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Abstract.  We introduce a network growth model based on complete 
redirection: a new node randomly selects an existing target node, but attaches 
to a random neighbor of this target. For undirected networks, this simple 
growth rule generates unusual, highly modular networks. Individual network 
realizations typically contain multiple macrohubs—nodes whose degree scales 
linearly with the number of nodes N. The size of the network ‘nucleus’—the 
set of nodes of degree greater than one—grows sublinearly with N and thus 
constitutes a vanishingly small fraction of the network. The network therefore 
consists almost entirely of leaves (nodes of degree one) as N → ∞.
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1. Introduction

Redirection is a fundamental network growth mechanism to determine how a new node 
attaches to a growing network. For directed networks, with a prescribed direction for 
each link, redirection is implemented as follows (figure 1(a)):

 (i) A new node chooses a provisional target node uniformly at random.

 (ii) With probability 0 � 1− r � 1, the new node attaches to this target.

 (iii) With probability r, the new node attaches to the ancestor of the target.

By its very construction, an initial tree network always remains a tree.
Without the redirection step (iii), the above growth rules define the random recur-

sive tree (RRT) [1–3], for which the average number of nodes of degree k is given by 
Nk = N/2k, where N is the total number of nodes. Redirection represents a minimalist 
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extension of the RRT; this idea was suggested in [4] and was made more concrete and 
developed mathematically in [5]. The latter work showed that redirection is equivalent 
to shifted linear preferential attachment, in which the rate of attaching to a pre-existing 

network node of degree k is proportional to k + λ, with λ = 1
r
− 2. That is, redirection 

transforms a purely local growth mechanism into a global mechanism. Redirection is 
also extremely ecient algorithmically; to build a network of N nodes requires a com-
putation time that scales linearly with N, with a prefactor of the order of one.

Because of its useful qualities, redirection has been extended in many ways: con-
necting to (i) more distant ancestors [6]; (ii) an arbitrary ancestor [7]; (iii) all earlier 
ancestors [8]; (iv) multiple ancestors [9]; and (v) the ancestor with a probability that 
depends on the degrees of the provisional target and the ancestor [10, 11]. Each of these 
scenarios has revealed intriguing features that highlight the richness of the redirection 
mechanism.

Although this growth mechanism has been applied to directed networks, undirected 
graphs are more pertinent for many applications. In social networks, for example, direc-
tionality plays a limited role because friendship is inherently a two-way relationship 
[12]. This observation motivates us to extend redirection to undirected networks. Such 
an isotropic network again grows according to the rules enumerated above, but now 
redirection can occur to any of the neighbors of the provisional target (figure 1(b)). We 
define this process as isotropic redirection (IR). While the behavior of this IR model for 
general redirection probability 0 < r < 1 is interesting in its own right [13, 14], here 
we focus on the parameter-free case of r = 1, where the new node always attaches to a 
random neighbor of the provisional target.

The consequences of this IR growth rule are surprisingly profound, as highly modu-
lar networks emerge (figure 2). Typical network realizations contain a number of well-
resolved modules, each with a central macrohub whose degree is a finite fraction of the 
total number of nodes N. These modules visually resemble a variety of multiplex, or 
multilayer, networks [15–18]. Typical networks also consist almost entirely of leaves 
(nodes of degree 1) as N → ∞; that is, the number of leaves satisfies N1/N → 1 as 
N → ∞. Nodes with degrees k > 1 constitute what we term the ‘nucleus’ of the net-

work. This nucleus comprises an infinitesimal fraction of the network, as the number of 

nucleus nodes N =
∑

k�2Nk grows as Nµ, with µ ≈ 0.566.
The number of nodes of degree k grows in a similar manner: Nk ∼ Nµ for any k � 2, 

with an algebraic tail

Figure 1. Redirection for (a) directed and (b) undirected networks. (a) The new 
node attaches by redirection to the unique ancestor (black) of the provisional 
target (light blue). (b) With the same target, the new node attaches to one of the 
black nodes.

https://doi.org/10.1088/1742-5468/aa7a3f
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Nk ∼
Nµ

k1+µ (1)

when k � 1. Thus the degree distribution grows sublinearly with network size (µ < 1) 
so that the degree exponent 1 + µ is generally less than 2. These features strongly con-
trast with known sparse networks, where the nucleus and the degree distribution grows 
linearly with network size (see, e.g. [19]) and has the algebraic tail

Nk ∼
N

kν
.

Here, the degree exponent satisfies ν > 2 and depends on the model (see [19]), while in 
the IR model (as well as in the models of [11]) the growth exponent μ fixes the degree 
exponent to be 1 + µ, which ensures that it is less than 2. Finally, we emphasize that 
for directed networks, redirection with r = 1 generates a star graph; hence bidirectional 
links are needed to generate non-trivial networks.

In section 2, we begin by showing that star-like structures are surprisingly com-
mon in IR networks. We investigate the probability distribution for maximal degrees 
in section 3. We then show that multiple macrohubs arise with an anomalously large 
probability in section 4. In section 5, we discuss basic features of the nucleus of the 
network. Finally in section 6 we study the intriguing features that arise when a new 
node attaches to multiple neighbors of the provisional target.

