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Social balance on networks: The dynamics of friendship and enmity
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Abstract

How do social networks evolve when both friendly and unfriendly relations exist? Here we propose a simple dynamics for social networks in
which the sense of a relationship can change so as to eliminate imbalanced triads — relationship triangles that contains 1 or 3 unfriendly links.
In this dynamics, a friendly link changes to unfriendly or vice versa in an imbalanced triad to make the triad balanced. Such networks undergo
a dynamic phase transition from a steady state to “utopia” – all friendly links – as the amount of network friendliness, defined as the fraction of
friendly links ρ, is changed. Basic features of the long-time dynamics and the phase transition are discussed.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

As we all have experienced, social networks can evolve
in convoluted ways. Friendships can become estrangements
and vice versa. New friendships can be created while existing
friends drift apart. How are these changing relations reflected in
the structure of social networks? As a familiar and illustrative
example, suppose that you are friendly with a married couple
that gets divorced. A dilemma arises if you try to remain
friendly with both of the former spouses. You may find yourself
in the uncomfortable position of listening to each of the former
spouses separately disparaging each other. Ultimately you may
find it simplest to remain friends with only one of the former
spouses and to cut relations with the other ex-spouse. In the
language of social balance [1–4], the initially balanced triad
became unbalanced when the couple divorced. When you
subsequently kept your friendship with only one former spouse,
social balance is restored.

What happens in a larger social network? Now we need to
look at all triads i jk that link individuals i , j , and k. We define
the link variable si j = 1 if i and j friends and si j = −1
otherwise. Then the triad i jk is balanced if si j s jkski = 1, and
is imbalanced otherwise (Fig. 1). A balanced triad therefore
fulfills the adage:
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Fig. 1. Evolution of a married couple plus friend triad. After a divorce the triad
becomes imbalanced, but balance is restored after another relationship changes.
Full and dashed lines represent friendly and unfriendly relations respectively.

• a friend of my friend, as well as an enemy of my enemy, is
my friend;

• a friend of my enemy, as well as an enemy of my friend, is
my enemy.

A network is balanced if each constituent triad is balanced
[1,4]. A seemingly more general definition of a balanced
network is to require that each closed cycle is balanced; that
is,

∏
`∈path s` = +1. Cartwright and Harary showed [5] that a

cycle-based definition of balance is equivalent to a triad-based
definition for complete graphs. This result can be reformulated
as follows: if we detect an imbalanced cycle of any length in a
complete graph, there must be an imbalanced triad.

Balance theory was originally introduced by Heider [1] and
important contributions were made by many others [2,3,6].
Cartwright and Harary [5,7] translated Heider’s ideas into the
framework of graph theory, and proved several fundamental
theorems about the structure of balanced networks. There is
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also an extensive literature on balance theory (see e.g., [4,8–13]
and references therein).

Cartwright and Harary [5] showed that on a complete graph
balanced societies are remarkably simple: either all individuals
are mutual friends (“utopia”), or the network segregates into
two mutually antagonistic but internally friendly cliques –
a “bipolar” state (see Fig. 10 as an example). However,
spontaneously balanced states are rare – if one were to assign
relationships in a social network at random, the probability that
this society is balanced would vanish exponentially with system
size. Thus to understand how a network reaches a balanced state
we need to go beyond static descriptions to investigate how
an initially imbalanced society becomes balanced via social
dynamics.

Here we discuss the evolution of such social networks when
we allow the sense of each link to change from friendly to
unfriendly or vice versa to reflect the natural human tendency
to reduce imbalanced triads [14,15]. Two such dynamics are
considered: local triad dynamics (LTD) and constrained triad
dynamics (CTD). For simplicity, we consider complete graph
networks – everyone knows everyone else. We will address the
basic question: what is the long-time state of such networks?

2. Local triad dynamics

2.1. The update rule

In local triad dynamics (LTD), an imbalanced triad is
selected at random and the sign of a relationship between two
individuals is flipped to restore the triad to balance. This change
is made irregardless if other triads become imbalanced as a
result. Thus LTD can be viewed as the social graces of the
clueless — such a person makes a relationship change without
considering the ramifications on the rest of his social network.
We define a triad 4 to be of type k if it contains k unfriendly
links. Thus 40 and 42 are balanced, while 41 and 43 are
imbalanced. With these definitions, the LTD rules are (Fig. 2):

(1) Pick a random triad; if it is balanced do nothing.

