinct sites in a random walk.
While much is known about the average number of distinct sites visited and its underlying
distribution for random walks [23, 24], little appears to be known about the times between
visits to new sites, as well as the distribution of times between such visits. This aspect of the
starving random walk model is very much worth exploring.
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Appendix A. Distribution of the number of distinct sites visited in one
dimension

For a random walk that starts at x=a within an interval of length L=ka with both ends
absorbing, the concentration at position x at time t is
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We rewrite the sum over odd integers n as the sum over all integers +n2 1. Thus the
integrated flux that leaves the interval up to time  is
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We now need to compute the product    º Uk k2 ( ) that appears in (12). Taking
the logarithm, we have
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We convert the sum to an integral, introduce the scaled variable =z n , and replace
p+ +n k nsin 2 1 2 1[( ) ] ( ) by p k; this latter approximation applies in the limit of large  .

These steps lead to
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We expand the logarithm, which again applies for large  , and ultimately obtain
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( ) denotes the exponential integral.

Similarly, the factor - +1 1 in (12) has the   ¥ asymptotic behavior
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Finally, using equation (12), the distribution of the scaled variable θ is
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We use this form in equation (13) to compute the average number of distinct sites visited at
the instant of starvation.

Appendix B. Average lifetime τ in one dimension

Using the results of the appenidx A, we write the numerator in equation (16) as
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with b pº +j D ka2 1 2 2[( ) ] ( ) . For large k, we approximate the sine function by its
argument and then perform the temporal integral to give

J. Phys. A: Math. Theor. 49 (2016) 394003 O Bénichou et al

17



⎡
⎣⎢

⎤
⎦⎥ 







å

å

p p
p

b

p
b

+
+

- +

+
- +

b

b

=

¥
-

=

¥
-





D

ka k
j

k a

j D

ka

D j

4
2 1

2 1
1 e 1 ,

4 1

2 1
1 e 1 . B.2

k
j

j

2
0

2
2 2

2 2

2

2

2
0

2

( )
( )

( )
[ ( )]

( )
[ ( )] ( )

To leading order in  , the denominator in (16) is subdominant, so that we have t  .k k We
now define  tº å =n k

n
k1 . Using equation (B.2), we again convert the sum over k to an

integral and introduce the scaled variable p=u ka D( ) to give
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From equation (15), we write
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Introducing q p= na D( ) and replacing the sum over n by an integral, we obtain
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Using equation (A.8) and evaluating the resulting expression numerically, the average
lifetime is t ¼ 3.276 86 .

Appendix C. The distribution V ð Þ in the circular approximation

Consider a random walk that starts a distance a from the boundary of a circle of radius
pºR k ak . For k 3, the radius is smaller than a, so for these cases the walk starts from

the center of the circle. We neglect this detail in the following. The probability to first reach
the boundary at time t is given by [25]
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with J0 and J1 the Bessel functions of order 0 and 1, and jm the mth zero of J0. Integrating this
expression for  t0 , the probability k to reach the boundary before starving is then4
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As in one dimension, we need   = U k k1( ) . We start by taking its logarithm
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4 Equation (C.2) corrects a misprint in the corresponding equation in [11].
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We again convert the sum to an integral, expand the logarithm and use
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when  and consequently k become large. This yields
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Similarly, the term - +1 1 has the following asymptotic behavior in the large  limit
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Finally, the distribution of the number of distinct sites visited at starvation is given by
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Introducing the variable  q p= a D2 ( ), we obtain equation (23).

Appendix D. Average lifetime in the circular approximation

As in one dimension, we write the numerator in equation (16) as
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with jm the mth zero of the Bessel function J0. For large k, we again substitute (C.4) in the
above integrand and then perform the temporal integral to give
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To leading order in  , we still have t k k . We then define  tº å =n k
n

k1 , use t k k , with
k given in (D.2), and convert the sum to an integral to give
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Changing to the variable p=u ka D2 ( ) leads to
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where q pº na D2 ( ). Using equation (15), we write
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With qV ,( ) given in equation (23). We finally obtain
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