2. Perfect and near-perfect star graphs

Unless otherwise stated, we assume that the initial network is a dimer: •—•. For N = 3, 
there is a single unique graph. For N = 4, a star occurs with probability 23 by the new 
node selecting either of the leaves of the 3-node graph, after which redirection leads to 
attachment to the central node. Conversely, a linear chain is created with probability 
1
3. All IR network realizations of up to 6 nodes and their weights are shown in figure 3.

While it is impractical to extend this enumeration to large N, we can compute the 
probabilities to generate the special configurations of a perfect star and near-perfect stars 

Figure 2. Examples of networks of 104 nodes grown by redirection. Green: nodes 
of degree k = 1; yellow, 2 � k � 10; cyan, 11 � k � 99; blue 100 � k � 500; violet →  
red, k > 501. The node radius also indicates its degree.

https://doi.org/10.1088/1742-5468/aa7a3f


Emergent network modularity

5https://doi.org/10.1088/1742-5468/aa7a3f

J. S
tat. M

ech. (2017) 073405

of N nodes. Let SN be the probability to create a perfect star of N nodes. To build this 
star, a new node has to provisionally select one of the periphery nodes (which occurs with 
probability (k − 1)/k for a star of k nodes), after which redirection shifts the attachment 
to the center of the star, thereby creating a perfect star of k + 1 nodes. By this reasoning

SN =
2

3
× 3

4
× 4

5
× · · · × N − 2

N − 1
=

2

N − 1
. (2)

The slower than exponential decay with N of the star probability provides a first clue 
that typical network realizations should be star like, as seen in figure 2. To make this 
surmise stronger, we compute the probability to create a star graph with a single 
defect. Such a network arises by first building a perfect star of k nodes, then making an 
‘error’ in which the new node attaches to the periphery of the star, and finally building 
the rest of the star (figure 4).

From equation (2), the probability to build a perfect star of k nodes is 2
k−1

. A defect 
now occurs with probability 1

k
 because the new node must attach to the center of the 

star to create this defect. Finally, the probability that all remaining attachments occur 
to the hub is

k − 3/2

k + 1
× k − 1/2

k + 2
× · · · × N − 5/2

N
=

Γ(k + 1)

Γ(k − 3/2)

Γ(N − 3/2)

Γ(N + 1)
. (3)

To understand each factor in the product, note that in a network of n nodes with a 
single defect, there is one hub, one nucleus node (of degree 2), one leaf that attaches to 
the nucleus node, and n− 3 leaves that attach to the hub (figure 4). To continue the 
star, the new node must either select one of the n− 3 leaves attached to the hub and 
then redirect to the hub, or select the nucleus node and then redirect to the hub, which 
occurs with probability 1

n
× 1

2
. The probability the new node is redirected to the hub 

therefore is (n− 3 + 1
2
)/n.

Figure 3. Enumeration of all network configurations up to N = 6 nodes.

Figure 4. A single-defect star. A perfect star (black) is built to an intermediate 
stage, then an error occurs (red). All subsequent attachments (green) are to the hub.

https://doi.org/10.1088/1742-5468/aa7a3f
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The probability to create a star of N nodes with a single defect after k nodes has 
been added, which we define as SN,k, is

SN,k =
2

k(k − 1)

Γ(k + 1)

Γ(k − 3/2)

Γ(N − 3/2)

Γ(N + 1)
= 2

Γ(k − 1)

Γ(k − 3/2)

Γ(N − 3/2)

Γ(N + 1)
. (4)

Therefore the probability S
(1)
N  to build a star of N nodes with a single defect at any 

stage is given by

S
(1)
N =

N−2∑
k=3

SN,k +
2

(N − 1)(N − 2)
, (5)

where the last term is the probability to create the defect after building a perfect star 
of N − 1 nodes. Using (4) we compute the sum in (5) and obtain [20]

S
(1)
N =

4

3N
− 2

(N − 1)(N − 2)
+

9

N(N − 1)(N − 2)
− 4

3
√
π

Γ(N − 3/2)

Γ(N + 1)
. (6)

Since dominant contribution to the sum comes from the terms with k � 1, the leading 
behavior can be extracting by using the asymptotic,

SN,k = 2
Γ(k − 1)

Γ(k − 3/2)

Γ(N − 3/2)

Γ(N + 1)
� 2 k1/2 N−5/2,

for k � 1, and replacing summation in (5) by integration:

S
(1)
N �

∫ N

SN,k dk � 2N−5/2

∫ N

k1/2 dk � 4

3N
. (7)

We will use this procedure to show that multiple-defect stars arise with roughly the 
same frequency as single-defect stars (appendix A).

Comparing (2) and (7) we see that a perfect star is 50% more common than a single-
defect star. Naively, one would expect to find a prescribed structure with a probability 
that is inversely proportional to the total number of networks. The latter grows facto-
rially with N; e.g. the number of labeled trees equals NN−2 [21–23]. By a computation 
similar to (2), the probability to build a linear graph in the IR model equals 2/(N − 1)! 
and thus agrees with naive expectations. In contrast, perfect and slightly defective stars 
occur much more frequently than naively expected.