(2) If the triad is of type 41, then: (i) with probability p, change
the unfriendly link to a friendly link; (ii) with probability
1 − p, change a friendly link to an unfriendly link.

(3) If the triad is of type 43, then change an unfriendly link to
a friendly link.

After the update, the initial imbalanced target triad becomes
balanced, but other previously-balanced triads that share a link
with this target may become imbalanced. These triads can
subsequently evolve and return to balance, leading to new
imbalanced triads. For example, when a married couple breaks
up, friends of the former couple that remain friends with the
former wife may then redefine their relationships with those
who choose to remain friends with the former husband. These
redefinitions, may lead to additional relationship shifts, etc.
Fig. 2. An update step on imbalanced triads 41 (left) and 43 (right) by local
triad dynamics. Solid and dashed lines represent friendly and unfriendly links,
respectively.

2.2. Evolution on the complete graph

We now study LTD on a finite complete graph of N nodes,

L =

(
N
2

)
links, and N4 =

(
N
3

)
triads. Let Nk be the number

of triads that contain k unfriendly links, with nk = Nk/N4 the
respective triad densities, and L+ (L−) the number of friendly
(unfriendly) links. The number of triads and links are related by

L+
=

3N0 + 2N1 + N2

N − 2
, L−

=
N1 + 2N2 + 3N3

N − 2
. (1)

The numerator counts the number of friendly links in all
triads while the denominator appears because each link is
counted N − 2 times. The density of friendly links is therefore
ρ = L+/L = (3n0 + 2n1 + n2)/3, while the density of
unfriendly links is 1 − ρ = L−/L .

It is useful to introduce the quantities N+

k as follows: for
each friendly link, count the number of triads of type 4k that
are attached to this link. Then N+

k is the average number of such
triads over all friendly links. This number is

N+

k =
(3 − k)Nk

L+
. (2)

The factor (3 − k)Nk accounts for the fact that each of the Nk
triads of type 4k is attached to 3 − k friendly links; dividing by
L+ then gives the average number of such triads. Analogously,
we introduce N−

k = k Nk/L−. Since the total number of triads
attached to any given link equals N −2, the corresponding triad
densities are (Fig. 3)

n+

k =
N+

k

N − 2
=

(3 − k)nk

3n0 + 2n1 + n2
(3a)

n−

k =
N−

k

N − 2
=

knk

n1 + 2n2 + 3n3
. (3b)

We now write rate equations that account for the changes in
the triad densities in an update. We choose a triad at random;
if it is imbalanced (41 or 43) we change one of its links as
shown in Fig. 2. Let π+ be the probability that a link changes
from friendly to unfriendly in an update event, and vice versa
for π−. A friendly link changes to unfriendly with probability
1 − p when 41 → 42, while an unfriendly link changes to
friendly with probability p if 41 → 40 and with probability 1
if 43 → 42. Consequently

π+
= (1 − p)n1 π−

= pn1 + n3. (4)

In the special case of p = 1/3, each link of an imbalanced triad
is flipped equiprobably. Since each update changes N −2 triads,
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Fig. 3. Illustration of the different types of triads (N − 2 in total) that are
attached to a positive link (heavy line). Also shown are the stationary-state
probabilities for each triad when the friendly link density is ρ. Full and dashed
lines represent friendly and unfriendly relations, respectively.

and we define one time step as L update events. Then the rate
equations for the triad densities have the size-independent form

ṅ0 = π−n−

1 − π+n+

0 ,

ṅ1 = π+n+

0 + π−n−

2 − π−n−

1 − π+n+

1 ,

ṅ2 = π+n+

1 + π−n−

3 − π−n−

2 − π+n+

2 ,

ṅ3 = π+n+

2 − π−n−

3 ,

(5)

where the overdot denotes the time derivative.
Let us determine the stationary solution to these equations.

