## Erratum to J. Phys. A: Math. Gen. 38, 2555 (2005)

Let $\left\{X_{n}, n \in \mathbf{N}\right\}$ denote the excited random walk on the integers, with absorbing states at 0 and $x$. Let $T_{x}$ be the average time to hit site $x$ for the first time. Initially, the walk starts at site 1, and we assume that it eats all cookies between and including sites 1 and $x-2$. We also assume that the walk just stepped to site $x-1$ for the first time, and we are interested in the average time to step to site $x$ for the first time, with the condition that the walk does not visit site 0 . Note that the first step from site $x-1$ is biased, but after this step there are no cookies on sites $1,2, \ldots, x-1$, so the walk is unbiased on these sites. The conditional average time to first hit site $x$ can be split up by the total probability rule

$$
\begin{align*}
& E\left(T_{x} \mid X_{0}=x-1, X_{\infty}=x\right) \\
& \quad=\sum_{y=x-2, x} E\left(T_{x} \mid X_{1}=y, X_{\infty}=x\right) P\left(X_{1}=y \mid X_{0}=x-1, X_{\infty}=x\right. \tag{1}
\end{align*}
$$

where $X_{\infty}$ is the final absorbing state at 0 or $x$. The first factor can be simplified as

$$
E\left(T_{x} \mid X_{1}=y, X_{\infty}=x\right)=1+E\left(T_{x} \mid X_{0}=y, X_{\infty}=x\right)
$$

and for an unbiased random walk starting from site $y$, the conditional average to reach site $x$ without hitting site 0 is

$$
E\left(T_{x} \mid X_{0}=y, X_{\infty}=x\right)=\frac{1}{3}\left(x^{2}-y^{2}\right) .
$$

Hence

$$
\begin{align*}
E\left(T_{x} \mid X_{1}=x-2, X_{\infty}=x\right) & =1+\frac{4}{3}(x-1) \\
E\left(T_{x} \mid X_{1}=x, X_{\infty}=x\right) & =1 \tag{2}
\end{align*}
$$

The second factor in (1) simplifies in the usual way as

$$
\begin{align*}
& P\left(X_{1}=y \mid X_{0}=x-1, X_{\infty}=x\right) \\
& \quad=\frac{P\left(X_{1}=y, X_{\infty}=x \mid X_{0}=x-1\right)}{P\left(X_{\infty}=x \mid X_{0}=x-1\right)} \\
& \quad=\frac{P\left(X_{\infty}=x \mid X_{1}=y, X_{0}=x-1\right) P\left(X_{1}=y \mid X_{0}=x-1\right)}{P\left(X_{\infty}=x \mid X_{0}=x-1\right)}  \tag{3}\\
& \quad=\frac{P\left(X_{\infty}=x \mid X_{0}=y\right)}{P\left(X_{\infty}=x \mid X_{0}=x-1\right)} P\left(X_{1}=y \mid X_{0}=x-1\right)
\end{align*}
$$

The probability for an unbiased random walk to first hit the right boundary is given by

$$
P\left(X_{\infty}=x \mid X_{0}=x-2\right)=\frac{x-2}{x} \quad P\left(X_{\infty}=x \mid X_{0}=x\right)=1 .
$$

However, when the walk starts from site $x-1$ we need to be careful, as the first step is still biased

$$
\begin{align*}
P\left(X_{\infty}=x \mid X_{0}=x-1\right) & =q P\left(X_{\infty}=x \mid X_{0}=x-2\right)+p P\left(X_{\infty}=x \mid X_{0}=x\right) \\
& =q \frac{x-2}{x}+p \tag{4}
\end{align*}
$$

Hence,

$$
\begin{gather*}
P\left(X_{1}=x-2 \mid X_{0}=x-1, X_{\infty}=x\right)=q \frac{(x-2) / x}{q(x-2) / x+p}=\frac{q(x-2)}{x-2 q}  \tag{5}\\
P\left(X_{1}=x \mid X_{0}=x-1, X_{\infty}=x\right)=\frac{p}{q(x-2) / x+p}=\frac{p x}{x-2 q}
\end{gather*}
$$

These two probabilities add up to 1 , as they must.
Substituting these probabilities into our original expression (1) we obtain

$$
\begin{equation*}
E\left(T_{x} \mid X_{0}=x-1, X_{\infty}=x\right)=1+\frac{4}{3}(x-1) \frac{q(x-2)}{x-2 q}=1+\frac{4 q}{3} \frac{(x-1)(x-2)}{x-2 q} . \tag{6}
\end{equation*}
$$

For $p=q=1 / 2$ the cookies have no effect, and we recover the well known expression for the conditional escape time from an interval

$$
E\left(T_{x} \mid X_{0}=x-1, X_{\infty}=x\right)=\frac{2 x-1}{3}
$$

For the total time to reach site $x$ from the initial site 1 , we need to sum up the above expression

$$
\begin{align*}
E\left(T_{x} \mid X_{0}=1, X_{\infty}=x\right) & =\sum_{n=2}^{x} E\left(T_{n} \mid X_{0}=n-1, X_{\infty}=n\right) \\
& =x-1+\frac{4 q}{3} \sum_{n=3}^{x} \frac{(n-1)(n-2)}{n-2 q}  \tag{7}\\
& =x-1+\frac{4 q}{3} \sum_{n=2}^{x} \frac{n(n-1)}{n-1+2 p},
\end{align*}
$$

which can be expressed in terms of the digamma function as

$$
x-1+\frac{4 q}{3}\left\{\frac{x(x+1)}{2}-1-2 p(x-1)+2 p(2 p-1)\left[\Psi_{0}(x+2 p)-\Psi_{0}(1+2 p)\right]\right\} .
$$

Its large $x$-asymptotic follows from

$$
\begin{equation*}
E\left(T_{x} \mid X_{0}=x-1, X_{\infty}=x\right) \sim \frac{4 q}{3} x \tag{8}
\end{equation*}
$$

Hence the total time scales as $2 q x^{2} / 3$, so that the reported behavior in the article, namely, that the total times is proportional to $x^{2}$, was correct.