More importantly, the above reasoning shows that star-like subgraphs will be com-
mon in typical network realizations. Consider such a structure, in which the degree 
of the hub is n. As will be shown in the next section, n ranges from aN to bN , where 
0 < a, b < 1. Thus the probability that there is a star-like subgraph with the degree of 
the hub in this range is of the order of

∫ bN

aN

dn

n
= ln

b

a
. (8)

That is, with a non-zero (and scale independent) probability, there will be a star-like 
structure whose degree is of the order of N, as observed in figure 2.

https://doi.org/10.1088/1742-5468/aa7a3f
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3. Maximal degrees

Because macrohubs—nodes whose degree is a finite fraction of N—are at the center of 
star-like graphs, they should occur at the same frequency as stars. This fact leads us 
to investigate the statistical properties of the maximal network degree, kmax, and also 
the mth largest degree km, in IR networks. The value of kmax in the ensemble of all net-
works of N nodes is a random quantity that ranges between 2 and N − 1. The smallest 
value kmax = 2 arises for a linear graph, while the largest value kmax = N − 1 arises for 
a star. As figure 5 shows, kmax, and indeed km for any finite m, scales linearly with N in 
our IR model. This scaling contrasts with sparse networks, where kmax typically scales 
sublinearly with N. Because there is a non-zero probability that the maximal degree is 
close to N, macrohubs will be common in isotropic networks that grow by redirection; 
a similar feature arises in enhanced redirection [11].

Let MN(k) denote the probability that the maximal degree in a network of N nodes 
equals k. This largest degree is distributed over a wide range, but is typically larger 
than 0.4N  (figure 5). It is convenient to write this distribution in the scaling form

MN(k) →
1

N
M(1)(x), x =

k

N
 (9)

as k,N → ∞, with finite rescaled degree x. The prefactor N−1 imposes the normal-

ization 
∫ 1

0
dxM(1)(x) = 1. Because the distribution M(1)(x) does not sharpen as N 

increases, moments of this distribution do not self-average3; moreover, the distribu-
tion is singular as x → 0. Similar singularities arise in a variety of non-self-averaging 

Figure 5. The distributions M(m)(x) versus normalized degree x = k/N  for m � 4 
for 106 realizations of networks with N = 105. The initially normalized distributions 
for the mth largest degree are divided by m, so that these rescaled distributions fit 
on the same plot. The dashed line that follows the data for M(1) is the empirical 

fit − 1
2x

ln(1/(4x)), while the dashed lines that follow that data for M(2), M(3), and 
M(4) are the predictions from equation (31), with the amplitudes 16, 600, and 
40 000 for the 2nd, 3rd, and 4th largest degree.

3 For a review of non-self-averaging phenomena see, e.g. Derrida [24].

https://doi.org/10.1088/1742-5468/aa7a3f
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processes, such as random maps, random walks, spin glasses, and fragmentation pro-
cesses [24–29]. In these systems, it was found that M(1)(x) has an essential singularity 
of the form exp[−x−1 ln(1/x)] as x → 0. The same singularity apparently occurs here. 
Indeed, matching the exact result MN(2) = 2/(N − 1)! for the minimal possible degree 

with the scaled form 1
N
M(1)

(
2
N

)
 gives

lnM(1) ∼ −2

x

(
ln

2

x
− 1

)
, (10)

which qualitatively captures the small-x behavior of M(1)(x). However, we must be 
cautious in making this connection because the scaled form is formally applicable when 

the rescaled degree is finite, while we used x = 2
N

→ 0 in connecting the data to the 
scaling form. In fact, we find a good visual fit using lnM(1)(x) ∼ − 1

2x
ln
(

1
4x

)
.

More generally, the distributions M(m)(x) for the mth largest degree have support 

on 
[
0, 1

m

]
 and exhibit power-law singularities as x → 1

m
 from below (figure 5). We will 

derive this singular behavior in the next section from the limiting behavior of the prob-
ability to find macrohubs of specific topologies.

4. Macrohubs

As illustrated in figure 2, typical IR network realizations contain multiple macrohubs. 
To appreciate why such configurations are common, let us examine the likelihood that 
there are exactly two connected hubs, while all remaining nodes are leaves (see also 
[11]). Suppose that one hub is connected to m leaves and the other to n leaves, leading 
to what we define as the (m,n) graph (figure 6). The hub degrees are m+ 1 and n+ 1, 
respectively, and the total number of nodes is m+ n+ 2. We term these nodes as hubs 
even if one of their degrees happens to be small.

Let Hm,n be the probability to build an (m,n) graph. Because, this graph arises from 
(m− 1, n) and (m,n− 1) graphs, we can express Hm,n through Hm−1,n and Hm,n−1:

Hm,n =
m− 1 + (n+ 1)−1

m+ n+ 1
Hm−1,n +

n− 1 + (m+ 1)−1

m+ n+ 1
Hm,n−1 (11)

For example, to build an (m,n) graph from an (m− 1, n), the new node can either select 
one of the m− 1 leaves on the left of an (m− 1, n) graph and redirect to the hub on the 
left. The probability for this event is (m− 1)/(m+ n+ 1). Additionally, the new node 
can select the right hub and redirect to the left hub. This event occurs with probability 

1/
[
(n+ 1)(m+ n+ 1)

]
.

We now solve (11) for several relevant cases that help reveal the star-like nature of 
typical IR network realizations.

4.1. Two large hubs: m, n � 1

When the hub degrees are both large, we treat m and n as continuous variables and 
expand Hm−1,n and Hm,n−1 in the Taylor series

https://doi.org/10.1088/1742-5468/aa7a3f
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Hm−1,n = H − ∂H

∂m
, Hm,n−1 = H − ∂H

∂n
,

where H = Hm,n. Using this in (11) gives

m
∂H

∂m
+ n

∂H

∂n
= −3H.