Setting the left-hand sides of Eq. (5) to zero and also imposing
π+

= π− to ensure a fixed friendship density, we obtain
n+

0 = n−

1 , n+

1 = n−

2 , n+

2 = n−

3 . Forming products such as
n+

0 n−

2 = n+

1 n−

1 and using Eqs. (3a) and (3b), these relations
are equivalent to

3n1n3 = n2
2 3n0n2 = n2

1. (6)

Furthermore, the stationarity condition, π+
= π−, gives

n3 = (1−2p)n1 ≡ n1δ/3, with δ = 3(1−2p). Using this result
in the first of Eq. (6) gives n2 = n1

√
δ. Then the second of

Eq. (6) gives n0 = n1/(3
√

δ). We then write the normalization
condition,

∑
nk = 1, in terms of n1 only to give(

1

3
√

δ
+ 1 +

√
δ +

δ

3

)
n1 = 1,

or

n1 =
3
√

δ

(1 +
√

δ)3
. (7)

Finally, the stationary density of friendly links, ρ = n0 +
2
3 n1 +

1
3 n2 is

ρ∞ =

{
(1 +

√
δ)−1 p ≤ 1/2;

1 p ≥ 1/2.
(8)

Notice that the triad densities of each type become uncorrelated
and are given by

n j =

(
3
j

)
ρ

3− j
∞ (1 − ρ∞) j . (9)

As shown in Fig. 4, the stationary density of friendly links ρ∞

monotonically increases with p for 0 ≤ p ≤ 1/2 until utopia
Fig. 4. The stationary densities nk (p) and the density of friendly links ρ∞ as a
function of p. Simulation results for ρ∞ for N = 64 (crosses) and 256 (boxes)
are also shown. There is a similar degree of agreement between theory and
simulation for nk .

is reached. Near the phase transition, the density of unfriendly
links u ≡ 1 − ρ∞ vanishes as

√
3(1 − 2p).

2.3. The evolving state

A remarkable feature of the master equation (5) is that if
the initial triad densities are given by Eq. (9) – uncorrelated
densities – the densities will remain uncorrelated forever. In
this case, it suffices to study the time evolution of the density
of friendly links ρ(t). We determine this time evolution directly
by noting that ρ(t) increases if 43 → 42 or 41 → 40, and
decreases if 41 → 42. Since the respective probabilities for
these processes are 1, p, and 1 − p, we have

dρ

dt
= 3(2p − 1)ρ2(1 − ρ) + (1 − ρ)3. (10)

Solving this equation, the time dependence of the density of
friendly links has the following behaviors:

ρ(t) − ρ∞ ∼


Ae−Bt p < 1/2

−
1 − ρ0√

1 + 2(1 − ρ0)2t
p = 1/2

−Ce−3(2p−1)t p > 1/2,

(11)

where ρ0 and ρ∞ are the initial and final densities of friendly
links, respectively, and A, B, and C are constants that depend
on p. Thus for p 6= 1/2 there is a quick approach to a final state.
This state is frustrated for p < 1/2 and is utopian for p ≥ 1/2.
For p = 1/2 utopia is reached slowly – as a power-law in time.

2.4. Fate of a finite society

Abstractly, LTD represents a stochastic dynamics in a state
space in which each network configuration is represented by
a point in this space and a link to another point represents an
allowed transition by the dynamics. Because balanced networks
represent absorbing states of this dynamics, a finite network



T. Antal et al. / Physica D 224 (2006) 130–136 133
Fig. 5. Effective random walk picture for the approach to balance for p < 1/2.

must ultimately fall into a balanced state for all p. We now
estimate the size dependence of the time to reach a balanced
state, TN , for any value of p by probabilistic arguments.