The solution that satisfies the necessary symmetry requirement Hm,n = Hn,m is

Hm,n =
C2

(mn)3/2
, (12)

where the amplitude C2 is not computable within the continuum approximation.

From (12), the probability for the 
(
N
2
, N

2

)
 graph scales as N−3. This also gives the 

tail behavior of distribution of the second-largest degree, because the probability for 

the 
(
N
2
, N

2

)
 graph coincides with the probability that the second-largest degree equals 

N/2. Similar to the distribution of the largest degree (equation (9)), we anticipate that 
the second-largest degree distribution has the scaling behavior

1

N
M(2)(x), with x =

k

N
�

1

2
. (13)

This form is compatible with the above N−3 probability for the 
(
N
2
, N

2

)
 graph if

M(2)(x) ∼
(
1

2
− x

)2

when x → 1

2
. (14)

Visually, this asymptotic behavior quantitatively agrees with simulation results when 
an appropriate amplitude is chosen (figure 5).

4.2. One large and one small hub: m finite and n � 1

4.2.1. m = 1 Suppose that the degree of the smaller hub m = 1. This (1, n) graph is 
also just the single-defect star shown in figure 4. The number of nodes in such graph is 
N = n+ 3 and the largest degree is kmax = n+ 1 = N − 2. To compute H1,n, we must 
write the analog of the recursion (11) that applies for m = 1. This recursion is

H1,n =
2

(n+ 1)(n+ 2)
+

n− 1
2

n+ 2
H1,n−1. (15)

The first term on the right-hand side is the contribution that arises by creating the (1, n) 

graph from a perfect star with n+ 2 nodes. To solve (15), note that the homogeneous 

Figure 6. The (m,n) = (3, 5) graph.

https://doi.org/10.1088/1742-5468/aa7a3f
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version of (15) admits the solution Γ(n+ 1
2
)/Γ(n+ 3). We use this solution as an inte-

grating factor

H1,n =
Γ(n+ 1

2
)

Γ(n+ 3)
An, (16)

and substitute this form into (15) to give

An = An−1 + 2
Γ(n+ 1)

Γ(n+ 1
2
)
.

Because H1,2 =
5
12

 (see figure 3), the initial condition for this recursion is A2 = 40/(3
√
π). 

Thus [20]

An = 2
n∑

j=3

Γ( j + 1)

Γ( j + 1
2
)
+

40

3
√
π
=

2

3

[
2Γ(n+ 3)− 3Γ(n+ 2)

Γ(n+ 3
2
)

+
4√
π

]
, (17)

which leads to

H1,n =
2Γ(n+ 1

2
)

3Γ(n+ 3)

[
2Γ(n+ 3)− 3Γ(n+ 2)

Γ(n+ 3
2
)

+
4√
π

]
 (18)

for n � 2. The asymptotic behavior of (18) is

H1,n � U1

n
, U1 =

4

3
, (19)

which coincides with the asymptotic probability for a single-defect star given in equa-
tion (7). As another useful consequence of (18), notice that a node of degree N − 2 
appears only in the (1, N − 3) graph. Therefore H1,N−3 = MN(N − 2), so that (18) also 
gives the probability that the largest degree in a graph of N nodes equals N − 2.

4.2.2. m = 2 In analogy with (15), the recurrence for H2,n is

H2,n =
n+ 2

(n+ 1)(n+ 3)
H1,n +

n− 2
3

n+ 3
H2,n−1. (20)

Using the homogeneous solution, one can again define the integrating factor 

H2,n =
[
Γ(n+ 1

3
)/Γ(n+ 4)

]
Bn, which reduces (20) to

Bn = Bn−1 +
n+ 2

n+ 1

Γ(n+ 1
2
)

Γ(n+ 1
3
)
An,

with An given by (17). However, instead of deriving the exact solution to this equation, it 
is easier to extract the asymptotics by taking the continuum limit of equation (20) to give

(
n

d

dn
+ 3 +

2

3

)
H2,n � 4

3n
,

https://doi.org/10.1088/1742-5468/aa7a3f
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from which

H2,n � U2

n
, U2 =

1

2
. (21)

Note that this result also gives the probability for the 2-defect star shown in 
figure A1(b) in appendix A.

4.3. m = O(1)

More generally, for m = O(1) and n � 1, we apply the continuum approach to the large 
variable in (11) and obtain

(
n

∂

∂n
+m+ 2− 1

m+ 1

)
Hm,n = Hm−1,n (22)

Based on (19) and (21) we again expect that

Hm,n =
Um

n
 (23)

for m = O(1) and n � 1. Substituting (23) into (22), the amplitudes satisfy the recursion

Um =

(
m+ 1− 1

m+ 1

)−1

Um−1,

from which

Um = 2
m∏
j=1

(
j + 1− 1

j + 1

)−1

= 4
m+ 1

(m+ 2)!
. (24)

As a postscript, note that D2 ≡
∑

m�1 Um = 2, so that the probability for all (m,n) 
graphs with m = O(1) and n � 1 is dominated by the first two terms, for which 

U1 + U2 =
11
6 .

4.4. More than two hubs

To understand the general behavior, consider first the case of three macrohubs. Let 
�,m, n denote the number of leaves connected to hubs of degrees �+ 1, m+ 2, and 
n+ 1. Note that the ‘central’ hub with n leaves is special because it is linked to both 
other hubs (figure 7). The total number of nodes is �+m+ n+ 3. Denote by H�,m,n 
the probability to build such an (�,m, n) graph. This graph can arise from (�− 1,m, n), 
(�,m− 1, n) and (�,m, n− 1) graphs, which occur with probabilities H�−1,m,n, H�,m−1,n 
and H�,m,n−1.

These probabilities satisfy the recursion

H�,m,n =
�− 1 + (m+ 2)−1

�+m+ n+ 2
H�−1,m,n +

m− 1 + (�+ 1)−1 + (n+ 1)−1

�+m+ n+ 2
H�,m−1,n

+
n− 1 + (m+ 2)−1

�+m+ n+ 2
H�,m,n−1.

 

(25)
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Using continuum approach and assuming that all three hubs have large degrees, i.e. 
�,m, n � 1, we recast (25) into

�
∂H

∂�
+m

∂H

∂m
+ n

∂H

∂n
+ 5H = 0,

from which

H�,m,n =
C3

(�mn)5/3
. (26)

Suppose that all three hubs are macroscopic, i.e. their degrees are linear in the num-
ber of nodes: (�,m, n) = N(a, b, c), with a, b, c > 0 and a+ b+ c = 1. The probability 
HN(a, b, c) for such a three-hub network is

HN(a, b, c) =
C3(abc)

−5/3

N5
 (27)

Thus the probability for the 
(
N
3
, N

3
, N

3

)
 graph scales as N−5, which coincides with the 

probability that the third-largest degree has the maximal possible size N3 . This third-

largest degree also has the scaling behavior N−1M(3)(x), which is compatible with the 
N−5 extremal behavior for the probability of three macrohubs when

M(3)(x) ∼
(
1

3
− x

)4

x → 1

3
. (28)

Generally, the probability for a graph with h macrohubs depends on the nature of 
the links between these hubs when h � 3. Nevertheless, if all the macrohub degrees mj 
are large, the hub probability Hm, with m = (m1, . . . ,mh), now satisfies

h∑
j=1

mj
∂H

∂mj

+ (2h− 1)H = 0

from which

Hm = Ch

h∏
j=1

m
1/h−2
j (29)

When all hubs are macroscopic, that is, mj = Naj, with 0 < aj < 1 and 
∑h

j=1 aj = 1, 

the network is realized with probability

HN(a) =
Ch

N2h−1

h∏
j=1

a
1/h−2
j , (30)

Figure 7. The (�,m, n) = (3, 6, 5) graph.
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where a = (a1, . . . , ah). From (30), the scaled distribution of the hth largest-degree mac-
rohub has the extremal behavior

M(h)(x) ∼
(
1

h
− x

)2h−2

 (31)

close to the maximal possible value x → 1
h
. The simulation data shown in figure 5 is 

consistent with these singular behaviors for h = 2, 3, and 4.

5. Network nucleus

5.1. Sublinear growth

One of most enigmatic features of IR networks is that they consist almost entirely of 
leaves, namely, nodes of degree one (figure 2). Nodes of degree greater than one consti-
tute what we term the nucleus of the network. Surprisingly, both the average number 

of nucleus nodes, N =
∑

k�2Nk, and indeed the average number of nodes Nk of any 
fixed degree k � 2, grow sublinearly with N (figure 8):

N ∼ Nµ, Nk ∼ Nµ, (32)
with exponent µ ≈ 0.566. The data are quite linear on the double logarithmic scale of 
the figure and a linear fit gives a correlation coecient of 0.999 9956. In removing suc-
cessive data points and performing the same regression analysis, there is no systematic 
change to the slope, which ranges between 0.5652 and 0.5673. Our quoted exponent 
value of µ = 0.566 therefore seems accurate to within 0.001. Because of this sublinear 
growth, the nucleus represents a vanishing fraction of the entire network as N → ∞, as 
is visually evident in figure 2. This behavior stands in stark contrast to that of sparse 
networks, where the nucleus represents a finite fraction of the whole.

Starting with the sublinear scaling (32), it is possible to generally show [11] that 
there is a power-law decay for the normalized degree distribution, ck = Nk/N

Figure 8. Dependence of N  and Nk versus N for various k values.
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ck ∼ k−(1+µ) k � 1, (33)
with the degree distribution exponent 1 + µ less than 2. Such an exponent value can 
be shown to be mathematically inconsistent [11] unless the size of the nucleus grows 
sublinearly with N.