For p < 1/2, we use the following random walk argument
(Fig. 5): when a link is flipped on an imbalanced triad in an
almost balanced network (nearly N 3/6 balanced triads), then
of the order of N triads that contain this link will become
imbalanced. Thus starting near balance, LTD is equivalent
to a biased random walk in the state space of all network
configurations, with the bias directed away from balance, and
with the bias velocity v proportional to N . Conversely, far from
the balanced state, local triad dynamics is diffusive because the
number of imbalanced triads changes by of the order of ±N
equiprobably in a single update. The corresponding diffusion
coefficient D is then proportional to N 2. Since the total number
of triads in a network of N nodes is N4 ∼ N 3/6, we therefore
expect that the time TN to reach balance will scale as TN ∼

evN4/D
∼ eN 2

[16]. The data in Fig. 7(a) is suggestive of
faster than exponential growth of TN with N . A linear fit to the
data for ln ln TN versus ln N gives a slope of 2.1, in excellent
agreement with the prediction TN ∼ eN 2

. Given that there are
only 6 data points and the N that we can simulate is small, this
agreement is surprisingly good.

For p > 1/2, we define the time to reach the balanced
state by the naive criterion u(t) ≡ 1 − ρ(t) = N−2; that
is, one unfriendly link remains. From Eq. (11), TN will then
grow logarithmically with N . At p = 1/2, using Eq. (11), the
criterion u(t) = N−2 now gives TN ∼ N 4. While simulations
show that TN scales algebraically with N , the exponent is much
smaller than 4. The source of this smaller exponent is the fact
that the number of unfriendly links fluctuates strongly about its
mean value when there are few unfriendly links (see Fig. 6). To
determine these fluctuations we write the number of unfriendly
links in the canonical form [17]

U (t) = Lu(t) +
√

Lη(t), (12)

where u(t) is deterministic and η(t) is a stochastic variable.
Both u and η are size independent in the thermodynamic limit.
A detailed argument [14] shows that σ ≡ 〈η2

〉 grows as σ ∼
√

t
as t → ∞. Because of the finite-size fluctuations in U , the
time to reach utopia TN is determined by the criterion that
fluctuations in U become of the same order as the average, viz.,√

Lσ(TN ) ∼ Lu(TN ). (13)

Using u(t) ∼ 1/
√

t from Eq. (11), σ ∼
√

t , and L ∼ N 2,
Eq. (13) becomes N T 1/4

N ∼ N 2 T −1/2
N , from which TN ∼ N 4/3

follows.
Fig. 6. Illustration of the rate equation solution for the unfriendly link density
versus time on a double logarithmic scale and the influence of fluctuations on
this solution.

Fig. 7. Average time to reach balance as a function of N for an initially
antagonistic society (ρ0 = 0) for: (a) p = 1/3; (b) p = 1/2; (c) p = 3/4.
The line in (b) has slope 4/3.

Summarizing our results, we have:

TN ∝


eN 2

p < 1/2
N 4/3 p = 1/2
(2p − 1)−1 ln N p > 1/2.

(14)

These are in agreement with our simulation results shown in
Fig. 7.

3. Constrained triad dynamics

In constrained triad dynamics (CTD), we first select an
imbalanced triad at random and then select a random link in this
triad. We change the sign of the link only if the total number of
imbalanced triads decreases. If the total number of imbalanced
triads is conserved in an update, then the update occurs with
probability 1/2. CTD can be viewed as the dynamics of a
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Fig. 8. Asymmetry of the final state as a function of the initial friendship
density ρ0 for several network sizes.

socially aware individual who considers her entire social circle
before making any relationship change. Because of this global
constraint, a network is quickly driven to a balanced state in a
time that scales as ln N .

A more interesting feature is the existence of a dynamical
phase transition in the structure of the final state as a function
of the initial friendly link density ρ0 (Fig. 8). We quantify this
structural change by the scaled difference in sizes of the two
cliques in the final state, δ ≡ (C1 − C2)/N . For ρ0 < 0.4
the cliques in the final state are nearly the same size and
〈δ2

〉 ≈ 0. As ρ0 increases toward ρ∗

0 ≈ 2/3, the size difference
continuously increases and a sudden change occurs at ρ∗

0 ,
beyond which the final state is utopia. Since 〈δ2

〉 and the density
of friendly links ρ∞ are related by 〈δ2

〉 = 2ρ∞ − 1 in a large
balanced society, uncorrelated initial relations generically lead
to ρ∞ > ρ0. Thus CTD tends to drive a network into a friendlier
final state.