We now demonstrate that the nucleus of IR networks must grow sublinearly with 
N. Let Nk,� be the number of nodes of degree k that are connected to � leaves, and let 
ck,� = Nk,�/N  be the density of such nodes. We make the mild assumptions that ck and 
ck,� are both independent of N for N → ∞. Then the number of nucleus nodes grows 
according to

dN
dN

=
N
N

∑
k�2

∑
�<k

ck,�
�

k
. (34)

That is, the size of the nucleus increases by 1 only when a new node initially selects a 
nucleus node and then redirects to a leaf. A nucleus node of degree k that is attached to 
� leaves is selected with probability Nk,�/N = N ck,�/N , and redirection to a leaf occurs 

with probability �
k
. Nucleus nodes that are not attached to leaves are characterized by 

� = 0; attaching to these nodes therefore does not aect the nucleus size.
If the densities ck,� are independent of N as N → ∞, then (34) implies that

µ =
∑
k�2

∑
�<k

ck,�
�

k
. (35)

We now obtain the strict upper bound µ < 1 by replacing � by its largest possible 
value, which is k − 1, in the sum in (35). We also exploit the two obvious sum rules, ∑

�<k ck,� = ck and 
∑

k�2 ck = 1 to give

∑
k�2

∑
�<k

ck,�
�

k
�

∑
k�2

ck
k − 1

k
= 1−

∑
k�2

k−1ck < 1.

We conclude that µ < 1, which gives the fundamental result that the nucleus grows 
sublinearly with N.

5.2. Anomalously small nucleus

We previously showed there is an anomalously large probability, of order 1/N , to gener-
ate star-like graphs that necessarily have a small nucleus. Therefore we anticipate that the 
probability to generate a graph with a nucleus whose size is a finite number will also be pro-
portional to 1/N . We therefore focus on the probability that the nucleus has a finite size h:

Ph(N) ≡ Prob
[∣∣N ∣∣ = h

]
. (36)

Equivalently, this is the same as the probability that there are h macrohubs in the sys-
tem. We already know the probability for the nucleus to consist of a single macrohub,

P1(N) ≡ SN =
2

N − 1
,

because this is the same as the probability to create a star graph.

https://doi.org/10.1088/1742-5468/aa7a3f
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Consider the probability that there two hubs. Let us first suppose that the degrees 
of both hubs are large; without loss of generality, we set m � n. Summing over all parti-
tions of the two hub degrees, a graph with N nodes has exactly 2 hubs with probability

P2(N) =

�N/2�−1∑
m=1

Hm,N−2−m. (37)

When both hubs are macroscopic, we previously derived in equation (12) that 
Hm,n � N−3. Moreover, the number of such contributions to the above sum is of the 
order of N. Hence the overall contribution to this sum from macroscopic hubs scales as 
N−2.

Thus the dominant contribution to the sum comes from terms with small m. We 
therefore use the result from equation (23) that Hm,n = Umn

−1 for m ∼ O(1) and n large 
and substitute into (37) to obtain

P2(N) � D2

N
=

2

N
N → ∞. (38)

with D2 defined immediately after equation (24). Therefore the probabilities to gener-
ate either one hub—a star network—or two hubs are asymptotically of the same order.

Based on these results, we anticipate that

Ph(N) � Dh

N
 (39)

for arbitrary h. In analogy with the discussion of two hubs, to justify (39) it is nec-
essary to determine Hm near the ‘corner’ values of m, where all hub degrees, apart 
from one, are small; the contribution from the cases where all hubs have macroscopic 
degrees is negligible. As a first step, we analyze two illustrative cases with three hubs 
in which one of them is macroscopic in appendix B. Namely, we show that the prob-
abilities for the graphs H1,m,1 and H�,0,1 (see equations (B.3) and (B.6)) are indeed 
proportional to N−1.

6. Multiple linking

We now extend IR networks in which a new node makes more than one link to the net-
work. For sparse networks, this modification aects only the amplitude of the degree 
distribution. For example, for linear preferential attachment in which the new node 
makes m independent links to the network, the number of nodes of degree k asymptoti-
cally scales as (see e.g. [5, 19])

Nk �
2m(m+ 1)N

k3
.

That is, the exponent of the degree distribution does not depend on m, the out degree 
of the new node. In isotropic redirection, however, the degree m of the newly introduced 
node materially aects the degree distribution.

https://doi.org/10.1088/1742-5468/aa7a3f
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There are two natural ways to implement multiple linking: (a) the new node selects 
a provisional target at random and attaches to m randomly selected but distinct neigh-
bors of this single target, or (b) the new node selects m provisional random targets and 
attaches to a random neighbor of each of these targets. Let us first consider rule (a) 
with m = 2; here, it is convenient to take the initial condition as a triangle. We may 
visualize the growth process as an eective triangle being created each time a new node 
and two new links are introduced (figure 9). However, we emphasize that we are gener-
ating a random graph, and not a set of random triangular surfaces. (Random triangular 
surfaces and, more generally, random simplicial complexes are studied, e.g. in [31–36]).

More generally, we study networks where each new node makes m links to the net-
work. Here, it is convenient to take the initial condition as a complete graph of m+ 1 
nodes. We define the nucleus of the network as the set of nodes with degree k > m. 
Once again the average number of nucleus nodes N , as well as the average number of 
nodes of any fixed degree Nk, with k > m, both scale in the same way and sublinearly 
with N: N ∼ Nµ and Nk ∼ Nµ. The salient feature is that exponent μ is non-universal 
with respect to m (and also to the two linking rules, (a) and (b)). For the first few cases, 
the exponent values are:

µ =





0.74 1 target, m = 2 links to its neighbors

0.83 1 target, m = 3 links to its neighbors

0.88 1 target, m = 4 links to its neighbors

0.83 link to neighbors of m = 2 targets

0.93 link to neighbors of m = 3 targets

0.97 link to neighbors of m = 4 targets

 (40)

As m increases the scaling of N  and Nk gradually approaches linearity in N. We 
note that our values for the degree distribution exponent ν = 1 + µ are close to those 
reported in [37] for various Wikipedia pages where multiple linking is significant.

In analogy with star graphs when the new node make a single link, we also exam-
ine the corresponding extremal graphs when the new node makes m > 1 links. For 
m = 2 and rule (a), the analog of a star graph is a book (figure 9(a)). A book with N 
nodes has N − 2 triangular pages that all share a common link that acts as the binding 

Figure 9. (a) Illustration of a book with M = 4 pages. (b) A defect in which the 
new node links to two lowest-degree nodes after a book of M = 6 pages is created. 
(c) A defect in which the new node links to a node of the lowest degree and a node 
of the highest degree.
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between the two highest degree nodes. (In [30] this graph was called an open book.) 
The probability BN to build a book of N nodes is obtained by iterating the recursion 

BN+1 =
N−2
N

BN. Starting with B4 = 1, we obtain

BN =
6

(N − 1)(N − 2)
N � 4. (41)

Consider now books with one defect, as illustrated in figure 9(b). To compute the 
probability to create a single-defect book, one first generates a book of M nodes, and 
then make an error by selecting one of the highest degree nodes as the target and 
thereby link to two nodes of the lowest degree (figure 9(b)). All subsequent growth steps 
continue to build the book without any additional errors. This configuration occurs 
with probability

B(M,N) = BM
2

M

M − 3

M − 1

N−1∏
k=M+1

k − 13
3

k
. (42)

Here BM accounts for generating a book with M nodes, the factor 2
M

 accounts for 
then ‘erroneously’ choosing one of the two highest degree nodes, and the factor 
M−3
M−1

=
(
M−2

2

)
/
(
M−1

2

)
 accounts for the linking to the lowest degree nodes. The probabil-

ity for the remaining attachments to occur without any errors is (k − 13
3
)/k when the 

total number of nodes equals k. Writing the product in terms of gamma functions gives

B(M,N) = 12
(M − 3) Γ(M − 2)

(M − 1) Γ(M − 10
3
)

Γ(N − 13
3
)

Γ(N)
� 12M4/3 N−13/3 M → ∞.

 

(43)

Thus the probability to create a network with a single defect of the type illustrated in 
figure 9(b) is given by

B′
N =

∑
4�M�N−1

B(M,N) � 36

7

1

N2
N → ∞. (44)

Analogously, we can compute the probability to create a book with a single error 
of the type shown in figure 9(c). The probability to create this defect after the network 
contains M nodes is

A(M,N) = BM
2

M

2

M − 1

N−1∏
k=M+1

k − 11
3

k
= 24

Γ(M − 2)

(M − 1) Γ(M − 8
3
)

Γ(N − 11
3
)

Γ(N)
,

� 24M−1/3 N−11/3 M → ∞.
 

(45)

The total probability A′
N =

∑
4�M�N−1 A(M,N) to have one defect of this type there-

fore scales as

A′
N � 36

N3
. (46)

Thus defects of the type in figure 9(b) are more common than those shown in 9(c).
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7. Discussion

We introduced a parameter-free network growth mechanism—isotropic redirection 
(IR)—that represents a minimalist extension of the classic random recursive tree (RRT). 
In the RRT, new nodes connect to an existing network one by one. Each new node 
selects and connects to a target node in the existing network that is chosen uniformly 
at random. In our IR model, each new node again selects a random target node but 
then connects to one of its neighbors.

In spite of the homogeneity of this simple growth rule, highly modular networks 
emerge that contain multiple macrohubs—nodes whose degrees are macroscopic (figure 
2). Visually, these networks share many features with multiplex networks; the latter 
are comprised of well-resolved individual networks that are weakly interconnected. It is 
remarkable that the modular configurations characteristic of multiplex networks arise 
essentially for free in our IR model.

A striking feature of network realizations in our IR model is that star-like struc-
tures are quite common. Naively, one might have anticipated that the probability for 
the occurrence of these extremal configurations would be exponentially small in N. By 
probabilistic reasoning, we showed that the likelihood of stars and near-perfect stars 
are both proportional to N−1. This anomalous probability results from the inherent 
amplification of the redirection process as the degree of a central node starts to ‘run 
away’ from the typical network degree. Therefore star-like structures whose central 
degree is of the order of N occur with a non-zero probability.

An outstanding theoretical challenge is to determine the exponent μ that char-
acterizes the sublinear scaling of the average size N  of the ‘nucleus’ of the network. 
Numerically, we found N ∼ Nµ, with µ ≈ 0.566. Thus the nucleus represents a van-
ishingly small fraction of the entire network. This behavior again starkly contrasts 
with sparse networks, where the size of the nucleus scales linearly with N. If the new 
node makes m > 1 connections to the network, then many of the anomalous features 
observed for the case m = 1 still arise, but the scaling of nucleus size on N appears to 
approach linearity as m increases.
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Appendix A. Stars with two or more defects

We extend the approach given in section 2 to compute the probability for a star 
with two or more defects. We will show that multiple-defect stars are more common 
than single-defect stars, thus providing evidence that typical network configurations 
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contain many star-like subgraphs. To create a star with two defects, the following 
must occur:

 (i) First build a perfect star of k nodes.

 (ii) Make an error when the next node is introduced.