We now give a simple-minded argument that suggests that a
large network undergoes a sudden change from ρ∞ = 0 (two
equal size cliques) to ρ∞ = 1 (utopia) as a function of the initial
friendly link density ρ0. This qualitative approach predicts that
this transition occurs at ρ0 = 1/2. On the other hand, our
numerical simulations show that the transition is located near
ρ∗

0 ≈ 2/3 (Fig. 8).
Let us assume that a network remains uncorrelated during

initial stages of evolution and under this assumption we
determine the probabilities for a specific friendly link to
flip. If the network is uncorrelated, the densities n+

≡

(n+

0 , n+

1 , n+

2 , n+

3 ) of triads that are attached to a friendly link
are:

n+
= (ρ2, 2ρ(1 − ρ), (1 − ρ)2, 0). (15)

For a link to change from friendly to unfriendly, it is necessary
that n+

1 + n+

3 > n+

0 + n+

2 . That is, this link is a member of
more imbalanced triads than balanced triads. From Eq. (15),
this condition is equivalent to 4ρ(1−ρ) > 1, which never holds.
Consequently, friendly links never flip. Similarly, the densities
n−

≡ (n−

0 , n−

1 , n−

2 , n−

3 ) of triads attached to an unfriendly link
are:

n−
= (0, ρ2, 2ρ(1 − ρ), (1 − ρ)2). (16)
Fig. 9. Nascent cliques S1 and S2 (blobs at the extremities), with friendly
link densities ρ1, ρ2 & 1

2 . The density of friendly links between cliques is

β . 1
2 . Top: imbalanced triads that lead to an unfriendly link (thick dashed line)

changing to a friendly link within one clique. Bottom: imbalanced triads that
lead to a friendly link (thick solid line) changing to a unfriendly link between
cliques.

To flip this unfriendly bond, we must have n−

1 +n−

3 > n−

0 +n−

2 ,
i.e., the bond is part of more imbalanced than balanced triads.
This condition gives 1 > 4ρ(1 − ρ), which is valid when ρ 6=

1/2. Thus for a large uncorrelated network, only unfriendly
links flip in CTD, except for p = 1/2. Thus a network with
ρ0 > 1/2 should quickly evolve to utopia, while a network
with ρ0 < 1/2 should quickly approach a state where ρ = 1/2.

Simulations indicate, however, that correlations in relation-
ships occur when ρ ≈ 1/2 and these ultimately lead to a bipo-
lar society. We find that the precursor to this bipolar society is
a state in which the network partitions itself by the dynamics
into two subnetworks S1 and S2 of nearly equal sizes C1 = |S1|

and C2 = |S2|. Within each subnetwork, the density of friendly
links ρ1 and ρ2 slightly exceeds 1/2, while the density β of
friendly links between subnetworks is slightly less than 1/2.
This small fluctuation is amplified by CTD so that the final state
is two nearly equal-size cliques.

To see how such evolution occurs, let us assume that
relationships within each subnetwork and between subnetworks
are homogeneous. Consider first the evolution within each
clique (top panel of Fig. 9). For an unfriendly link in S1, the
densities of triads attached to this link are given by (16), with
ρ replaced by β when the third vertex in the triad belongs to
S2, and by (16), with ρ replaced by ρ1 when the third vertex
belongs to S1. The requirement that a link can change from
unfriendly to friendly by CTD now becomes

C1[1 − 4ρ1(1 − ρ1)] + C2[1 − 4β(1 − β)] > 0, (17)

which is always satisfied. Conversely, friendly links within each
subnetwork can never change. As a result, negative intraclique
links disappear and there is increased cohesiveness within
cliques.