 (iii) Then continue attaching to the hub until a single-defect star of � nodes is made.

 (iv) Make a second error when the next node is introduced.

 (v) Then continue attaching to the hub until a two-defect star of N nodes is made.

There are three distinct types of 2-defect stars (figure A1), and we now calculate 
the probability to create each of them. For each type, this probability generically has 
the asymptotic form

SN,k,� =
2

(k − 1)
d1(k)

�∏
k+1

(
1− a1

n

)
d2(�)

N∏
�+1

(
1− a2

n

)
. (A.1)

The first factor is the probability to create a perfect star of k nodes. The second factor, 

d1(k) =
1
k
, is the probability to create the first defect. The next factor is the probability 

to add new nodes to the network without creating another defect; this probability was 

written in equation (3) with a1 =
5
2
. The factor d2(�) is the probability to create the sec-

ond defect when the network contains � nodes. The last product gives the probability 
to build the network to its final state without any additional defects. Both d2(�) and a2 
depend on the topology of the 2-defect star that is created.

Before specifying d2(�) and a2, we first determine the asymptotic behavior of the 
products in (A.1). While we can write them in terms of gamma functions, the follow-
ing shortcut suces for the asymptotic behavior. Generically, we write the products in 
equation (A.1) as

�∏
n=k

(
1− a1

n

)
= exp

[ �∑
n=k

ln
(
1− a1

n

)]
� exp

[
−

∫ �

k

a1
n

dn
]
�

(
k

�

)a1

. (A.2)

We now determine d2(�) and a2 for the distinct 2-defect stars in figures A1(a), (b), 
and (c). For case (a), there is one hub, one core node, one leaf attached to the nucleus 
node, and �− 3 leaves attached to the hub. By enumerating all relevant states, the 
probability to create a second defect is

Figure A1. The three types of stars with 2 defects.
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d2(�) =
1

�

�− 3

�− 2
� 1

�
.

Once a second defect is created, a network of n nodes consists of a hub, two nucleus 
nodes, two leaves attached to nucleus nodes, and n− 5 leaves attached to the hub. If 
the new node selects one of these n− 5 leaves, then attachment to the hub occurs. If 
the new node selects one of the two nucleus nodes, then with probability 1/2, redirec-
tion to the hub occurs. Thus the probability that a new node attaches to the hub is [
n− 5 + 2× (1/2)

]
/n = 1− 4

n
, so that

a2 = 4.

By enumerations in the same spirit, the results for cases (b) and (c) are

d2(�) =
1

�

(
1 +

1

�− 2

)
� 1

�
, a2 =

11

3
,

d2(�) =
1

2�
, a2 =

7

2
.

Substituting these in equation (A.1), integrating over the possible values of k and �, 
the probability to create an N node 2-defect star of type (a) is given by

S
(2)
N ≡

∑
SN,k,� �

∫ N

1

dk

∫ N

k

d� d2(�)SN,k,�,

� 2

k2

∫ N

1

dk

∫ N

k

(
k

�

)a1 1

�

(
�

N

)a2

,

� 2

N

1

(a1 − 1)(a2 − 1)
=

4

9N
.

 

(A.3)

Note that this type of defective star can also be viewed as the graph of type (1,m, 1), 
whose probability is determined independently in the next section. The result (A.3) 
thus coincides with (B.3), the probability to create a (1,m, 1) graph. By similar calcul-

ations, the probability to create 2-defect stars of types (b) and (c) are 1
2N

 and 4
15N , 

respectively. The former reproduces (21), while the latter reproduces (B.6), which will 
also derived in the next section.

Appendix B. Multiple hubs

To help understand the behavior of the probability to generate a small number of 
macrohubs, we compute the probability for specific networks with three hubs when 
two hub degrees are small. The enumerative procedure is straightforward, albeit a bit 
tedious. As a first example, consider H1,m,1. In this case the analog of the recursion (25), 
for the case where the first and third arguments are small, is

H1,m,1 =
m+ 1

(m+ 2)(m+ 4)
H1,m+1 +

m

m+ 4
H1,m−1,1, (B.1)
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with H1,m+1 determined by (18). While this recurrence is soluble, it suces to use the 
continuum approach to determine the asymptotic behavior. Using (19), we recast (B.1) 
into

(
m

d

dm
+ 4

)
H1,m,1 �

4

3m
, (B.2)

from which

H1,m,1 �
4

9m
. (B.3)

This result coincides with (A.3), as it must.
Another illustrative example is when the degree of the central hub is the smallest; 

the simplest such example is the (�, 0, 1) graph. Here the central hub is not linked to 
any leaf, but has degree 2. For this limiting case, the recursion for the number of such 
graphs is

H�,0,1 =
1

2(�+ 3)
H1,� +

�− 1
2

�+ 3
H�−1,0,1 (B.4)

To obtain the asymptotic behavior, we use (19) and again take the continuum limit to 
recast (B.4) into

(
�
d

d�
+

7

2

)
H�,0,1 �

2

3�
, (B.5)

from which

H�,0,1 �
4

15�
. (B.6)

We have thus identified three-hub configurations whose occurrence probabilities in 
the ensemble of networks of N nodes is proportional to N−1. By extending this reason-
ing, we anticipate that the probability to find N-node networks of h hubs in the full 
ensemble will also be proportional to N−1.
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