Consider now relations between cliques (bottom panel of
Fig. 9). For a friendly link between the subnetworks, the triad
densities attached to this link are

n+

j = (βρ j , β(1 − ρ j ) + ρ j (1 − β), (1 − β)(1 − ρ j ), 0)
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Fig. 10. Evolution of the major relationship changes between the protagonists of World War I from 1872–1907. Here GB = Great Britain, AH = Austria–Hungary,
G = Germany, I = Italy,R = Russia, and F = France.
when the third vertex belongs to S j . Since

β(1 − ρ j ) + ρ j (1 − β) − βρ j − (1 − β)(1 − ρ j )

= (2ρ j − 1)(1 − 2β),

the change of a link from friendly to unfriendly is possible if

[C1(2ρ1 − 1) + C2(2ρ2 − 1)](1 − 2β) > 0. (18)

Thus if the situation arises where ρ1 > 1/2, ρ2 > 1/2,
and β < 1/2, the network subsequently evolves to increase
the density of intra-subnetwork friendly links and decrease the
density of inter-subnetwork friendly links. This bias drives the
network to a final bipolar state.

Finally, note that when C1 ≈ C2 ≈ N/2, the number

of ways,
(

N
C1

)
, to partition the original network into the two

nascent subnetworks S1 and S2, is maximal. Consequently,
the partition in which C1 = C2 has the highest likelihood
of providing the initial link density fluctuation that ultimately
leads to two nearly equal-size cliques, as observed in our
simulations (Fig. 8). Although our argument fails to account
for the precise location of the transition, the behavior of 〈δ2

〉

in the two limiting cases of ρ0 → 0 and ρ0 → 1 is described
correctly.

4. Summary and discussion

We presented a simple setting for social dynamics in which
both friendly and unfriendly links exist in a network. These
links evolve according to natural rules that reflect a social
desire to avoid imbalanced triads. For local triad dynamics, a
finite network falls into a socially-balanced state in a time that
depends sensitively on the propensity p for forming a friendly
link in an update event. For an infinite network, a balanced
state is never reached when p < 1/2 and the system remains
stationary. The density of unfriendly links gradually decreases
and the network undergoes a dynamical phase transition to an
absorbing, utopia state for p ≥ 1/2.
For constrained triad dynamics, an arbitrary network is
quickly driven to a balanced state. This rapid evolution results
from the condition that the number of imbalanced triads cannot
increase. There is also a phase transition from bipolarity to
utopia as a function of the initial density of friendly links
that arises because of small structural fluctuations that are then
amplified by the dynamics.

It is interesting to consider the possible role of balance
theory in international relations [18], with the evolution of
the relations among the protagonists of World War I being
a particularly compelling example (Fig. 10). A history starts
with the Three Emperors’ League (1872, and revived in
1881) that aligned Germany, Austria–Hungary, and Russia.
The Triple Alliance was formed in 1882 that joined Germany,
Austria–Hungary, and Italy into a bloc that continued until
World War I. In 1890, a bipartite agreement between Germany
and Russia lapsed and this ultimately led to the creation
of a French–Russian alliance over the period 1891–94.
Subsequently an Entente Cordiale between France and Great
Britain was consummated in 1904, and then a British–Russian
agreement in 1907, that then bound France, Great Britain, and
Russia into the Triple Entente. While our account of these
Byzantine maneuvers is incomplete (see Refs. [19] for more
information), and Fig. 10 does not show all relations and thus
the extent of network imbalance during the intermediate stages,
the basic point is that these relationship changes gradually led
to a reorganization of the relations between European nations
into a socially balanced state. Thus while social balance is a
natural outcome, it is not necessarily a good one!

We close with some potentially interesting open theoretical
questions. First, it is natural to consider more general
interactions. One can easily imagine ternary relationships of
friendly +, unfriendly −, or indifferent 0. Another possibility
is continuous-valued interaction strengths. What is the number
of cliques and number of communities as a function of
network size and the density of indifferent relationships?
Another direction, already considered by Davis [10], is a more
Machiavellian society in which triads with three unfriendly
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relations are acceptable – that is “an enemy of my enemy may
still be my enemy”. This more relaxed definition for imbalanced
triads may lead to interesting dynamical behavior that will
be worthwhile to explore. Finally, what happens if relations
are not symmetric, that is, si j 6= s j i ? How does one define
balance or some other notion of social stability with asymmetric
interactions?

Note added in proof

After this work was completed, a recent publication [20] has
generalized our approach to dynamics on larger cycles and to
incompletely connected networks.
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